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Abstract. We study the cxistence, regularity and conditions for uniqueness of soluti-
ons of a generalized Boussinesq model for thermally driven convection. The model allows
temperature dependent viscosity and thermal conductivity
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1. Introduction
We stndy the stationary problem for the equations governing the coupled mass and

heat flow of a viscons incompressible fluid in a generalizad Boussinesq approximation by
assurming thal viscosity and heat conductivity are temperature dependent. The equations

are

- didr(T)Vu) + uVu—-alg+ Vp=10,
{1.1) divu=0

— didk(T)INT}4+uVT=0 n,

where {l is a bounded domain in F® . n = 2 or 3 throughout the paper.

Here u(z) € K™ denotes the velocity of the fluid al a poml r € ) pir) € R is the
hydrostatic pressure; Tr} € W is the temperature; g{x) is the external force by emt of
mass; #{-} > 0 and k{-} > 0 are kinematic viscosity and thermal conductivity, respectively:
@ 15 a positive constant associaied to the coefficient of volume expansion. Without loss of
generality, we have taken the reference temperature as zevo. For a derivation of the above
equalions, sce for mstance Drazin and Heid [3].

The expressions V, A and div denote the gradient, Laplacian and divergence operators,
respectively (we also denole the gradient by grad); the 1** component of . Vu is given by



_ :I-‘ ﬂ”; oy n-\. 1"}‘[1
(m V) = ,?;iu;d‘r;' u VT = _?:I r:;;a—}-.
The boundary conditions are as follows
‘ u =)
(+2) { T="Ty on AN,

where 75 1= a given Minction on @4 (the boundary of 1)

The classical Bonsginesq equations correapond to the special case where v an k& are
positive constante. Thie rase hag heen mmch atndied (see for instance Morimoto [8], [9] and
Rabinowitz [12] and the references there in).

Equations {1.1) are mmch less atndied, and they correspond to the following physical
situation. For certain Hoids we can not disregard the variation of viscosity {and thermal
conductivity) with temperature, this being important in the determination of the details of
the flow. Ik is found, for example, that a liguid iz usually rises in a middle of 2 pelyzonal
convection cell, while a gas falla. Graham [R] anggested that this is because the viscosity
of & typical liguid decreases with temperature whereas that of a typical gas imereases, This
suggestion was subsequently contirmed by Tippelkirch’s experiments {see [14]) on convection
of liquid sulphur, for which the viscosity has a mininmn pear 153°C. He found that the
direction of the flow depended on the temperature bemg above or below 153%C, Palm [10]
W l.]!lr ri.] al 1o a :|:'||._1,';il' BITE 1"”.‘!'!: 1 ni I||i' Wkl tab s o v it W Wl h r-e'lr:||:--"'I.:-a||:1|:'1"'r o .|'|4"'|' imp.‘_ru
on the subject are, for instance, Busse [$] and Palm, Ellingsen, Gievik [11]. All these papers
have the Theoretical Fluid Dynamics Savour. A rigorous matheinatical analysis is more
difficult in this case than that in the case of the dassical Bonssinesg equations due to the
abronger nonlinear coupling betwoen the equations

For this, in this paper we will use an spectral Galerkin melhod combined with fixed
point arguimnents; we will need more estiimates than the ones required in the classical case in
order to handle the nonlinearity in the heigher order terms of the eqnations.

We will show Lhe exmtence of weak and strong solntions of problem (1.1), (1.2) ander
certaln conditions on the temperature dependency of the viscosty and therinal conducti-
vity; we allow more general external forces than the usual one (constant gravitacional licld)
because this could be useful o certain peopliysical models. Properties of regularity and uni-
TR TS also st {llli‘?_ﬂ TEREES AU ee] I;Ii“.!'l stalality amd lalureabion aee lell Tfor Dubare
work.

We observe thal off we take u =0 m (1.1) and g = (0,0, 1), the nsnal approximation for
the gravitacional acceleration, we are lell with grad p = al'y = (0,0,07'). Consequently,

. : 9T AT . = .
curl (0,0, a0) = 0 m 3, and 20 r{ = J.; = [ in §}. Therefore, we see that an arbitrary
H i Ql'

temnperature on Lthe boundary will reguire, i general, motion. 'That is, in general the solution

of (1.1), {1.2) are not. Lrivial.
Finally, we would like to conunent that analogons questions can be considered for the
corresponding evolution problem. Kesults along these lines will appear elsewhere.



The paper is organized as follows:

In section 2 we deserile the potation and the basic facts to be used later on; we alzo
state the our main results. In Scotion 3, we make a technical preparation by proving certain a
prion estimates that will be useful for the proofs of the main results. The proofs of Theorem
2.1 (existence of a weak solution), Theorem 2.2 (existence of strong solution), Theorem 2.3
(regularity) and Theorem 2.1 (uwiqueness) are done in Sections 4, 5, 6 aud 7, respectively.

2. Preliminaries and results

In this article the functions are either R or B® walued (n = 2 or 3) and we will pot
distinguish them in onr notations; this being clear liom the context. The L3(Q)-product
and norm are denoted by ( , | and | |, respectively, the L7{{}) norm by | le- 1 = p < oc; the
H=(Q) norm is denoted by |} ||, and the W5(Q) norm by | |o,. Here H=(0) = W™3(11)
and WE2(€1) are the usual Soboley spaces (see Adams (1] for then propertics).

Let D(12) = {e € ((F7(2})" div v = 0 in 2}, H = completion of X1} in L*(12), and
V = completion of I{Q) in H($2)

Let P be a orthogonal projection of L) onto H obtained by the usual Helmboltz
decomposition. We shall denote by o* and o respectively Lhe eigeniunctions and cigenvalues
of the Stokes operator & = —PA defined in V 11 H2{$1). It is well known that «* are
orthogonal in the inner products ( , 1,(V,V) and (A, A) and are compleic in the spaces
H,V and H} )NV (see, for example, Temam [13]).

Stmilar considerations are true for the Laplacian operator A, we will denote by ¥ and
Ay respectively the eigenfunctions and eigenvaloes of the operator A defined in Ha(st) N
H3(52).

Let W F#(#02) be the trace space obtained s the image of W#(Q)) by the boundary
value mapping on H2, cquipped with the norm

bl 2000 = '.E‘T‘j.?.“f"i‘ i .

Sumilarly, when 41 is sufficiently smooth, we can define the trace spaccs w :-"{ﬂﬂ]l
with norm | h,_}lm When p = 2, we denote HEV4(i0)) = WE1/22(501) and |] He1p20a =
| le-1p22.00 (see Adams {1f).

We assume that we can find a function S defined in {2 satislving 5 = Ty on 3 then,
we can transform Lthe cquations {1.1), (1.2}, by mtroducing the pew varialble w = T - 5 1o
obtain

dir{ri{p + S)Vu) + w.Vu - apg - aSg 4+ Vp=0,

divu={

div{k{y + S5)V) + u Ve — div(k{p + S)VE) +aVS=0 @ D
u=0 and p=0 on .

\2.1)



Suppose that 5 € HY((1), them we can reformulate (2.1) in weak form as follows: to
find u € V and o € H{12) =alislyimg

{ele + SWa, Vo) | Blu,u,v) — aleg,v) - oS} =0,
forall vin V'

(22) Y (kg 1 SV, V) + Kuso, ¥) + (Rl + S)VS, V¥ + blu, 5,8) =0,
for all © in H1{0)
w b
n al:‘
Blu,o,w) = (uVe,w) = [ 3 uylr) )" (rheedz)de
=1 Ty
and

= Fy
Hu,?.ﬂ=iu-"-?'yﬂ-.':-'*}=LG,t:}ﬂ—:|:h‘1:}n&

=l

Now, we define weak solutions of (1.1} - {1.2}.
Definition. A pair of functions (2, 7)€ 1 = HY{0Q) = called 2 weak solution of (1.1},

(1.2) if there exists a function S in () sochthat we V, o = T = S¢ Ho(), 5 =T, on
11, and, {1, ) 15 a solution of (2.2)

ilased on physical assumptions, thronghout the paper we will suppose that
(Al wr)=0; Hr)>0 forall re R

We observe that assamplion (A.1] allows the cases |;m.rinl!' ¥iT) = 0 or
lm sup {7} = +50 (the same holds for {-)).

p T
Our first resnlt concerns the existence of weak solnfions.

Theorem 2.1. Let 2 be a bounded domain in 8™ (n — 2 o 3) with Lipschitz contimu
ous boundary; let the funclions v, b be continwous ¢ € L3{12) and Ty € HYHamn L=(agd).
‘Then, there exists a weak solution of (1.1), (1.2}, In casc that mf{s{r ), Er)7 € B} > 0and
sup {#{7), k{7 },7 € )} < oo the result is true under the weale assumplion Ty € H'3(a0).

if we have stronger assumptions, we are able 1o prove the following.

Theorem 2.2, let ) he 3 bounded domain in ™ in — 2 or 1) wath M boundary;
we suppose that v, & are of class (", ¢ € LY} and Ty € Y31 Then, if Tolls/z.00
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15 small enough, there exists a stroug solution of {1.1), (1.2}, that is, there exists a pair
(u,T) € (V (1 H{12)} x H3($2) such that
P{—dieo{{TVu) t u¥Vu alg) = 0 in L3),
diolk{(MWT)+u VT = 0 in L),
' = Ty on ML

We observe that there exists a wnique function p {the pressure} in H'{Q2)n L3{0), with
Lﬁiﬂ] = {_,r [ = f..-zﬂiujrl: jr,, 1) = “L wisch 1hat
{2.3) dief (T Vu) + e Vu— Tg= —gradp

For this, see Tewsun [14]. We also observe that Thearem 2.2 12 true of we take amall o
instead of small || T4y 0.
The pext result s concerned wilth the regniarity of (u, T, pi.

Theorem 2.2 Let € be a bounded domain in #° (n = 2 or 3} with a %" boundary;
let the functions o,k be of class ¢**' g € WA amd Ty € WHHHAAHY Then a stroug
solution I::ZI.I, T) satishes u € '] -"H..H and 7' Y 'H'i"'_ﬂj. Moreover, the assoaated proRsune
satisfies p e H*' () N L3j42).

The following 15 an umgueness result for “small” weak solutions.

Theorem Z 4. let @ he a hounded domain in B in — 2 or 3}, with a Lipschitz
contmuoons boundary and o, & F Lapschiz continuous, These exista 5 > 0 such that, if there
exisls a weak solutson (u, I') of (1.1), {1.2) satisfying [Vu] 1 []7]]; < £, then it i= unique.

Finally we state two lemmmas for convenience of reference
By Holder’s inegnality and Sobolev ipbeddings, we have

Lemma 2.5. There exisis a constant (g depending on 42 such that

|Blu, v, w)] < Cr|Vu||[Vo|[Ve] Yue Ve, o HYD), Ve € M)
e, )] = Cu]Va]VellVe] Vue Ve e 1'(12), Ve € H Q)

By density argnments and integration by parts (sec Temam [13) we have

Lemma 2.6 (i) Al{u,rv,w)=—Bluwv) Yuel, Vewe H(Q)
L URER 'ﬁi“- ¥, v) Yu € ¥, ‘fﬁ"b € Hl{ﬂ'}



(i) Blu,o,v)=0 YueV, Yee HYQ)
Mu,o0) =0 Yuel, Yee HYf)

In what follows we will use (7 as a generic positive constant which depends only on 01
through constants appearing in the Poincavé inequality and Solaolev inegualities,

3. A Priori Estimates.

In this section we will show that problem (1.1), (1.2) satisfies 2 weak maximum prioci
ples Also, we will oblain a prion estimate for weak solntions.

Lemma 3.1. Lot {n, 7'} be a weak solution of (1.1}, (1.2). Then we have

{3.1) inf Ty < T{x) <mupTy ae in §
il FY

Proof. Assume ! = supgy Ty < oo (If I = oo we are done). We take o = T in (2.2),
where TV = sup{T — [0} to obtan

((TWT,VNTH) = - Wu, VI, T
Oy easy computation shows that
(L(F)VT VYY) = (o T)VT, VI = —bw, VI, TH) = —b{u, VT, TY)

Therefore, nsing Lemma 2.6 (ii), we have j]r{?‘]iv:{”ﬁ =)
1
Thus, {17V =0 a.cin (), and conrequently [V7' 2 = 0 ae. in {2
Thia last equality implies that 7% = 0 since T'F £ f; thus, the right hand side of {3.1)

follows. The left hand side {3.1) i similarly obtained o

An mteresting conscguence of previons lemma, is that we can transforme problem (1.1),
(1.2) into an equivalent one. Suppose that inf {k{t);t € B} = 0 or sup{k(L),t € R} = +oo
and supy, [Ty| < oo; then, we consider the modified function &, with the same regularity as
.L' .'1ll1t H.‘ul-lh.!'l.-lll}{
Eff} =E(+v) forall |r|<supTy
A

anid

i.
3 inf{k{r);|r

< sup |Tol} < k(7)< 2suplkir);|7] < sup |To]} forall 7€ R
ack ]

Analogons considerations can be done for ¢f-),

&



Clearly, a pair (%, T) is a weak solution of (1.2) {.2) if and oaly if it is a weak solution
of the following problem

—d(H(TVu) 2 uVu+Vp = aly,
(32) _ divu = 0,
div(E(T)WT)+u VT = 0mil

{3.3) T=Ty , u=0 on {81,

Therefore, hereafter we can suppose that the functions #(-) and k{-) satisfy

U < wo{To) < #{7) = mn{Ty)
(3.4) 0 < k(Ty) < k1) < ky(Tp) forall » € R,

1
where w(Tp) = ii:uf{v{l}; i) < g 1Tol}. ilTe) = 2supl{e(t), it] < sup|To} with analou-
: an
gous definitions for ke{To) and &,(Ty)

Remark 3.2 Obvicusly, i we aoume

{3.5) mf{u(t) k(¢ e B} =0, sup{rit), &i),1 R} < too
then, the above modification 1s unnecessary.

Now, we prove an a prior cstimate. Let {u, o} be a weak solution of {1.1), {1.2). Thus,
by taking v = u and ¥ = ¢ in {2.2), we have

(3.6) (ol + 5)Wu, Vu) + Blu,uu) - afpg,u)  ofSq,u) =0,
(3-7) (e + 5V, Vo) + Hu,p,0) + (He + 51V, V) + Hu. 5,0 = 0.
From Lemma 2.6, Holder's inequality and (3.4), we obtain

vol Fo ) IVul® < alpyg,u) + al{Sg,u) < alglilvh 1 155 el

by Sobolev imbeddings, we find
a {"‘ 1 1.8 0F
(28) [Vu] < & F“-[ﬂ}ﬂm!'i’wl + lol 115105
Similarly, we have
W(To)Vel' < b, S,0) - (Hp + 5)VS,Vp)

= Hu,p.5)— (Ko + S)VS, Vi)
< |uiedVellSh + b(T)[V SV
< ClIVu||ShiVe] + LTSIV

-
]



Thus,

A e k(7o)
4 k74 o 1 Sil,
(3.9 Vol S s ISiVal + 50 s
subsatitnting (3.9) into {3.8), we obtain
al’ ol
S e P = Y < ——|I5]h T
I we assame
3.10) e i 2
B ol Tolko(Ta) 2
then we have
Vil € —2o gl ISTa(ke (To) + RolTol) = Fi{liSTh)
ficcd I'il{rﬂl}kﬂfnj & AL R o 1 Lt
(311
o < (P N e
vol s (o o) aisi) = Al

4. Existence of Weak Solutions
We start by proving the following result (compare with Morimolo 181}

Lemma 4.1, Lel @ be a bounded domain in £ 0 = 2 ar 3, with Lip‘.‘ll hikz comt imaous
boundary. If Ty is a function in HY2{#2), then for any positive numbers £ and | < p<f
ifn=23orany finite p > | if n = 2, there exists an extension 5§ € HY({1) of Ty such that
|5]p < &

Proof Hy definition of H'/*(#11), we can obtain an extension Ty € HY{1), of To. For
any 4 = 0, we consider H}; = {z € K" d(z,0() « &} and a(r) € CF(R™) sach that
0 < elr)< Lolr) =10 Mgy, afr) =0 in 7\ MY (we can obtain such function, by
applying a differential version of Urysohn's Lemma).

Define §(x) = afz)Ty(z). Then § is a required exlension, because § € HY(0)) and

1l

5], < ( Lw. |Tolx ) Pddr )

Since by Sobolev embedding, H(12) C L7(11), with p satisfying the stated conditions,
J’{iﬂﬂl‘]]pfﬁ‘- < foo, amd, therefore, we can choose & 5 0 sufficiently amall so that the



right hand side of the above inequality is les than 6. g
Now, we are ready to prove Theorem 2.1,

Proof of Theorem 2.1. According to the Lemma 4.1, with p = 3, we can choose an
extension 5 of T such that 5 € H' and satishes (3.10).

As n** aproximate solution of cquation (2.1} we choose functions ™z} = 3 casr® and
=1

Pz) = Eff..j:;‘* satisfying Lhe cquations
=3

(A1) (™ 1 SIV, V%) + Bl w0} — alg™g, ) - aSg,0%) =0,
(4.2) (k™ + S)V", Vi) + Hu", o™, 9') + (k{p"™ + 5)VS, Vi) + b{u®, 5,9') =0,

frl<j<n

¥irst we assume the exstence of (w™, 0" ) for any n € W Note that the solutions (™, ™)
must satisfy estimate {(311) In fact, the wentity (3.5) for w* s obtained by multiplying
{4-1) by eo; and sumiming over j from 1 to = Similarly, we have estimate {3.8) for =,

Fstimates (3.11) follow for estimates (3.8), (3.9) as in the Section 3 Therefore, the
soguende (1%, ™) is bounded i V' ox H)

Sinece V (respectivedy 1)) is compactly imbedded in H (respeclively L¥(12)) we can
choose subsequences, which we again denote by (w", "), and elements w € V, p Hj such
that the following convergences hold
u" — u, weakly o V, strongly in H
w* — ¢, weakly m M} | strongly in L7 and almost everywhere in Q2

Furthermore, we can suppose

Vi — Vu, weakly m [2
Viom —* Viz |, weakly in 2

Thus, we can take the bt as n goes to oo im (4.1}, (1.2), oltaining

(e + 5)Vu, Vo) | Blu,u, ) — alpg.v')  ofSq.0) =0, Yo
(4.3)

(Ko + 51V, Vi ) + Hu,0,87) + (Kl + S)VS, Ve?) + biw, 5,97) =0, Vi

In fact, in taking this imit, there 15 no difficulty with the ponlinear term, It is easy to
soe that.



B{u™, ™ v) — Bluu,v) ,YreV
bau™ " 9) — Bu,p.) Yoe HY(Q)

(see, for cxample, Temam [13]). Also, we observe that
(#(™ + S5)Vu"™, V') = (Vo™ 0™ + 5)Vr) — (Vie,v( 4 §)V0) = (e + S)Vu, V')

because r(" + )V« v{p 4 5)V, strongly m £4{11) due to Lebesgne Dominated
Convergence Theurem.
Similarly,
(E(™ + S)V Vo) —+ (k{p + SV, V)

As the system {v*} (respectively {¢*}) is complete in {respectively HI((1)), {4.3) implies
that (u.) satisfies (2.1). Therefore, {u, ¢ + 5) is a required weak solution.

In order Lo prove the solvability of the system (4.1), (12) for anv n € IV, we follow
Heywood [7)] in applying Brouwer’s Fixed Point Thevrem

Let Vo be the subspace of V spanned by {o', v}, and let M, be the subspace
spanned by {¢'.... . ¢¥"}. For every (w.£) € V, = M. we consider the unique solution
Liw, £) = (u,p) € V, x M, of the linearized cquations

(4.4) (2(€ + S)Wu,Ve') + Blw,u, v} — alpg, o) al Sq.%) =0, .
(4.5 (K€ + S)Ve, V') + b, 0,97) + (KE 1 S)VS, V) + bw, 5,97) =0,

for 1 < j < n. This is a system of 20 linear equations for the cocllicients in the expansions
L) 1]
u=) av*, p=3 d¢t
=1 i1

The ecquations (1.4), (4.5) have a mnique solution becanse the associated homogeneous
system (5 = 0) has an unique solution. In fact, il {u,y) is a solution of the homogeneous
rystem, proceeding as hefore, we multiply (44} by «, (1.3} by d, and sum over j from 1 to
n, to obtain

HU[LTUJ[v“%] =0, Li{G}Vel' =0

Henceu =10, o = 0.

The continuity of L follows by applying the argnments similar to the ones used to take
the limit in (1.1}, (2.2).
We also have the [ollowing estimates

16



al’

- . kiTel
(47) R A R

which are shown in exactly the same way as it was done for & solution (u®,5™) of (4.1}, {4.2).
Substituting (1.7) into (4 6), we find

Vel S | i slol WVl + s ol ISTh(R(To) + Rl
Thus,

1 C i i
(£.8) [Vu] < iﬁ"i -!-ﬂm'r. }l!'i US|l kel T ) + ko To))

because (2.10) bolds

K we assume [Vl < Fi(]|S]l) (see (3.11)), then (1.7) and (4.8) mmply that (u,e)
satisfies (3.11), that is,

(4.9) [Vu| < Fi(ll5Th) and Vo] < Folll1])

Thus, {1.4), (45) dcfinc a continsous mapping L from the clused and convex =t M =
[{m,£) € Vo x M,[[Vw| < Fi(liSlh) and V€] < FA|l5]h)} into itsclf. Using Brower's
Fixed Point Theotem, we conclude that the map [ has at least one fixed point, which w a
solution of (4.1), (4.2} Thus, the proof os Theorem 2.1 15 complete.

5. Existence of Strong Solntions

In this section we will prove Thoorem 2.2, fon this we follows Temam [13] in using the
equivalence of the norm given by the Stokes Operaior (1espectively laplacian operator) and
the V N H3{12) norm {respectively H2(02) N H2(12) none:) in smeoth dogsain. The main &iffi-
cult here i o sstimate the nonlineanty in the heigher order terms m the velooty equalioe;
for this we will nesxd an estimate for the assocated presure o the Stokes Mroblem.

Proofl of Theorem 2.2.
We chowse the extension 5 of Ty such that 5 s solution of the problem

-AS=0 m ]
S=Ts on

We know that § is a function in 1/3(12) and satiskes



(5.1) 15112 < CliTollayazm

According to the proof of Theorem 2.1, we have a sequence (u™, ") satisfying (4.1),
(4.2) provided (3.10) holds. Since |S]y < ClISTh < CliTallsysm, we conclude the existence
of this sequence for || Tyllyem sufficiently small. We need only to show that this sequence
is bounded n J13{12).

For this, we mnltiply the equation (£.4) by n,e,, and then sum over j from 1 to n, to
obtain
(div(i(€ + §)Vu), Au) - B{u,u,Au) + oS¢, Au) + ofpg, Au) =0
Using the ideatity
din{w(f + S)Vuv) = p(€ + S)Av & V(£ + S)V(E + §)Vn,

where V(£ + 51V denotes the vector field which o™ component is given by [V[£ 4 8)V|; =
(V€ + 5), Vi) mm, where (g denotes the cannonical inner product in KH*, we find

(5.2 (v(€ + S)Au,Au) = Blu,u,Au) - olpg, Au)  ofSg, Au)
(V'€ + SIVIE + 5)1Vu, Au).

Since Au £ Au, we need the following decomposition
Au t grad g = Au

It is well known that (see Teman [13])

(5.3) lalh < €|&ul.

Now, we can rewmite (5.2) as

{Ifl:f-l-."t']-iu,iii} = Blu,u,&u) - alyg, Au)  ofSg, )
(W(E + S)VIE + 5)Vu, Au) + (#(€ + S)Vq, Au)

By Holder's inequality, Sobolev imbedding and (3.4), we have

(Y

(5.4) [Bul < —(IVu] + A(To)(|AE] + 151120} Au]
vol Tn)
( 7 (€ + 5) P
b Ve ST + | (Ve Bu)|

12



where
w(Ty) = 2sup{s'(1); J¢] < sup |Tol}

We observe that
(v(€ + $)Vq, Au) = (g, div(w(é + 5)Au)) = (g, (+'(£ + S)V(£ + 5), Au)ne)
because Au & V.. Therefore,

v + 5) < 1 (Ta)
(5.5) = wolTo) Vg, Au)| < I':'j-ilq"d?{£+ 5 el Aul
“" lTuJ

=
. l'thu]'

Combining eslimates (5.4), (5.6) and (5.1}, we have

(1Ag] + STkl | Aul

c

(5.6) Bul € il + 20T+ [1Telly oa))An

o
+ e slah(a] + ITolly o)

Similarly, the following cstimate holds

(5.7) Al < hf;ﬂ (Al + K (To)(|AE] + HToll g o )13 + [[T0ll2 20)
k(T

ko{ To)
where Ei(Ty) = 2sup{#(1):|t] < supyg |Tol} and C is a positive constant. Now, we take

(w,£) such that [Aw] < 1 and |AL] < (1 ¢ 2}’:;;}1|ra||!;., I Tolls/2.00 sufficently
small in such way that

ky(Ta)
{5.8) Pag Il + 2k (o)1 + Eﬂﬁ.ﬁ}I:;||J"...||,]E‘,,,,,] < =
and
c k(1) !
(59) 75 1+ 45+ Pl ) < 5

Observe that this is possible because ll_l..ml:[&} = 0 and ‘I:‘mr[&] =0,

13



Then, estimates (5.6), (5.7) imply

- i k(T
Bul < agslob(t + Tl
Agl € (42000

LEY
Consequently, if ||[To|laszm 15 small enough, L map the closed and convex set

i BT
{{w, &) € V, » M.;[dw| < 1 and |Ap| < (1 4 gk1ifn:
can choose a sequence [u®, Tl} bounded in Hiua} aa.t]sf}'ing {4_”1 H-E], TIp [ T
followrs, heorem

]Ellﬁ,-[lal.f,.:_.:u} mnto it sell, Then we

6. Repgularity

We first state some lemmas necessary for proving Theorem 2.3,

Lema 8.1, Let k be any function of clasas (° *¥ such that :-.up{' I:_|‘:|-Lf £ H} <{/ 1=
1,...,k Then, there exists constants (7{k) and ¢7){ k) such that

() [P Moo = CCENTT
(1) [[R{T)]lea = C2lENIT IR
for all I & Whe(11).

Proof. We oply proof (i}; the other inequality can be proved in the same way. We
procesd by induction on &.

If k= 0, the result is trivial. So, suppose the result is trae for any § € IV such that
0<z<kandlaked= (... G hie V)@ =H+ +5. =k Then,ifi€ {1,...,n}
is such that g; > 0, we have.

FRiry = @ (M7 = 8 (R(T)La, T
Yo )@ RN a, T,

1-j—.'i=ﬂ"

where ' = J—e;, ¢; is the «* vector in the cannonical basia of ™, e 1) ave posilive constants
and 7 = (7,.. -1'7'11}1 & = |:1':'|,....|'l.'f',.}|.. Tis 'SI £ N
Thus, by the inductive hyposthests and Sobolev imbeddings
PRTe < % il RUIMl (90T oo

el

yop S

1£



< 3 DMUIADITIE, 7 e r00
=5

< ¥ GMICUTIEL )T ez
P

Now, weobscrve that 9| <k 1, Pl <k-landso [y]+1 <k and [§|+2<k+1.
Thus,

(BTl < CUNITI, 1.0
and the Lemma s proved. o

Lemma 8.2: If & satisfies the conditions of Lemma 6.1, then

HA(T) iy < CENTIR, oS s
for all T in WH14(0)) and all § in Whe(Q).

Proof. let §={(3,,...,.8.), 4 € N|f|= 8 + -+ + By = k As hefore
F(MT)f)= Y 7T S
vidag

then by Lemma 6.1, we have
®
PRI, < 3Tl 1,
yui

&
< 2 AINCONITIE a0 1,
=0
< GRITIR, )l Ny

‘ﬂ

This proves the Lemma o
Lemma 6.3: Let (u, T) be a strong solution of (1.1), (3.2). Assunw
To€ WH4(30), then T € WD)
Proof. According to section 3, we can suppose that (3.4) holds. We observe that
T € H?(12) satixhies

KT) EHT)"

& {—M‘*+HT}WTI + o wVT=0 i D
T=T, on O

15



Sinee Ty € WWAHH0) C WHS{0) and

BTy K {To) K(Ty)
= ".F'I" 2! = l—” IEl'lru.'!n_'.,!' o )
k{-T-] | | = .ﬁ?ﬂffﬂ}i |l.|- — Eﬂ{lﬂlg
uVT ] (!

A R T\

CjATR

y e [0 | AT

T

we can apply the well-know [P-regnlarity properties of Laplacian operator obtaining T in

W33, By uwsing Sobolev imbedding we have that T & L70Q), for all 1 € ¢ < oo,
k(1" | | ol

—Z |V < o oand |- #. VT < oo.

Applying L7 regularity vnce again, we find 7' & W33,

Consequently,

Proof of Theorem 2.3, We procesd inductively ou & 3f & = 0 the result follows by
Lemma 6.3,

Now, we suppase Lhe resnlt is troe for £ — 1 (that is, 7 € WSY), Note that if
B={f,....fhAeN|I8=3+ + 8 =k, then

FluVT)= 3 )T ud (V) + u (VD)
4+ d=a3

where o1} are positive constants, v = (1, ..., %) § = (&,....8.), w.5 € . Thus,

}Ej‘i{u?’f’}h < E A )NF (T T Yo + |1t (VT4

Hi=g

soboley aunbeddings, Logether with the inductive hivpothess imply
Ly al] S| o " r ¥
eV THea < Copllullzsr T ens + Cuellel T k10 < oo

By wsing Lemma 6.2, we have — ]” aVT € WHI{1).

1{
Similarly as before

VT = 3 dfld VT VT4 P91V
wib=g
s '-.J.t|”'|5'§+1 1 H 121.1-':”': :I: rl.dlllrl'”M < oo
!1|I .-jl
Theorelere > [ - !

KT
Applying L' regularity for problem (6.1), we see, that T ¢ W30,

Agin the prool of Lewmma 608 we have that u s solution of the following Stokes Problem

VT & W)

H



= u T B e FI{T} —u.Vu .5 7}
62) j‘ rared(55) =~ TpVT iyt e ALy
ttu =0
u=0 ou i

where p satisfics (2.2).

As above, we show by induction that the right hand side terms in the first equation of
(6.4), are in a’t{ﬂ:l By Cattabriga’s Theovem (see [1] and [2]) applied 1o (6.2), we find that
u € H3{0), € I,

Applying I.-Pmrna 6.2 we conclude that p & I**'{Q2). This completes the proof. g
7. Uniqueness

In this section we will prove Theorem 2.4,
Let {uy, T3 ), (225, T ] ]'H'-' weak solutions of (1.1}, (1.2} such that T} and T are in H3(1}).
Put w=w; upf =1y —T; Then we V£ € HY2) N H? {41} and satisty.

(#{T0) Ve, Vo) + Blo, uy,0) + Blug,w,v)  olfg, o)+ ((H{T) - o(T2) Ve, Vo) =
(der{ R{T2)VED, o) + blw, Tiu o) + Mug, &,00) — (deel{R(T3) — k(13))VTa), ) =0,
Yo € V, ¥ € L3(1)

We take v = w and b = Af in these last equalities, thus p]‘nmiuing

¥l
2 [V — wll
W . ) t_"l B .
(7.2) ALl < J.‘_nin}uf!li:[?“ﬂ ¥ Ba(To) | Ve[ AE]
r i '|E. “} 1 z
+ o elAT + ERCITILIAL + L 2Tl

where € is & constant such that Rt} — B{s)] + |[k(2) - k(s)] + et} F{"” < Cift — 4
for all 4,5 in F. This is shown in exactly the same way as in the case of the o aproximate
anh:i.mna {u", ") in Sections 4 and 5.

We note that [£].. < C|AE]|. Thes, (7.2) implies

, ( y v ooy v
AE] < s T3l IVl + o [0l + (€ + KODITL + G 1ag

{-. “
Assume that kl.['f';,j[lvu‘l Oy + R (Ta))I| T2l 4 f'1|}'f':.'|53] < ; » then

17



Oy

=4

7. AL] < - UV w

{.'r 3,:' |'l'1f[ == kﬂt]:}}ll 1I|J! “l

substituting {7.3) wmio (7.1}, we obtain

| V| < " T (O ] + Oy |[WVug|) 4 {'ﬂ Vi) [Vl
#o( Ty Jko(To) vol 1o
, 2 Un
Thus, if ————|ITill2{ovelg| + €1 |Vua]) + — =V} < 1 | we have |Aaw| = |Af] =
w1 i-"u[ l‘l“]k-];{ ;n] |I I“I{' |-5|r| |.| 2 } ‘r"‘ arﬂ:ll IE | ‘I I 'fl

0. Sincew e ¥V and £ e Hi(f1)n H}Q), wescew =0, £ =0in (L
Therefore, ny =u,;, 1 =T;inl
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