#### ON FRAISSE'S PROOF OF COMPACTNESS

Xavier Caicedo and A. M. Sette

Janeiro

RP 02/93

### Relatório de Pesquisa

RT - BIMECC 3066

# Instituto de Matemática Estatística e Ciência da Computação



UNIVERSIDADE ESTADUAL DE CAMPINAS Campinas - São Paulo - Brasil

R.P. IM/02/93 ABSTRACT - Appart from four trivial cases, a universal Horn class of graphs generated by finitely many finite graphs can not be finitely axiomatizable.

IMECC - UNICAMP Universidade Estadual de Campinas CP 6065 13081 Campinas SP Brasil

O conteúdo do presente Relatório de Pesquisa é de única responsabilidade dos autores.

### ON FRAISSE'S PROOF OF COMPACTNESS

Xavier Caicedo and A. M. Sette Campinas, November 1992

"Viajando por caminhos que não sei onde vão dar"

(Brazilian popular song)

Fraisse's proof of countable compactness in [F], Th. 1.5.3, ammounts to the construction of a sheaf of structures over the one point compactification  $\omega \cup \{\infty\}$  of the discrete space  $\omega$  of natural numbers, so that the fiber in  $\infty$  is generic (forcing and truth coincide). This gives perhaps the simplest non-boolean sheaves with all their fibers being generic.

If  $\tau$  is a countable type of structures, then the space  $E_{\tau}$  of structures of type  $\tau$  topologized by the elementary classes as basic open classes is pseudometric. In fact the following is a totally bounded metric generating the elementary topology. Choose first a sequence  $\tau_1 \subseteq \tau_2 \subseteq \ldots$  of finite subtypes of  $\tau$  such that  $\tau = \bigcup_n \tau_n$  and define a modified rank for any sentence of type  $\tau$  by

$$mr(\varphi) = \min\{n : \varphi \in L_{\omega\omega}(\tau_n), n \ge qr(\varphi)\}$$

where qr is the ordinary quantifier rank. In this context,  $\mathcal{A} \equiv_{\bullet}^{n} \mathcal{L}$  will denote elementary equivalence with respect to sentences of modified rank less than n (hence,  $\mathcal{A} \equiv_{\bullet}^{0} \mathcal{L}$  always holds). Finally define the metric by

$$d(\mathcal{A}, \mathcal{L}) = \inf \left\{ \frac{1}{n+1} : \mathcal{A} \equiv_{\bullet}^{n} \mathcal{L} \right\}.$$

It is easy to see that this pseudo-metric is totally bounded (see [W]); hence, to show compactness it is enough to show that every Cauchy sequence converges.

Fraisse's proof may be construed as extracting first a Cauchy sequence from an arbitrary sequence (this may be done because the pseudometric is totally bounded) and then showing the Cauchy sequence converges. He assumes  $\tau$  is finite, but with a slight modification

Supported by FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo.

of the notion of n-partial isomorphism his construction works for countable  $\tau$ .

Following Fraissé, construct a subsequence  $\{A_n\}_n$  together with finite subsets  $E_n \subseteq A_n$  and injective functions  $f_n: E_n \to E_{n+1}$  such that

i)  $f_n: \mathcal{A}_n \to \mathcal{A}_{n+1}$  is an n-partial isomorphism for each n.

ii) For any  $a \in A_n$  there is  $g \supseteq f_n$  such that g is a (n-1)-partial isomorphism,  $a \in dom(g)$ , and  $g(a) \in E_{n+1}$ .

It may be shown that if  $f_{nk} = f_k \circ ... \circ f_m$  for k > n and  $A_{\infty} =_{\lim} \{f_{nk} : A_n | E_n \to A_k | E_k\}_{n \le k}$  then the limit morphisms  $f_{m\infty} : A_n \to A_{\infty}$  are n-partial isomorphisms for any n. Here, a n-partial isomorphism  $f : A \to \mathcal{L}$  is defined as in [F], except that it will be assumed to be isomorphism only with respect to the relation symbols in  $\tau_n$ . In particular, we have

$$(\mathcal{A}_n, a_1, \dots, a_m) \equiv_*^n (\mathcal{A}_k, f_{nk}(a_1), \dots, f_{nk}(a_m))$$
 (1)

for any  $a_1, \ldots, a_m \in E_n$  and  $k = n, n + 1, \ldots, \infty$ .

Let  $\omega \cup \{\infty\}$  be the one point (or Alexandroff) compactification of discrete  $\omega$ . Hence, the topology of  $\omega \cup \{\infty\}$  is discrete in the open subspace  $\omega$  and a neighborhood basis for  $\infty$  consists of the sets:

$$[n, \infty] = \{j \in \omega \ : \ j \ge n\} \cup \{\infty\}$$

we will write also:

$$[n, \infty) = \{ j \in \omega : j \ge n \}.$$

Define a sheaf A over  $\omega \cup \{\infty\}$  as follows:

$$\mathcal{A}(S) = \Pi_{i \in S} \mathcal{A}_i \quad \text{if} \quad S \subseteq \omega$$

$$\mathcal{A}([n, \infty]) = \{(f_{nk}(a))_{k \in [n, \infty]} \mid a \in E_n\}, \quad n \in \omega;$$

the projections  $\mathcal{P}_{ST}: \mathcal{A}(S) \to \mathcal{A}(T), \ S \supseteq T$  are simply the restrictions. It is readily seen that this is a sheaf where the fiber over  $n \in \omega$  is  $\mathcal{A}_n$  and the fiber over  $\infty$  is  $\mathcal{A}_{\infty}$ :



The sections over  $[n, \infty]$  are in one to one correspondence with the elements of  $E_n$ , so that there are finitely many only. If  $\sigma$  is such a section then

$$\sigma(k) = f_{nk}(a), k \in [n, \infty)$$
  
 $\sigma(\infty) = f_{n\infty}(a) = \hat{a}.$ 

For the semantics of forcing in sheaves we refer to [E]. A sheaf of structures wilt be said to be *generic* at a point x of the base space if forcing at that point coincides with classical truth in the fiber. More, precisely, if one has

$$\mathcal{A} \Vdash_{x} \varphi(\sigma_{1}, \dots, \sigma_{k}) \leftrightarrow \mathcal{A}_{x} \models \varphi(\sigma_{1}, (x), \dots, \sigma_{n}(x))$$
 (2)

for each formula  $\varphi(x_1,\ldots,x_n)$  and (partial) sections  $\sigma_1,\ldots,\sigma_n$  of  $\mathcal{A}$  defined in x. Here,  $\mathcal{A}_x$  is fiber of  $\mathcal{A}$  at x.

Clearly, Fraisse's sheaf is generic at any point  $n \in \omega$ , because  $\{n\}$  is open. Less obviously, it is generic at  $\infty$ . First we need:

**LEMMA.** Let  $n \in \omega$ ,  $n \geq mr(\varphi)$ , then the following are equivalent for  $\overline{\sigma} = (\sigma_1, \ldots, \sigma_n)$ ,  $\sigma_i \in \mathcal{A}([n, \infty])$ :

i) A⊩,φ(σ)

ii)  $A_j \models \varphi(\overline{\sigma}(j))$  for some  $j \in [n, \infty]$ .

**Proof.** We have already noticed that  $\mathcal{A}\Vdash_n\varphi(\overline{\sigma})$  iff  $\mathcal{A}_n \models \varphi(\overline{\sigma})$ . Now, if  $j \in [n, \infty]$  let  $\overline{a} = \overline{\sigma}(n)$ , then  $\overline{\sigma}(j) = f_{nj}(\overline{a})$  and by (1),  $\mathcal{A}_n \models \varphi(\overline{\sigma}(n))$  iff  $\mathcal{A}_j \models \varphi(\overline{\sigma}(j))$ , including  $j = \infty$ , because  $n \geq mr(\varphi)$ .  $\square$ 

PROPOSITION. A is generic at ∞.

**Proof.** We show (2) by induction in formulas

 $\varphi$  atomic. Follows by definition of forcing.

 $\varphi = \psi \wedge \theta$ ,  $\psi \vee \theta$ . Trivial inductive step.

 $\varphi = \psi \to \theta$ . If  $A \Vdash_{\infty} (\psi \to \theta)(\overline{\sigma})$  and  $A_{\infty} \models \psi(\overline{\sigma}(\infty))$  then  $A \Vdash_{\infty} \psi(\overline{\sigma})$  by induction hypothesis and so  $A \Vdash_{\infty} \theta(\overline{\sigma})$ . By induction again,  $A_{\infty} \models \theta(\overline{\sigma}(\infty))$ . Conversely, assume  $A_{\infty} \models (\psi \to \theta)(\overline{\sigma}(\infty))$  and let  $n \in \omega$  be large enough so that  $n \geq qr(\varphi)$  and  $\overline{\sigma}$  is defined in  $[n, \infty]$ . If  $\phi \neq S \subseteq [n, \infty]$  is such that  $A \Vdash_S \psi(\overline{\sigma})$  then by genericity in  $j \in \omega$  and by induction hypothesis in  $\infty$ , we have  $A_j \models \psi(\overline{\sigma}(j))$  for any  $j \in S$ . By the Lemma,  $A_{\infty} \models \psi(\overline{\sigma}(\infty))$  and so  $A_{\infty} \models \theta(\overline{\sigma}(\infty))$ . By the lemma again  $A_j \models \theta(\overline{\sigma}(\sigma))$  for any  $j \in S$ . By induction hypothesis,  $A \Vdash_S \theta(\overline{\sigma})$ . This shows  $A \Vdash_{\infty} (\psi \to \theta)(\overline{\sigma})$ .

 $\varphi = \exists \mu \theta(\mu, \overline{x})$ . Trivial induction.

 $\varphi = \forall \mu \theta(\mu, \overline{x})$ . If  $\mathcal{A}_{\infty} \Vdash \forall \mu \theta(\mu, \overline{\sigma})$  then for any  $\tau$  defined in  $\infty$ ,  $\mathcal{A} \Vdash_{\infty} \theta(\tau, \overline{\sigma})$  and by induction hypothesis  $\mathcal{A}_{\infty} \models \theta(\tau(\infty), \overline{\sigma}(\infty))$ . As any element of  $\mathcal{A}_{\infty}$  is to the form  $\tau(\infty)$ , we have  $\mathcal{A}_{\infty} \models \forall \mu \theta(\mu, \overline{\sigma}(\infty))$ .

Conversely, if  $A_{\infty} \models \forall \mu \theta(\mu, \overline{\sigma})$ , let  $n = mr(\theta) + 1$  We must show that for any  $\tau$  defined in  $j \in [n, \infty]$ ,

$$A \Vdash_i \theta(\tau, \overline{\sigma}).$$
 (3)

For  $j = \infty$  this follows by induction since by hypothesis  $\mathcal{A}_{\infty} \models \theta(\tau(\infty), \overline{\sigma}(\infty))$ . For  $j \in [n, \infty)$ , let  $a = \tau(j) \in A_j$ . Since  $f_{j\infty}$  is an n-partial isomorphism and  $f_{j\infty}(\overline{\sigma}(j)) = \overline{\sigma}(\infty)$ , then there is  $\hat{b} \in \mathcal{A}_{\infty}$  such that

$$(\mathcal{A}_j, \ a, \ \overline{\sigma}(\sigma)) \equiv^{n-1}_{\bullet} (\mathcal{A}_{\infty}, \ \hat{b}, \ \overline{\sigma}(\infty)).$$

As  $\mathcal{A}_{\infty} \models \theta(\tilde{b}, \overline{\sigma}(\infty))$  by hypothesis and  $mr(\theta) = n - 1$ , then  $\mathcal{A}_{j} \models \theta(a, \overline{\sigma}(j))$  and so  $\mathcal{A}_{j} \Vdash \theta(\tau, \overline{\sigma})$ . With this we have shown (3).  $\square$ 

Although Fraisse's performs his limit construction with a subsequence of the given Cauchy sequence, it is clear that we may from a sheaf as above with the original sequence. In this way, the Cauchy sequences of  $E_{\tau}$  are extendible to sheaves of structures of type  $\tau$  over  $\omega \cup \{\infty\}$ . If we identify a structure  $\mathcal{A}$  with the constant sheaf  $\overline{\mathcal{A}}$  over  $\omega \cup \{\infty\}$ , we have an embedding

$$E_{\tau} \stackrel{f}{\hookrightarrow} Sh_{\tau}(\omega \cup \{\infty\})$$

where  $Sh_{\tau}(\omega \cup \{\infty\})$  is the category of sheaves of structures of type  $\tau$  over  $\omega \cup \{\infty\}$ . Now,  $Sh_{\tau}(\omega \cup \{\infty\})$  has the natural topology induced by intuitionist logic where the basic closed classes are of the form

$$\mathcal{O}_{\varphi} = \{ \mathcal{S} \in Sh_{r}(\omega \cup \{\infty\}) : \mathcal{S} \Vdash \varphi \}.$$

Under this topology, the embedding is continuous, because for the constant sheaf:  $\overline{A} \Vdash \varphi \Leftrightarrow A \models \varphi$ .

Questions: 1) Is  $Sh_{\tau}(\omega \cup \{\infty\})$  compact?

2) Is  $\{S \in Sh_{\tau}(\omega \cup \{\infty\}) : S \text{ generic at } \infty\}$  a closed compact subspace of  $Sh_{\tau}$ ?

3) May every sheaf over  $\omega \cup \{\infty\}$  with generic limit be construed as a Fraisse's limit?

#### BIBLIOGRAPHY.

- [F] R. Fraissé, Cours de Logique Mathematique, Gauthier-Villars, Paris, 1972.
- [E] D. P. Ellerman, Sheaves of Structures and Generalized ultraproducts. Ann. Math. Logic 7 (1974) 163-195
- [W] S. Willard, General Topology, Addison Wesley, 1968.

## RELATÓRIOS DE PESQUISA — 1993

01/93 On the Convergence Rate of Spectral Approximation for the Equations for Nonhomogeneous Asymmetric Fluids — José Luiz Boldrini and Marko Rojas-Medar.