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0. Introduction. A prisd estimates for solutions of superlinear elliptic problems
can be estalilished by a blow up technique, Such a method Las been used by Gidas-Sprock
[GS1] for the case of a single equation. Similar arguments can also be used in the case of
systerms. We reler 1o Uhe work of Jie Cing [J] and M. AL Souto [5]. As in the scalar case,
the treatment of systems poses the question of the validity of a result which is referred as
a Liouville type theorem for solutions of systews of elliptic cynations in BV, Let us make
precise Lhis gquestion

We consider the elliptic avstem

(0.1) { o

—~ Ar = g
in the whole of Y, N = 3. The question is to determine for whicl values of the exponenls
o and F the ooly nonnegative solution (u, o) of (0,1} 3 (w0} = (0,0). The notion of
solution here is taken i the classical sense, e, w,v € C9(RY) [u Lhe case of a single
equation
{0.2) Autu =0, az0 in H"

it has been proved in [(G52] that the only solution of (0.2} is « = 0 when

. N+2 o
[ﬂ.‘!} | << p< In";."- - ?'. , N =10,
In dimension N = 20 o shiimilar conclosion holds for 0 < p < w0 This s 2 special case

of the result that asseits that any snperharmonie fnetion bounded below in the whole
plane B* is necessanly constant, see [PW, Theorenn 29, o 130]. 10 is also well known that,
in the critical vase, p o (Y 2N 2), problem [0.2) has a two-parameter family of
solutlons given by: -
(0.4) el D SIS

0+ = ol

We see then that the cotical exponent, in the scalar case, plays an nuportant role in the
validity of the Liouville-type theovem for equation {((.2). 1t is natural to conjecture that
in the case of syatem (0.0) the condition (0.33) s replaced by

o 1 N-2

(0.3) e T1 + ] > TN

The basis of this conjeeture hes on the fact thad, the existence of positive solutions for

the Dhrichlet problem for system (001) in a bounded domain holds troe if condition {0.5)
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is satisfied, see [CFM, FF, HV]. If this conjecture were true we would have a complete
analogy with Lhe scalar case. A further argument in favor of this conjecture is a theorem
of Mitidieri [M; Thm 3.2] which states that (0.1) has no nontrivial radial positive solutions
of class CH(RY), N = 3, provided 1 < & € # and (0.5) holds. The result proved here is
the following

Theorem. A) lf o > 0 and # > 0 are such that

N+2 N+ 2
(0.6) a B < N_TE . but both are not equal to fNJr .

then the only nomnegative (% solution of (0.1) in the whole of Y is the trivial one:

u=0 v={

Blfa=§= ifi , Lhem woand v are radially symumetric with respect to some point

of RN,

Remark. In [5] it was proved that (0.1) has no nontrivial nonnegative 7 solutions in
the whole of BY provided

1 1 N-2
SFItERIENCT

We see then that this establishes the conjecture in a hyperbolic region of the plane (e, 8)

which iz smaller then the one set in (0.5). However (and this is important to stress)

(0.7) e, 3>0 and

such region containg points which are not included in the region defined o {0.6). Souto'’s
argument in [8] is based on the nonexistence of positive solutions in the whole of BY of
the inequality

(0.5) Au+tu’ =0

when o << N/{N - 2). This fact was proved by Gidas [(3]. The conjecture would be proved
if we had this nonexistence result (for inequality (0.8)) up to (N + 2)f/(N — 2). We do
not know if such a result is true. In [J] there are some Liouville type theorems although
his results apply to more general nonlinearities, they do not eover our result.

An important feature of the present paper 15 to show how the Method of Moving
Planes, as developed by Gidas Ni-Nivenberg [GNN], and more recently by Berestycki-
Nirenberg [BN|, can be used to produce rather simple and elegant proofs of Liouville-type



theorems for systems. The mam ditficult stems form the fact that the domains, where the
solutions are considered, are unbounded, in fact BY. In such cases it is not clear where we
can start the procedure, see details in Section 2. The present work has been motivated by
recent papers by Callarell-Gidas-Spruck [CGS) and Chen and Li [CL), where Liouville-
type theorems for a single equation (results formerly proved by Gidas-Spruck [G52]) have
received a treatment by the Method of Moving Planes,

The avthors would like to thank Manuel del Pino for useful conversations.

§1. Some general facts about superharmonic (subharmonic)
functions. Let us recall the so called Hadamard Three Spheres Thearem, see [PW; p.
131

“Let {1 be an open set containing the set

[ze R im<izl<n), N=3
and u € C*{Q) with Aw = 0, Forry <r < ry, leat
M{r) = max{u(z) : |z| = r}.
Then

M{r)(r2 N — 73~%) + M(r)(rd™ — 13-

(1.1) M(r) < RS e .

for any r in [ry, r]."

The proof of this result is very simple. Let ¢{r) = a + &*~%. Choose a and b such
that w(m) = M(ry) and @(rs) = M(ry). Let o{z) = u(z) — (}z|), and vse the maximum
principle for subharmonic functions,

Lemma 1.1. Let w € C*(R™\{0}) such that 4 < 0 and A > 0. Then, for each & = 0,
one has

(1.2) u{z) s M) , O0<|z|<e
=1
(13) ) < O 2 e
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Proof. Letting ry — 0in (1.1) weobtain M(r) < M(ry), for all @ < r < r,, which implies
(1.2) by taking r; = . Letting r; — 400 in (1.1} we get M(r}r™ 2 < M{r,r¥2, for all
r > ry, which gives (1.3) by taking ry = €. o

Corollary 1.1. Let u € C*(RY} be such that u > 0 and Au < 0 in the whole of R™. Let

i 1 (.r)

2= i

be its Kelvin transform. Then, for each £ > 0, there are positive constants 5, and
such that

(1.4) wiz)>q , O0<|zl<c
e .
{1.5) [II’_’;;EM{:IE H;_._;, =gl = ¢.

Proof. The funclion —w satisfies the hypothesis of Lemma 1.1. Choosing ¢ =
min{w(z) : |r] = £} we obtain (1.4) and the lower bound in {1.5). Choosing b, =
max{u(y) : ly| < £~'} we obtaiu the upper bound in (1.5). o

§2. Some auxiliary facts. Let u >0 and v > 0 be (" solutions of system {0.1)
with both o and < (N + 2)/({N — 2). Let us introduce their Kelvin transforms

1 x 1 x
I.ﬂ[:l'} - ]II'—"- ___‘!.:(L‘EI':) . :{Ij — - |I-IE i"(hf:)
which are defined for x # 0. One verifies that w and =z satisfy the system

1
(2.2) Az + - v =0.

|lF+-div-3)

We shall use the method of moving planes, and let us start by considering planes parallel
to x; =0, coming from —oo. For each real A let us define

E_;_S{I={I;,...,Iﬂ}ﬁ.ﬂ":i’1{l}, T1=HE;,

5



and x* as the reflection of & about the plane T. Let ¢, = (2X,0,...,0), In what follows
we consider A < 0 and let £, = Ui {ex). In £, we define the following functions

unfr) = w{:r""] » Ealx) = :{TA:'

Wilz) = wy(z) —wiz) . 2Zi(z)=2:z) — z(zx)

The first step in the use of the method of moving planes is to show that we can start
the process. That is, there exists a A < 0 such that Wy(z) > 0 and Zy(z) = 0 for all
x ¢ I,. Unfortunately, this cannot be shown as we shall see shortly, However this can
be achieved with a slight modification of these functions. Let us explain that.

For € I, we have

(2.3) Aulz) + m "(z) =10

(2.4) Aw(z*) +

iz} = 0.

1
|z [N +E=a(N=7)

Using the invariancce of the Laplacian under a reflection and the fact that %] < =], it
follows from (2.4)

(2.5) Ay () + [epFi-ei =3 zy(x) < 0.

Hence we gel from (2.3) and (2.5)

AW, x) + mﬁfﬂr} —2(z)) <0

which, using the mean value theorem, can be written as
(2.6) AW(2) + elz; A Zalz) < 0
where
el 3) = g (s )
and Hx; A) is a real number between z3(x) and 2(z). Similarly, we obtain
[£7) AZy(x) + &z Wa(z) < 0
where

And) = ]zl"*‘ﬁﬂ_[ﬂ—ﬂ ($(=: P

6



and (z;A) is a real number between wy(r) and wiz). We would like to infer that
Wilz) = 0 and Zy(z) = 0, for some A < 0 and all £ € I, but we observe that system
(2.6)-(2.7) is not amenable for application of maximum principles. In order to obtain a
system satisfying the hypothesis of maxirmim principles (see, for instance, [PW] or [FM])
we introduce the function g and show that the functions

where g(z) = /1 — 7, for all  such that z, < 0, satisfy the following system of inequal-
itica

4 Dy s e .
(2.8) amw—g—"” -vw;+‘fﬂ"1+c{1; NZ, <0
w0V -
(2.9) AT +2-4 .92, 4 ﬂ31+f:[:l:; MW, <0.
¥ g

The latter system is cooperative, since both o(x; A) and & 2; A} are positive. Thus we can
apply the maximum principle {Thm... in [FM]) provided

Aglz) | Aglz) ..
(2.10) o) tAEN S0, SR Em <0,

Our purpose next is to prove the

Proposition 2.1. There exists A” < O such that forall A < A=, Wy(z) > 0and Z3(z) >0
forall z ¢ £,.

We shall use in the proof of the above proposition some properties of W, (and a similar
set of properties of Z, ), which are collected in the lemmas below. We consider A < 0.

Lemma 2.1. (i) i W,(z) > 0 for all = in some puncrured ball B,{e,) C £,, and if
en = inf{Wi(z): x € E,) <0

then W, attains its infimum in 2. .
(i) There exists A < 0, such that if X < X and {)) < 0, then W, attains its infimum in

£,



Proof. (1) Since Wy(z) — 0 as |z] — oo, we can find ry, > 0 such that W,(z) = %.:{j.]
for |z] > ry. Thus W), attains its infimum on the compact set B, (0)N(E,\B.(e.1)). Since
Wi vanishes on Th, the result follows. (iii) Using Corollary 1.1 we find positive numbers
¢y and r such thal wir) = o, for 0 < 2| < 1, and wiz) < % for |z] 2 r. Choose
X = min{—r,—1}. Then for A < X

1

WJ_'LI} -_3' L(1‘.!1 2

.I_';I'{-T-':I ) >0 i zE HIE_EJ.‘} o

Lemuma 2.2, (1) There is a positive constant dy, depending only on w and A, such
that

(2.11) &x; A) _ﬁl l:

for all z € Ey — Ih{es), where Wi(z) < 0.
(1) There is an R, > 0, depending only on A and w, such that

Agl=)
(2.12) o

for all = € 5, By, (1), where Wi(z) < 0.

+éE{z;A) <0

Proof. (i) If # 2 1, it follows from Wi(x) < 0 that wi(x) < 4{z; A} < w(z). We then
estimate w(x) using nequality {1.5) of Corollary 1.1. We see that dy can be taken as

dy : pi :
o {uly) <yl < A7t} Then ghx A) < it Using the definition of &z; A) we obtain
(2.11) readily. Actually, inequality (2.11) holds for all z € &,

If0 < § < 1 then we estimate wy(x) = w{z*) using the other part of inequality (1,5)
to obtain :

dy, .}da

El =
walz) = feal¥=2 = [g|N-3

where dy = min{w(z) : |2| = 1}. From here we obtain (2.11) since -1 < 0.
() Observe that

M 11

gl=) H1—m) ~ 8(1+zf)
So (2.12) follows immediately from the above inequality together with (2.11). o




Lemma 2.3. There exists A* <} such that, for all A < 1, inequality (2.12) holds
for all z € £, where W.(z) < 0.

Proof. We first ohserve that &y < d, if A < g < 0. So for all A < 1 we estimate

L LT | pdE
#(x) +Ezid) < 5f1+ﬁ]+ [=]*

(2.13)

for all = € £, where Wi(z) < 0. Hence the right side of (2.13) is negative if = > By
(as in Lemma 2.2(ii}). Now take A* such that £,. C {z € BY - |z| > Ry} o

Lemma 2.4. Assume that there is 25 € 5, such that
TH:IU:' = itlf{ﬁrl{l}] X e E\} < i,

Then ‘Ef,:,{r..;.]l < 0. If moreover |xo| 2> M) {as in the version of Lemma 2.2{ii) for Z,), then
f;,l,’_::n} < W.x{zu]l-

Proof. Since VW ,(xy) =0 and Iliirj,{ﬂ'.n.]' 2 0, it follows from (2.8) that
Aglzo) 5

(2.14) SIZN (2) + {203 AV a(20) <0,
¢l xo)

which implies that #(rg) < 0. Next we can write (2.14) as

Aglze)

(2.15) P

b e{xg; M| Walze) + e{za; )| Z (o) = Wilzo)| <0.

Az we said before an analogue to Lemma 2.2 holds for Z,. So the first bracket is negative,
and the conclusion follows.

(W]

Proof of Proposition 2.1. Let us assume by contradiction, that for some A < A" (A* =

least of the two 4*'s, the one defined in Lemma 2.3 and the one from the version of Lemma
2.3 for 7)), we have

(2.16) Wi(s) <0, forsome z€%: or Zalz) <0, forsome z&iy.

Without loss of generality, we may assume that W(z) < 0 for some = € 5. The
argument below shows that the conjunction or in (2.16) can be replaced by and. Indeed,



since A" < A, the asmmption W(x} < 0, for some z € E,, implies via Lemma 2.1(i1)
that the infimum of W, is attained at a point 7o in W and Lemma 2.4 states that

z.\{:h]] < 0.

Next we use Lemma 2.3 to see thal the first bracket in (2.15) is negative, and then
(2.17) Z(To) < Walze) .

Now we do a similar argument with Z, and conclude that

(2.18) Walz) < Za(z1)

where x, € £, is the poiat where 2, attains its infimam, Finally we uge (2,17}, (2.18) and
the fact that Z,(x;) < Z,(=x) and Wilzg) = Wilz) Lo come to a contradiction. o

We naxt define

do=sup{ld<0:Wy(r) 20 and Z,(x) 20, Vre k).
Proposition 2.2. 1T &y < 0, then Wy (z) =0 aud Zy(r) = 0 for all z € T,

Remark. It follows readily from Proposition 2.2 that both w and z are symmetric with
respect 1o the hyperplane T',.

Proof of Proposition 2.2. By continuity we see that W (x) > 0 and Zy,(z) = 0
for x € By, Now observe that if Zy,(x) = 0, it follows from (2.9) that Wy (z) <0,
which will imply W, {z} = 0. S0 if we assume, by contradiction, that the conclusion of
Propesition 2.2 is not true, we conclude that both W, (z) and Z, () are not identically
zevo. It follows from {2.8) that
Va(z)

3T " i __Fr 4. ﬁg[ﬂ-‘}—, T
AW, (x)+ 2 g VW, (z) + Py Wizl =0

for all x € i:,\,,. 5o by the maximonm principle (recall that W Wi} 2 0) we see that
Wi, (x) = 0 for z € B, Similacly Zy(x) > 0 for r £ E,,,
Next using the Hopf maximum principle we obtain that
aWy, 87,
{2.19} "'E—?;-*" < and _d'_ﬂ'_ < 0

10



on the boundary 7). (llere dfdr is d/dx,). We shall see presently that this is impos-
sible. From the definition of As, we conclude that there exist a sequence of real numbers
Ak = Mg, with Ay > A, and a sequence of points in f:_-..“ where 'I.-T-"-.,# o f_-.'_. is negative,
Since Wy, (z) satisfies (2.6} and Zy,(z) > 0 for z € £, we conclude that W) (z) is
superharmonic in &, In particular W, is superharmonic in Biples,)\{ey,}, where
2R = |Ag]. The argument in the proof of Lernma 1.1 shows that there exists ¢y > 0 such
that

Wylz} 2o , if ze Bgle,)\{en}-

A similar argument shows that
Exlz} 200 , it z€ BrleaNew}-
(We may choose the same ¢, or decrease it). So
Wile)2a>0, Zyu(z)2&>0 , i z€ Brlea)\{en}-
By continuity we have

(2.20) W, (z) >

b | £M

AN

b2 | &

. if x€ Bgpley, \{en}.

for k sufficiently large.

It follows from Lemma 2.1(i} (using (2.20)} and Lemma 2.4 that for & sufficiently large
both Wh and f-h attain their pegative infima in E;,. [Recall that we are using the
contradiction hypothesis that Fh or E_-.m 18 negative somewhere in ]_:h] Lot us denote
by zi and ys, respectively, the points of minima of W, and Z,_. It follows from Lemma
2.4 that at least one of the sequences, {2} or {w} is bounded. Assume that {z;} is
bounded and passing (o a snbsequence assume that x; — . By continuity we have that
VW,,(Z) =0 and W,,(T) < 0. Since  # ¢, and Wy, (z) > 0 in £,,, we conclude
that T € T, which contradicis the fact ohserved before that E_i't;r"E < Don T,.

e
A ginilar argument, il we assnme {yk} bounded. o

£3. Proof of the theorem. We first prove Part A, Performing the moving plane
procedure we have two possibilities:

11



(1) If Ay < 0, it follows from Proposition 2.2 that w and z are symmetric will respect to
the plane T . But looking at equations (2.1} and (2.2} we realize that this is impossible.
(u) Il )y = 0, we conclude that wy(x) > wiz) and 2p{z) > z{x) for all z € £, We
can perform the procedure from the right and we will reach a M) = 0, [A] cannot be
positive, in virtne of an argument as in (i) above], from which we get w(z) > wy(z) and
2{z) 2 zolx) for all © € By, S0 w and z are symmetric with respect to the plane =, = (.
{i11) This reasoning cau be made from any direction. And so the only possibility would be
that both w and z are radially symmetric with respect to the origin (. But  was chosen
arbitranly when we perform the Kelvin transform. Thus u and + are radially symmetnc

with respect to any pomt. Then they would be constant and from the equations we finally
obtain u = v = 0.

Part B. Wr show that w and : are symmetric with respect to some plane parallel to
z = 0. Indeed, if Ay < 0, this follows from Proposition 2.2, and in this case the plane
is Ty, If & = 0, we perform the moving plane procedure from the right and find a
corresponding Ay = 00 11 AL = 0, an analogue to Proposition 2.2 shows that w and z are
symmetric with respect ta 15, . If Ay = 0 we proceed as in (i1) above Lo conclude that both
w and z are symmetric with respect to xy = 0. We perform this moving plane procedure
taking planes perpendicular o any divection, and for each direction 5 € RV, 7l =1
we find a plane 1, with the property that both w and # are synunetruc with respect
to T, A simple argument shows that all these planes intersect al a single point, or

w=z=), a
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