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Compactness of topological spaces of models

Campinss, November 1997

We discpss various forms of compactness in model theoretical logics, their inter-relations, and
consequences, trying to separate clearly purely topological facts from genuine mode
theoretical facts. We discuss in this context resulls due Lo Shelah, Makowsky, and Mundici.
topalogical behavionr of the spaces of stroctures generated by a logic. In particalar, inspired
by the “Abstract Compacincs Theotem™ of Makowsky and Shelah [M-5h], we prove a
characterization in terms of gitrafilier convergence of preservation of (e A}l-compartness by
products of genera! topological spaces. The Abstract Compactness Theorem becomes then a
smple corollary from a general topological result. Reciprocally, several resulls oo compactocs
shown first for logics are seen to bold true in all topological spaces.

This work was realized with the support of FAPESP (Fundacao de Amparc a Poquisa do
Estado de Sao Paulo) while a Visiting Profesor at the "Universidade Estadual de Campinas™
the second semester of 1992, 1 received gensrous logistic support from the "Ceatro de Lagica
Epistemologia ¢ Historia da (ienca™ and the “Instituto de Matematicn, Estatistics « Clencia
da Computacec™ of UKICAME. Special thanks are due to A.M. Scite and C. Cifuentes for
originated this notes,

L TOPOLOCICAL PRELIMINARIES, [x \-COMPACTNESS

The following generalization of the polion of compacines of & topological spars wae
considered first by Alexandroff and Uryscha [AU], and studicd later by Smirnov [S], Gaal [G]
and Vaughan [V1], see also Konen Vanghan [Ku-V]. The identity betwern these nolions and



Dechinition 1.1. A topological space X is seid to be [k Al-compact, for w € A € & € oo, if
any covering of X by a family of at mowi & open sets has a covering subfamily of power lesa
than A Equivalently, any [amily of at most x closed subsels of X for which every subfamily
of power less than A has non- empty intersection (we will call this the A-intersection praperiy)
has itself non-empty intersection.

[oow}-compactieas is ordinary compoctness of topologieal spaces, [w.w]-compaciness is usually
called countable compactness in topology, and [oo, ull-mm;mclnm iz the so ealled Lindelof
Fil_pcn'.jl.

The reader should be aware that the notation utilized for [x,A]-compaciness in model theory,
which we adopt hers, reverses the more natural notation utilized in the topological literature.

LEMMA 1.2, X i [c,A]-compact if and only if o is [ppl-compact for any p < .

Froof, [xAl-compactness impliea trivially [pp]-compacines for A < p <« Now, if X is not
[wA]-compact, let {Cn),. ), be & family of closed scta giving & counterexample of minimal
cardinality p to [pAl-compactness, It is in fact a counteresample to {pgj-compactness
becausn an imterscction “1-:'_-!-{!“-. with § = g non-empty: for & < A by hypothesis, and for
A< §< p beocanse olherwive we would have a counterexample to [Aflcompacinpes
contradicting minimadity of p O

Therefore, we may reduce to the study of [k,x]-compactness. This takes a very simple and
useful form if & is reguinr cardinal. First we introdues & stronger notion of x-compactnesa.

Definition 1.3. A space X in n-cham compact if and only if any descending chain {C, ), .0 p of
not-empty closed sets of X has non-empiy intemschion.

LEMMA L3, a) r-cham compaciness smplies [k ) compacineas.

b} If coffx) = A and X w [k, A]-compasc! then # is k-choin compact.

] (Alexandroff and Uzysohn (AU} If & w reguler, then X is [xx] compaet of and only X
1 m-chain compact,
EBroof. 8} i {C,)aep i8 & counterexample to [xal-compactness then the family {Dplocp
where D, = I"lﬂ‘:n[':ﬂ is & counterexample to k-chain compactness.

b) Given a descending chain of closed non-empty closed wets {C,}, .. then the

intersection of less than A many €,'s contains a C,ﬂ which iz pon-empty by bypothesis; henee,
the hypothesis of [= Al-compactness applies and the full intersection is non-empty.



€} From (a) and (b). O

COROLLARY 14 [f X v [col(=)cofix)] compact then = is [x,x]-compact.
muli-ﬂh-}mm&iﬂndﬂnmm{ﬂd}mhl
descending chain providing & counterexample to xchain compaciness, thes any cofinal
descending sulx hain of length col{x) provides a counterezample to cof| &) chain-compactnem,
and 30 to [cofix).cof| s )] compartoos by Lemma 1.3{c), since cof|x) is regelar. O

COROLLARY 1.5 a) (Alczandrolfl and Urysohn [AUL X s [xod compact if and only if it
 [p.plcompect for any mjmite reguler cardinel p < x.

b) (Vamghan [V2]). I cof(s) > A thes X is [« )} compact if and only if it w [n A}
compact for any mfinsic reqular carding g < x.

Proof, a) One direction is trivial. For the other notice that by hypothesis, X is joof{u),cof{)}-
compart and 30 [pp] compact by Corollary 1.4, for azy p < k. Now apply Lemma 1.2,

b) Ome disection b trivial. For the other notice that fcof{x),col(a)] compactace bolds by
Bypothesis; hemce, [x,x] compactness holds by Cocollary 1.4 Fow, let ASp < &, then
15* A} compactncss bholda by bypothesis sad so [s,4}-compactness bolds, then apply Lemma
.20

Remark. It follows from the above corollary, part (a), that & space X is compact if aad only if
it i [, compact for any regular 5 < Weigth{X).

Definition LS. (Given a subsei 5 of a topological space X, a poizt x € X wil be called & &
eccemslsizon pownt of 5 mm X if and only i for any open aecighborhood V of x we have [V 5]
&=

THEOREM 1.7. (Alexandrofl and Urysohn, [AU]). Let x be & reguler cordinal A spece X is
H-um-lq"-dpd,ql'upnhﬂﬂgIrfrrm;uln-:-um-hlulpﬂ.
mm:;.iu,:}mﬂim:tes.u“;t:#hn{ﬂ{qhﬂ.-ﬂ{:’:
B zal; theu the ©, form & dewending chein of nonempty closed sets. By Corellary 1.3(c)
“-I-l.pﬁnl.lllfh'iilﬂh'rﬁlﬂﬂlhr['ulﬂdwillhldhmdﬁh{Iﬂ-:ﬂ 2o}
forany o < x. hrﬁ;hﬂhndl'dxmuinlhm.lth#ﬁ:nﬁ:}rﬂﬂ.}ﬁ.
By regularity of x again the sequence {3, : a<x ) lﬂn&ﬁﬂ;{lﬂntﬂ{l}h
power &

Conversely, assume that [xx]compaciness falls, then by Corolluy 1.3c), there i »
descending chuin of cos empty closed sets \Calacx With emply intersection. We may pick
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rueﬂaﬂldjnﬁnct, othorwise the seqguence would be Anelly copstant and the interssction
would not be empty. Lot x be a w-accumulation point of the family 5 = {x, ). . then any
neigborhood V of x intersecta & subsequence of 5 of power & which evidently must be cofinzl,
Therefore, V intersects & cofinal sequence of the C, apd mo all the C s, which showe x Is In
the adherence of all O, and so in their interscclion because thoy are closed. This i a
contardicton. O

In some respects [k A]-compaciencss has the same good behaviour of full compactnem. The
following in obvious.

LEMMA 1B. &) [f f: X =% i conbinuous and X n{;,.\.]-wm;lﬂi, then ﬂx} i-h,w
b) A clesed subspace of a [k, A]-compact space i [k, A]-compact,

In others, it behaves badly. Thichonoffa theorem fails. Product of [x,A]-compact spaces is
rarely [x,A]-compact. For example, o product of countably compact spaces is pol pocessarily
countably compact, neither a product of Lindelof spaces nedds to be Lindelof. See Vaughan
[V1] for & discumsion of this matter.

0. COMPACTNESS OF SPACES OF STRUCTURES

For the definition of & logic for first order structures see Lindstrom [L] or Ebbiaghauss [F1.
We will always nsome that logics are regular, that o they contmn fipet arder logic, L, . and
are closed at least under negations, {nite conjunctions, sulstitutions, and relativizations. For
& logic L, the domain of L, Dom(L), will be the class of vocabularies o where L{o) is delined,
Lie) will be always amsumed to be a set, that is we conaider cnly small logica.

A logic L induces a topology in the claw B of atructures of type o, having for basia of apen
clases the L-elementary classes, for each o € Dom(L). The clossd classen have the form
Mod(T) for some theory T € Lie). We call EZ{L) to the corremponding large wwpologheal
space, This space is & proper class and the same happens to the open and closed clazses of the
topology, but the basis is parnmetrized by the sct Lis) and se the topology v zlse
(parametrized by) & set; hence we may apply the ordinary concepta and result of topology
without missgivings. This spaces are uniform with the following canonical uniformity: for
ench finite theory F € L{z) & basic of the uniformity is given by
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Notics a curious connection hetween both notioos: L is [k, A} compact if and only if any closed
subclass of B (L) is {x,A)-compact with respect to the topology imkertied form E (L ). This
is just a reformulation of Lemma 2.1 above.

The following is a very useful characterization of [x,x]-compactness for regular logics, noticed
first by Vaankuen [V] and hnpliclt In Lindstzom [L] for the countable case (sos Th. 1.2.2 In
[Ma))

THEQREM 23 The following sre cquivalent for & regular logic L and o regular cerdinal x:
i) L s [xx]-compact.

i} Ang struciure & = (M, <, ...) where < is a lincar order of M of cofinalily x, has an
clementary exlension A'= (M, < ', ...) such thai M iz nai cofinal in (M", <™).

Proof. (i) = (ii). Assume L is [x.x]-compact. Given & = (A, < ,...) as in (i), let (a,), »
be & strictly incressing cofinsl sequence in (A, < ) and

T=Thl(h <) e g A, 0 <

If ¢ is & new constant, then each theory Ty = TU{e>a, | e < 8 § < x has » mode
(interpret c by ag). The family {Mod(Ty)} ., forms a descending chain of closed classes; by
regulatity of x and Lemma 1.3{c), the intemection of the family s non-cmply, ywlding &
mnddufTul:}-lﬁI,ﬂ' < x} that is the desired extension.

(i} = (i) i L s not [x,x]-compact, it is not chain-compact. Let {T,, | & < <} be a family
of theories In L{r} such that onch U, o T, has o model A, for y<u, but U, -, T,
does not. Choose an ordering < . of each A, with first element o, and let

SE{Uycudp <, '-'-r-cﬂ“ﬁ""' SR er)
where < s the ordered union of the <y and
S = Uy e (Ayx Ay,

Evidently (a), < it coflnal in (M, <) . Moreover, if x > a, then A [{y:S(yx)}[r ~
-A-TI with "]'. > and so:

A= ﬁ{le_r_., ,p‘{!'tsl'.ll'-l'}}j (1)



for any € T, ¥ & > &, & must sntisefy these sentences. Hence, it can not contain
b such that b > a, forall v < &« because then we would have by [1):

A 7 1500))

and so A" {y : S(y,b)} [r would be 2 model of &ll p € U, o T, We conciude that
{a)y < g 80d 30 M, in cofinal in (M", <). 0

COROLLARY 24, The following are equivalen? for & reguler logze L:

i) L is compact.

#) Any infinde structure B = (M, <,..) where < 2 a lmear order of M has an
elementary exfension &° = (M, < *,...) suck that M i not cofinal in [M", < ).

COROLLARY 2.5 L o jww] compact if and only if (w, < ) w nel RPC; characierizable i L.
Proof ®=" obvious. "<=" If L is oot [wef-compart then there is M = (M, < ...} of colinality
w with (M, < ) cofinal in all its L-clementary cxtcnmions. Take & strictly increasing cofinal
scquence (8, ) ¢ o of (M, < ). The theory:

Th[(M, <+ ®oply e aned U {¥eI(PO) Ax<y) ] U {3 (Plx)Ax< &) }
U { Pleg) A-3x (Plx) A e <x<ep ) n€w}

ﬁmnmﬁmﬁmﬁmpﬂm{],mmm@umﬁmdphmmﬁm
consist of the a, alone. [

It follows from the previous corollary that the failore of [ww]-compaciness for L implies that
{w,<) ia RPC; characterizable in L. In fact any structure (of power below the first measurable
cardinal if there s any) is l'LH;E characterizable in I. under failure of countable compacioess,
a3 we will s pext. This may be shown via Thoremn 2.3, proving first that any ordinal below
the first measurable RP‘(Z";, but the following reformolation of the Habin-HKeisler theorern
allows a more direct amd elegant proul.

Definition 2.6. A structure A will be snid to be L-full {also complete) if any relation B C A" in
the interpretation of & predicate mm the vocabulary of A.
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Given an full structure snd an exiension A <y A®, we will denote by R" the canonical
extension in AY of any relation R in A (that is, if R is the interpretation of FR. in A, then B*
s the interpretation of Pp in A") . Notico that f a € A™ and K = {xc A% A |= ¢{x, &} }
with ¢ € L, then B* = {x € (A%)™ A% |= §(x, a) |, because the eentence Va(Po{x) — d(x,
a)) holds in A if and only it holds in A®. Hence, any relation holding betwesn the R'a,
exprosalble in L holding in A, holds for the correaponding R™'s in A", The following is a
reformuiation of the Kahin-Keisler theorem [BS], [Ch-K]-

LEMMA 2.7, Let A be a L-full structure, A {Lw.ﬂl.'. FCA, and b€ P* — P. Define Uy, =

{SCP:b 5%

i) Uy is a now principal altrafiller cver P

il) If|P| < first measurable cordinal then any infinite § C A har @ ~ Q ne empiy.

Proof, i) To show that it is an ultrafilter, vtilize that the extension ix full 2and the previous

remarks; for example, §, TeUp = bes", T = bes"nT = {xc A™: Pglx} APp(x) } =

{x € A™: Pg yplx) 1 = (8n'1)7, whare the last equation holds bescuse the sentence

¥x({Pglx) A Prplx) & Pg o oplx) | holds in A ands so in A*. Now, if the ultcafillter whers

principal, say Uy = ({a}) with & € A, then we would have be {a}® = {&} andso b =acP.
ii) It is enough to show that any countebly infinite subset Q of A is extended. Suposse

) is not extended. {ziven a countable family of elements of Uy » utilize Q as subindex sct:

{8g a€Q} Let 8 = N5, and Flgx) be the binary relation x €5, in A The following

sentences hold trivially in A where we uso the names of the sets ae predicates

'h"x[sq{z}—rFl:q, x)] foreach gEQ;
¥x [ ¥q (Qfa) — Flq, x) } — S(x)]

bence, it bolds for b in *A thas:

‘Eq!h} - *Flg,b) foreachqeQ
Va (*Q{a) — *Fla, b) ) —~ *5(b)

Since *Sq(b) holds by hypathesia for q € Q¥ then *Fq,b) holds in *A for all g €Q. As Q =
Q* also by hypothesis then the antecedent of the lost implication holds and so S*(b) holds,
showing 5 € U, We conclude that Uy is an wcomplete ultrafilter. But it is well known that

as et carrying an woomplete no principal wltrafilter must bhave power at leant the first
measurahle cardinal [BS]. O



COROLLARY 2.8, If I is not [wwl-compact then any sirsciure of power less than the first
measurable 1 Itl"{‘.é characterszable in L.,

Proof, Let ‘I{(}, i) be & theory such that B |= T & BJQB|{R]} e {w.<), and Bx a model B of
T. Lat C be the full expanson of (B, A] where A han power smaller than the frst messurable,
and call P be the wniverse of A m O, We may asume the vocabulsrles of T and A are
disjoint. Any I-extension of (¢ contains an Loextension of I which must be a madel of T
{thanks to relativisations), and so (QP,<) = (w,€) can not be extended in C by hypothesis.
By the previous lemma PP ocan not be extended either. “This mesns that sny model of
'I"I:L[{{:,c]c p |UJ] relativized to P i isomorphic to A, yielding & RPCg characterization of A
=L O

The cxpresive power of theories in a non countably compact logic in therefore quite strong.

COROLLARY 2.8 (Makowsky and Shelnh, [Me-5h]). If & 8 & reqular cardinal smaller than
the firs! measurable cardinal (or arbifrary of there ore not guch cardingls}, then %5
compacincss of g logic implies |w w| compaciness,

Proof If L is wmot [wwjcompact, x is RPCgcharacterizable which contradicts [rx]-
compactnom, [

Remark If we had the stronger hypothesis in Corollary 2.8 that (w,<) Is PC; characterizable,
then any structute (of power < first messurable) would be PO characterizable, by the L-
theory of its full oxpansion (since in the infinite case it would contsin & copy of a structure
capturing w). This 18 the case for example of L, (Q ). If (w,<) hes & characterization with
miixdels of power less than the firat measurable, then any siructure above certain cardinality is
also POy Could it happen that any theory RPCy charscterizing (w,«) in L only has models
of cardinality above the first measurable? In that case there would not be countercxample to
[ws]-compaciness in the form: if each finite subfamily of theories has models of power less
thano the first mcasursble, Uren b o models,



OO0 COMPACTNESE AND ROBINSON'S LERMMA

It iz well known the! in the prescoce of compaciness micrpolation implics Bobinene's lomme
for fGest order lopie, this being btrue for soy logic, Mundici and Mebowely discovessd
independently the remnarkable result thet m oany logic with small dependence number,

Robinson®s theorsm implies compaciness, yielding the equations Robinson = Compaciness
+ Interpolation.

Delimition 3.1. A logic L satiafies the Robinson property if given any pair of vorabularies and
structures o, A; . i = 1, 2, with p = oy Moy such that A s 2y Agly , there is & & third
structure B oauch that A) = H-|ﬂ'-l and Ay = Ble o

Of course, we may strength =y to < above. In terms of theories the property may be
expreased: if we have satisfiable theories Ti':__i.{-urﬂ‘ Ty Tﬂ 31 with T complete in
L{ryNiry} then T, UT, is satishiable. The following is an equivalent cheracterization of
Robinson™s property which foliows also by definition.

LEMMA 3.2. L saliafics the Robindon properly if and only of auy par of P 'y closmes Ky, Ko

of L Aaving streclures Ai = Ei auch that Ay = I.A'ﬂ , musd hdve non-emply mnferseciion.

TRECGREM 3.3 (see Mundici, [Mu]). Feor logtca with fintle dependence, Holinson's properiy
mpites compaciness, Mmoo general, for small Jogics wilh dependence numier ai mosd &,
Robmson’s properly tmplies [no, &) compacinass.

Proof, Suppose L s not [p,p] compact for some regular g > < and let & = (A, <) a
expangion of & linear order of cofinality g, having all its elementary extensions cofimel., Let
(Bade < P be & well ordered cofinal sequence in (A, < ), introduce predicates P, = {x € A
| x < a,) and let:

"LI = (A, < ... B, P.n-}w*.‘.p
Moy = (AU e}, € Polaep

where © £ A, Tt 7 = rlh,), Ty =7(Mg)and T=1) N Ty = {P,}, then for § < &
< g and Ty = {Pg o <d | we have

"ﬁ"]r",gizf.grPa:‘a{,ﬁ. (AU {“]lpm}a{§=-‘ﬂ‘2h£'
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As  any sentence of I dependy in less than x aymbesis, then "E']. rf =y, "lﬁ i:l‘ by the

mwomorphism axiom of logice, DBy Hobloaon's theorem there is
..u';‘ = {An o .r---n t1: n‘ﬁl P'n ]n LT
of type T U7y wuch Lhat A& [ri =y, By, A ;rﬂ = A&, But

.fgllm Yx [~ Pulx} —-x > a,], foralle < p,
"“;'2|= h n{‘.:h

hence &' | ¢ »e', for all &<y, and 8o &'(r( ) gives a non cofinal elementary
cxleomon of Ak, a contradiction. [

The Onite dependonce hypothegis of the first part of the shove theorsm may be weakeped,
thanks to a wrong result due to Shelah [M Sh] that we will not prove. It says that a [ww]-
compact logic haa finite dependence for ench sentence (notice that this is essy if the logic ta
fully compact, but it is & deep theorem if we have only [w,w] compactness).

COROLLARY 34 For smaoll logics with dependence nwmber smaller (han the first
measurable cardinal, we haver Hobinsons’s lemme = compaciness.

Prowf. Let p be the dependence npumber of L and [et & be regolsr such that p < & < fimt
measurable. By Theorem 1.3, L is [k, x]-compact. By Corollary 2.7 it must be [ww]-
compact, By the finite dependence theorem of Shelah (Th. 2.2.1. in [Mal), L bas finite
dependence. Henve, by Theorem 3.3 apain we bave [ull compactness, [J

For the next theorem we need a fopological observation first. Define in a uniform space x =y
if (x.¥) € U for any element 1) of the uniformity.

LEMMA 35 . Lot M and N be disjoind compec? sofs fn g uniform space inscparable by fiunte
untons of basic open sels (from sy given basis), then there evists x € N, y € M such that x
= y.

Proof Let E= { {x.¥)EXxX: x = 5 }, then ENNxM is the intersection of the closed eets
Cpa = flxy) e NxM @ plxy) < 1/n } of MxN, where p rups through the system of
puendometrics deflining the uniformity. Now, for each pesudomoetric p and number o € w, the
coverings {‘ifp‘”h::} : xEN } and {‘.Ip*ifh{ﬂ :yEM )}, must have some xeN, yEM
with 'fpl”h{x] N vp,t.."ﬂu[ﬂ non empiy. (Otherwise, N and M would be scparable by
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opens, which conld be reduced to finite unions of basics by compactness. Therefore p{x,¥) =
21/20) = 1/n. Since the peeudoemtricn aze directed by < (see | ]), this shows that ENNxM
has the fip. By compactness of the produoct topology we kave that E 8 non empty.

Fuemark, The ahove lamroa holds for regular spacea,

CORCLLARY 3.8 . The follownng are eguivalent if L is small and har dependence number
feas than the first measurable cardmal:
y)  Robison's yreperty,
i) st (interpoletion of disjoint POy eleases),
i) Iaterpolation + Compacincas,
Proof. (i) = (ii, Hi). Assurne Robinson's property, ihen we have compaciness by Theorem 3.3.
Let K, Ky be disjoint PO, classes in B (L) ard assme they are not gaparable by a sentence.
Sinee the K, are compact, the Lemma above implies the existence of A; € K; with A, = ¢ Aa.
Then Hobinson's lermna provides a structure in the intersection of this two classes by Lemma
i

(i) = (i). Hobinson's property ls just a case of interpolation of Pﬂﬁ. If Kl are Pﬂﬁ clamsen
of L an in Lemma 3.1, i = 1,2, they munst intemsect, otherwise by Int, they would be
geparehle by a sentence ¢ contradicting that Ay = I..”"E'

(i) = (ii). Trivial, because digjoint POy clashes nre reduced by compectness to disjoint
PC clasen, O

Finaliy we relate Hobinson's property o characterization of structures.

LEMMA 3.7. Let L soiisfy Robinson's properiy, of A and B are straclures PUo
characlerizable in L then A = (B smplies A B,

Proof, Ansume 'i'i i Lip;) in the theory characterizing .-‘I-.i, oGy and let (A;, H;) be model
of T, ,i=1,2 Assome A  =; A then by Robimson,'s property there is s model (A, Bq*,
Rz'} with {A, H.j‘] =y {1'1.1, R.iJT heoee, A=A, mA,. 0

If the logic satisfies the pair preservation property, PPP (cf. [Mas]), then the HRobinson's
property impliss the following sironger property (see [C2]):

Definition 3.8. A logic I satisfies the relatimzed Rolimson properiy if given any pair of
vocsbularies 7., P € 0y , and structures A; 1= 1, 2, with p = o) Moy such that "LliPIillﬂ

=y AlPy 2l there ia a a third atructure B such that A, = Blo) aad Ag =y Blo 5

1z



Therefore, under PPP, Lemma 3.7 holds for structures RP( ' characterizables in L. Thero =
soune coufusion in the lterature on relation {o Hobinson’s property. What is ususlly called
Robinson's property in the conlext of many sorted logics is in fact eguivalent to the above
atronger propeciy.

COROLLARY 3.9 (compare with Mundiei [Mu]). Jf L satisfies PPP and Robinson’s theorem
but is net [ww] compact then for structures of power less then the first non messurable
cordinal, A = B implies A = B

Proof, I the logic is not [ww]-compact, then any structure of power less than the first
messurable is RPCy in L by Corollary 2.10. Apply the previous lemma and observations. O
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Therelore, under PPP, Lemma 3.7 bolde for strociures B -‘:I charactenzables 1 L. There =
some confusion in the literatore oo relation io Bobinson's property. What is usually ealled
Hobinson's property in the conlext of many sorted logica is in fact eguivalent to the sbove
stronger properiy

COROLLARY 3.9. {compare with Mundici [Mu]). If L satisfies PPP and Robinson’s theorem
but s net [wul compact then for structures of power less them the first non messwrable
cordinal, A =, B impiies A = B.

Proof, I the logic is not [ww]-compact, then any structure of power less than the first
measurable s RPC; in L by Corollary 2.10. Apply the previous lemma and observations, 0
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V. [ ARCOMPACTRESS AND ULTRAFILTER CONVERGENCE

It is well known full compectness of & topological spece is squivalent to the eonverseoee of
any ultrafiiter of subscts of the space {¢f. [W}). This In turn may be expresssd in terma of
convergence of [lamilies of elements of the apace with repect to ulteafillers over I It ia
oatural to ask if we have cheracterizetions via ultrafiliers of ik, Alcompeciness. In certaln
seume this is true ms we show in thiy section. In fact, we get wmore than we sougth: s
characterization by ultrafilter convergence of funilies of [k, \]-compact apaces closed under
products, and of spaces with [k, A compact povers.

Definition 4.1. Let T be an ultrafilter over & set I We will say that a family {n,:i€l}ina
topological space X, U converges lo x {or that x is an U-limat of the family), if {iel: a €V}
€ U for any open neighorhood Y of x .

Evidently, {n; : i€1 ] U-converges to x if and only if x is an adherence point in X of the
nltrafilter ()= {SCXA:{iel t# €5 } €T | in the ordinery sense of topalogy {cf. [W1).
Therefore, X is compact if and only if sny IHamily U-converges in X for mny set T and
wlbrafdtor U over L We show neat that [x,A]-compactness corresponds to U-convergeney with
respect to corbain ultrafilters.

Dolination 4.2, Let U bo an eitrafilter over a set I, a space X will be called U-compact if and
only if if any HMamily of X 7 converges.

The following are obwvious propesties of U convergence and U-compactnesn:

LEMMA 43.1) If & X — Y is contimnons and 1831 €1} U-converges in X to a, then {f{t:i:i E
i€l } U convergesin Y to {{a).
i) { n plor 2 €L} U-converges in [ Xy to (a,), if and oniy i-r{“j.u 1igll U-
converges in X To a, for each a,
i) Jf each X, is U compact, then [], X, is U-compact.
Preof, i} Given & neighothood V of f{a), then {i€1: fla) €V} 2{icl:aefl(V) Jew.
it} Ome direction follows from (i} by continuity of the projections. For the other, use thak
each basic neigborbood W of (a,), B a finite intersection of seta ﬂ'n__l{"n"“_] with ¥V, a
neigborhood of ay in X, For each wuch set {1€1: €5, (V) } €15 henee, figl:
(o JaEW}=ficl:a e A v )l = niiel :ni1“Ein.'IWaJ lem.
iii} bnwraediate from (ii). O
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Definition £4 An ulirafilter U over a set | » (x \)-reguler if and only if there is a family
{lalocn moch that [, €U and !'Ii{jl'ni=ﬂﬂtu_'rﬁhﬂ]' -[-;r.i:!::.'l} Cx .U b=
endform 5] >k for any 5 € U, see [Ch-K] or [Aa].

PROPOSITION 45. If X & U-compec! for & [x ) reguler slirafiller U, then X & [5A}
compert.

Proof, Let {1.].. . be & family of clements of U such thet the intersection of any Aol I.'s
s empty. We may sssome 1| = | . Given & family {F_,}.. . of closed sels m X witk the A
intorsection property, define F, = ntE:nfn.ﬁrmEltEi.'rﬂi!ﬂthmﬁ,hﬂﬂ.&
t belongs to less than ) sets 1 by hypothesis, and by hypothesis the intersection of less than
Awcts F s non emply. UChoose a, € Fy, then J, = { t€l:a, €F, } €U bocause tE],
implies a, € Fy C F, by construction, and so J, 31, By hypolhesis {'“I-}tel U-converges
to some x of X; and given an open neighothood Vof x, thea J = {t€l:a, eV ]} €U
Thereloze, { t: s € VOIF, } =J0], €U for sy o, and so this sct » non-empty, showing
that x belongs to adberence of any F, , that s toany F . O

Delinition 4.6. Lot P(x,)) = Py(x) = {5 Cx: || < A }.

PROPOSITION 47. i} I X is [0} compact, then every I fumly ia X, with I = P(x,3), T
converges for some (k) regular wlirefilter U over | (whach may depend on the femily).

) Morcover, f &£ > X then U mey be chosen k-wniform, and if & = A then U may be
chosen coflw)-uniform.
Proof, Given {a, :t€l | et A, ={ay:t Ca }. The family of closed seta {cl(A,): t€L
It)<w } has the <\ intersection inbemseclion property, bocause

“I"‘f-‘{]{iti} 2 dini{i‘*'t;}= d“”i-:i ":}'

and t =U; 4 €] i § <A 2ud the & are finite, 5o that A, s nov-empiy. By [xA-
comparines there 5 an element .EnlEI.II‘-I{H d{A;) . Bence, VNA; #@ for any
neighorbood ¥ of & and any t€1, [tlcw, This implics that the family F = { VA, : V
open, aEY, t€], jt! <w } hes the finfic intersection property. Then the family F© =
s W) : WeFj={{s€l:a,6W}: WeF } has also the finite intersection property.
Extend F* 20 an ulizalilier U over L By cosstraction, given an open neigborbood V of o, then
{sel:neV j2{sel:aeVnAy, } =.-1(vna{u}} €F C U. Therclore { a :
tel} T.Hau\'ﬁmatni.!lntmr:r,ln={lEI:nEl};{lEI:I.E\FﬂA{n} }, and s0
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I, € U. But the intersection of A many of these Iy's lv empty because no » € 1 may coatain A
meany ordinals This shows that U ia {<,A) regular.

It remains to whow that |! may be chomen to be x-uniformn (repectively cof{x) uniform). Fix
l.uEl-"'[u,,-n:}.qurhﬁni::tg;nrithtgtqthc-l{lEt:anEv]ml:[\"l'hﬂ-ghinﬂ
and so we may pick s, € a' (VN A,) bence s, D 4. This gives & function i B = {t € Plwwsk
tDt,} — I with the property that for any r€l, M) = teB:a =1} < tEE:
LG r}| < A berause Jr| < A and so ¢ lian icss than A Ginite subscie. Since [B] = «, the oumber
nfumptjdhtinﬂmdudiljoimf:[:]mnuthuiﬁﬂmﬂ.:}inmen=l.nnduh
casc k > A Picking ununtﬁnmtuhmun.pwfl[:] gives x (respectively cof{x)) elementa
of '}V AA; ) Thorofore, ' may be extended to a x-uniform (respectively cof(x) uniform)
ultzafilrer. [

COROLLARY 48 i) If X & [x,A] compeet and x > X then any P, A) famiy of X hes a n
secumulalion poind.
i) If X is [kl compact then any P{x,x)-family of X hos @ cof(<} accumulation point.

Proposition 4.7 does oot guaranien a converse to Proposition 4.8, since the ultzafilter depeads
ea the family, In fact, a converse i impossible bocanse U-compactiness corresponds to & strong

form of [x,A] compnctivem, as we will fee next,

TEEOREM 4.9. The follownng erc cqrivalent for engy class T of lopological spaces:

i) Asy product of spaces in T us |5, A} compact.

i) There exists a (w, A )-regular witrafilter U (which may be laken over I = P(x,A)) such thai
all the spaces in T are ] compact.

Proof, Amsume that any product of space in T s [x,A]-compact and there is no (<.A)-regular
witrafilter U over I = P{x,\) euch that all the clements of T are U-compact. Let L be Lie
family of such ultrafiliers and choose for each U € L & [amily {ag; : €1 |} in some space
Xy € T which doea not U-converge. For each i, let o; = ["UJ}U €l . pXyp= X*. As this
space s [k, A]-compact, then by Froposition 4.8, there is an ultzafilter W € L such that {g; :
i €1} Weconverges to some o = {.‘UJU € X*. By continuity of the W-projection, then {
nw“:iEI} Woconverges to sy, in Xy , & contradiction.

Converaly, il each X, in U-compnet then ILX, is U-compact by Lemma 4.3, and by (x,A)-
regulasity of U it foliows from Proposition 4.6 that X, is [x,A]-compact. O
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TEEOREM 4.10. The following are eqmivalent for gay lopelegical space X:

i) X7 i )] compact for any cerdinal 8.

i) X is U-compact for some (KA} regulsr slirafiller U [which may be taken ower | = Ple,2)).
Prool Take T = { X } in Theorem 1. D

Defimition 4.11. Call a space X sivengly [n, A compect {in short, »[x )| compect) if x?

[x A} compact for any cardinal 7.

2P

COROLLARY 412 X w »|x )] compact of and o=nly of X = [k, ] compart
Inthpﬂd[i]-r[ﬁ]hwunuihd[ql}-mhuilﬂhﬁu

ﬁ!ﬂlﬂ_‘bn

COROLLARY 413 [f X i s(x ] compact, then X xY w0 [x,\] compact for any compeaci
space Y.
FProwl A compset spaca i U compsct for any U, Apply Theorems 4.10 and Lepuns 4.3. 0

Exampla. Under the continuam hypotbesis, pits wn = 2°1, if X2 ju countably compact, then
lﬁ!‘fﬂhmﬂlﬂ, compact [or any f, and any compact space Y.

COROLLARY 414 Let n be smaller then fhe firsl measureblc cordinal or sritirery if ne
such cardinal exusts). If X 19 o-[n.n}compect, them X s [ww] compact.

Proof, Let U be the ulirafilter given by Theotem 4.10, such that X is U-compmet. By (x,5)-
regulasity, U is non principal. If U is not (w,w)-regular, then it s w-compiete. Bat it is well
known that the amallest w complete Bo principal ultrafilter is measurable (see [BS]). O

Natice that the above fails strongly [or plain compectocs, X = o with the discrete topology
8 [x.x] compnct for any & > wy and however it b sol (v compact.

For [s,x]-compacicess with & regular, theorems 49 apd 4.10 take 3 more beantiful form. The
condition oa (x,\) regularity of the ultrafilter U may be changed to x-uniformity. We state
the case of one single space.

THEOREM 4.15. Let x be & reguler cordinal then X in o[k x] compact of an oaly if X s U-
compact for some K-wniform slirafiller 1,

Proof, A x-uniform witrafilter s {x.x) regular. On the other hand, Proposition 48 allows to
choose the wltrafilter U being col{x)-uniform. But for = regular, cof{x) = = O
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Of course, the ultzafilter U may be chosen over P {x). Could it be chosen over x7

CORCLIARY £18 Jf'X wafx?, x¥jcompact, then X is sicx} compact
Proof A «*-uniform eitrafilter is (x.x) reguiar by resuits of Kanamori [] asd Keoes-Pikoy
P} 0

COROLLARY 417 Let x be & reguler covdmal or oo, then X » »-{x )] compact if and ounly
X t2 33 p]-compect for any reguler cordmal p, A< p<x
Prool Let g, A € j < &, be singuler, thea A< g7 <« Apply then the previons corollary. 0

The previous rescits do not hold for plain [x, A} compectness, X = R, discrete is foo, %, ¥}
compact bat oot R R | compect

VY. TEE ABSTRACT COMPACTNESS THEOREM BEEVISITED

Let ws apply the rescits of the previoos seciicn to spaces of streciumr= We start with the
following simpic obscrvaltion whxh follows Fom the serodimesnsonalily of cpoces of
slrociures,

FACTB.L {A;:i€l} U-commerges to A® in E_{L) if and only if for eny sentcnce ¢ € L{s)
wehave: A"|=4 = [igP:A|=4¢)} € L.

M we mse "=" instend of "7, the lnst equivelence, this is jost the definition of U-
cogvergence expressed in torme of & bams, berasse the basics peigborboods are the classes
Mod{¢). The azrow becomes & double acrow since by applriag it 'o the negation of ¢ and s
A'|# ¢ = FeP:Al= -9l e U= {ieP:A|=é} g U

Definition 5.2. An wltiafiier U over & set | is related o a logic L if and oaly If for any

m&#w;hiumﬁl'dﬂ:mﬂ&l setizlying for any
formuis ¢{x, ...) € L{¢) and functions [, ... € Ak
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A"l=élfyge ) f {i EP:A=Hfi)..)]} € U (1)

This definjtion says that A" behaves as the vityapower would i Los theorem whese troe Soo
L. However, A* can not be chosen to be the nlizapower itselfl vnless L = L The foliowing
fact reduces the relation (1) to pare topology.

Given & strocture A, of type o consider the expande vocabulary r11=r+{cffE.&I}.
mm:{hlmt#mwiﬂdﬁhﬂmdjﬁ!hm“m&
Ad't:pur“:

A%y = (A, B ]fE al

Ihu:l-':uinurpuwi by f{j)-

LEMMA 53. A” is an cxtension of Alfy satisfying (1) if end only f A® mey be crpended
to en U-fimit of { A% :j€1 ).

mmimpliumuu'.f;“._.}mﬂ is an U Emit of the family by Fact 5.1
Comverely, *an U-limit (A®, ap ... ) of this family will have interpretations ae for the
coustants ¢, f €A%, Morcover, for any formula ¢(z, ..) of type & A%lo |= #ac, .} ¥
and only if A% |= é{e;. ) if and only if { JEE: A”j |= ¢{cp — ) } €U Fand only if {i€E:
A = f(i), .--}} € U. Applying this to the atomlc formulae, we got an isomorphism a »-
[/ betweea the substructure of A*jo induced by { ag f€ A'} and the ultrapower AYfy;. Via
this identification, (1) holds. O

PROFOSITION G4 The following e cpuimalen! for any lagic L clesed wnder
relgiivizetions, end eay ulirafHer U=

i) Uasrelaled o L.

i) The spaces Ey(L) are U-compact for say o € Domi(L).

Proofl. Assume U is related to L. Given a family {A: i € I} CE, code it in a single
structure A = (LA, Uiqﬁj.qumemwmwmf.lﬂkﬂ
Ui} x4, so that A, = Al{x: R{ix)}. H A'f; C A® where A* is given by Def. 5.2, Jet
8ofi) = i be the ideatity fanction and P*= {x €A™ A= R(gy/y, x) ). Utilizing that the
Jogic has rdativizations and property (1), we obtain for any sentence ¢ € L{o):

ATPT ¢ i A = ¢ MR/}
i {icl: Al=gcRED), o g
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W { B e Aj{x: R{Lx)} |l=di={iel: A |=¢] €.

Hence, {"ll'l :i€l} U-converges to A™*|P*.

Convarnaly, asaumia any |-famnily U-converges ln the spaces of structuren, Given a ntructure A,
there is an U-limit (A", & ,...jﬁftheam::i.n.bndfumﬂgr{ﬁ‘}} which will satisfy (1) by
Lemme §.3 showing that U is related to L. O

Remark. Notice that in the first part of the above proof, the existence of A{u)® satisfying (1)
for the complete extension A(y) of power ¢ > [I}, will guarantee the U-convergence of all -
familien of structures of power at most p, becavse they may all be sccomodated in A, via
appropriate codings and reoamings. Theorefore, the U-convergence of a single family of
structures of power g in each cardinal p > [I} yields U-compactness.

To apply our lopological results, we need a further obeervation on the spaces of structurea.
Given vocabularies T il let & s be the disjoint union of the vocabularics ..:ri+{Pi} where
P; s » monadic symbol not in ;. Then the cartesian product HiEI‘-"-L may be identifiad with
the closs of struckures of type -B_-‘n'i of the form:

A 1 =(UperlAgls &30 e AiEEﬂ.i.

where the universe is the disjoint union of the universes of the A;y and the disjoint renaming
of #l-lv{l‘I} Ia interpreted by the disjoint eopy A nl.’..ﬁ.i . with ‘F“-t interpreting the universe (ef.
(<))

LEMMA 5.4. [f L is closed under relofivizations then for any product space ]I.Eﬂ. (L) there
w o uaiformly confinuous onte operafion [: O — ILE ‘7, L} where C is o closed m;ﬁ.:hm: af
Eg i"i{LL}‘

Froof, Let C be the class of models of the sentences

Va—(P) APyx)), § £ Vxp ¥axg(R(xpekn) = Pi(x) A ARG ), REw;
The operation A v A|UPA = [AIPA] from C to ILE, i evidently onto. The

1
¢lopens of the product topology in 1N E{, (L) are given by finite conjunctions § = A, 'f'r
Wh-:n:il.E L(o; ); bence, & |= 8 & Al(U Py A) |= 0 for any A. As (A[U P""}[[U:P Ay =

Al(u I:Pl _]1 we hml‘ﬁ AjuP Al=oea |"-§' showing uniform continutity (ef. [C2]). ﬂ
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CORCLLARY 5.5 If L 15 closed under relotivizations end [x,)} compact then any produet
space [LE, (L) o [n, 0] compact.

]
Proofl. Lemmaa 1.8, Sect 1, and the previous Lenma, 0

It follows that a logic is [x,\]compsst if and only if all the spaces E,(L) are stzongly [x,\]
compect. Beuce all the ramlis of Section 111 apply. For example Corallary 2.7 becomes » case
of Corollary 434 Similasly, the theomew of Makowsky and Shela [MaSh] that [x¥x?]
copmactoess of a logic implies [xx] compactaes 5 a cwe of Corollary 4.16, Maoreovoer,
wtilizing Theorem 4.9 and Propesition 5.4 we Jave

THEOREM 56 (ABSTRACT COMPACINESS TUEOREM, [ Shl). L we [ A} compact of
and only of there is & (x,\) reguiar wlirafiller U related to L (which may be taken over P ylxj)-
Proof, L is [k \-compect if and only ¥ the speces ﬂ—,f,,i{l-}ﬂ.‘!lﬂ I, Al-compact by the
previows Corollary. By Theorem 49, Soct. IV applicd to the clam T = { B L) :
& € dom{L)}} this is eguivalent to the existence of & single (k) regular ultrafilter U sach that
.-IIE,[L,ImU-mnpmt,rhithmhﬂinrdﬂdtuLhyhmuﬂtimitﬂ
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