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1.- Introduction

We consider nonlinear systems of equations

Flz) =0 {1.1)

where F': i — A" is differentiable, n is large and the Jacobian matrix J(zx) is sparse.
"The best known algorithm for solving (1.1) is Newton's melhod. This is an iterative
method which, at each iteration, proceeds by solving the linear syste

Ji{zp )8, = —F(x) (1.2)
and detining
Fhpl = T + HE- “.-3}

Sec Ortega and Rheioboldt [1870], Schwetlick [1974], Dennis and Schnabel [1953], On-
\rowsks [1973).

At each iteration of Newton's method, we compute the first derivativer of F and we
solve the linear system (1.2). We take the point of view that computing derivatives is nol
very hard, at least when avtomatic differentation rontines | Griewank [1992], Iri [1984],
Rall [1984], [1987]) are available. If this is not the case, we may use the pumerical diffe
rentation algorithms of Cortis, Powell and Reid [1974) and Coleman and Moré [1983]. Sew
also Colenan, Garbow and Moré [1984]. In general, the resolntion of the linear system
{1.2} is & very roatly compuiational problem, even if modern sparse technigques are wsed
{ Thatf, Erisonan and Reid [1929], Dolf [1977], George and Ng [1987], Ylatev, Wasnieswski
andd Schavmbarg [1981]).

Quasi-Newton methods were introduced with the aim of alleviate the computational
work of the Newton iteration, bul keeping some of the excellent local COOVETEPICE Proper-
ties of Lhis method. See Broyden II!H\'\-'}], Broyden, Deonis and Moré [lﬂ?ﬂ], Dennis and
Maore i_l!iT?l. Dennig aml Schnaleel ]l".‘?ﬁﬂiI|P Dennie and Walker [1 981], Martines [lﬂﬂm:-]

In a typical Quasi-Newton ileration, (1.2) is replaced by

Besy = Flzy) (1.4)

and the resolution of {1.4) is inexpensive when compared with the resolution of (1.2).
A systematic comparison of Quasi Newton methods for large sparse nonlinear aystems
has heen developed in the Applied Mathematics Laboratory of the University of Campi-
nag during the last five years. As a result, we developed the package NIGHTINGALE,
where some of the most succossful Quasi-Newton methods with “cheap linear algebra®
have been implewented. See Hroyden [1965], Dennin and Marwil [1982], Martines (1983,
1984, 1987, 1980a], Gomes Ruggiero, Martinez and Maoretii [1992], Gomes Ruggiero and
Martines [1992]. In Tewarson and Zhang (1987, Tewarson [1988] and Martinez and Zam-
baldi [1992] poteatially nseful methods that are not yel incorporated to NIGHUTINGALE
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are analyzed.

The validation of uonlinear equations solvers requires a very carefn] selection of me-
aningful Lest problems (Moeé [1989]). Some of the wore interesting tests for algorithms
which solve ponlinear systens coma from the discretization of boundary value problems
{Ortega and Rheinboldt [1970], Schwandt [1984], Watson [1979, 1980, 1983], Watson and
Scott [1987], Watson and Wang [1981].) In this paper we apply scveral Quasi- Newton
methods to the Cavity Problem ( Payret and Taylor [1985]), which iz a boundary value
problem governed by a fonrth order partial differential equation in terms of the stream
fnction. For low Reywolds pumbers, the problem is almost hinear, while, when the Ray-
nolds number is large, the problem is highly nonlinear. We test Quasi Newton methods
for problems with increasing Reynolds numbers, up to the vicinity of a “inrning point”
(| Rheinboldt [1986]). Going throngh this turning point requires the use of Homolopy or
Contimmation technigues { Rheinboldt [1986], Watson, Billups and Morgan [1987]) that are
beyond the scope of our study,

‘This paper is orgacized as follows. In Section 2, we describe the methods implemen-
Leel, Im Section 3, we survey the theoretical convergence resulls relative to these methods.
In Section 4, we describe the Cavity Problem and its discretization. In Section 5, we
report our numerncal experiments. The conclusions of the study are given in Section 6,

2.- The algorithms

In this section we describe briefly the methods that are compared in the present sindy.
More detailed descriptions of these methods can be found in Gomes Ruggiero, Martines
and Morctti [1992] and Gomes Ruggiero and Martine: [1992]. The methods are:

(1) Newton's method.,

(2) Modified Newton method.

{3) Broyden's method.

(4) Column Updating method.

The following features are common Lo the implementation of the four methods:

(a) The iterabions ace of Lype (1.4)  (1.3) except if |sg]lc > A where A is a parameter
given by the user, In this case, we replace s, by s, A f||s, |-

(b) At the first iteration, (1.2) is solved using the algorithm for sparse LI factorization
with partial pivoting introduced by George and Ng [1987], This factorzzation has proved
to be more eflicienl than wwre classical sparsity schemes due siability reasons (Zambaldi
[1990]). The subsequent iterations of Newton also use the George-Ng method for solving
{1.2).

(¢) If, in the course of a [actorization, singularity or severe ill conditioning of By 1s
detected, By = modified in order to transform it in a “less il conditioned matnx™ . The



s decision i adopted if “noar singularity” is detected when a rank-one correction is
added to ff, | (methods () and {6]). The details of these modifications are given in
Gomes-Ruggicro, Martine: and Moretti [1962].

In Newton's method, By = J(xy) for all £ = 0,1,2..... We also choose By = J(xy)
i ihe Quasi - Newtou mwethods of the NIGHTINGALE package, The definition of By,
in the Quasi - Newton methods for £ = 0,1,2,. .. is as follows:

Modified Newton method:

Bie1 = By (2.1)
Broyden's method:

E T

Bops = By 4 2= Buvn)ay (2.2)
-"ln ﬂ*
w hepa

8 = Tpyy — Thn (2.3)
Vs = Flxei) = Fxu). (2.4)

Column-Updating Method:

(36 — Busy)el

Bijr= M0+ : 3

1 = 1 - (2.5)

where {e,.. ., ¢} ia the canonical basis of ", s, and ;e are given by (2.3) and (2.4)
respectively and

lese] = llsulles. (2.6)

In Broyden's method, we have that

’ =1 T g1
Bl m by 4 42 By mar By’

2,
'SIH;"l [ T.I
"erefore,
Brlbv =0+ uwesl) .. (] + ugal 1850, (2.8)
where, for F=0,1,... &k, we have:
ug = 8; — By I!:J’ﬂ{ E,";.r.r. {2.9]

By (2.8} and (2.9), Broydeu's method can be implemented storing ug, . .., uy, 8, . . . , 84
plus the LU factorization of Hy { Matthies and Strang [1974], Uriewank [1986), Gomes-
Ruggiero, Martinez and Moretti [1992]).

Similarly, in the Column-Updating Method, we have Lhat

(se — I ya)el (30~ By wa)e!
B} =[r g _ ':_ .Jl]--.{f+ . i | =Y 2.10
e By £ B,y L G



Byl =+ weel )+ (] +wel ) By, (2.11)
where e
i ¢ e
R oo 3., 212
€5 Be v 2

f=0,,1 .2, .. Forumula (2.11) allows us to implement the Columu-Updating Method
for large scale problems, storing the vectors, ug, ..., u,, the indices j5,..., i, and the

factorization of By, For details of this implementation see Gomes Ruggiero and Marlinez
[1992]. Comparing (2.7) (2.9) with (2.10}4{2.12), we observe thal a typical iteration of

the Column - Updating Method uses less computer time and less storage than Broyden
for large scale problemns,

3.- Survey of Convergence Results

We assume that £ : {1 C H*® — R", {l an open and convex set, I € CYQ2), F(z,) <=0,
J{z.) nonxingular, and that there exdst L, p > 0 such that for all x € 11,

(=) - J(z)ll < Lil= ~ =], (3.1)

We consider the algorithma descobed in Section 2, without correction of near-

singulanty, and without control of the stepsize. Lot us survey the convergence results

related to these algonithms. Theorems 3.1 and 3.2 are related to Newton's method, the

Moditied Newton method and Broyden's method. These theorems say that the sequences

generaled by these methods are well defined and linearly convergent to z., if the initial
point and the initial By are close enough to x. and J(r.) respectively.

Theorem 3.1 Given r € (0, 1), there exists € = £(r) > 0 such that if ||zg — .|| < &, the

sequences {x,} generuled by Newton and Modified Newton ar well defined, converge to
z., and satisfy

lzass — =]l & 7 [lee — 2.]] (3.2)
[ﬂ't al] k-ﬂ,l,ﬂv. T

Proof. See Denuis and Schnabel [1983]. o

Theorem 8.2 Given r € (0,1), there exist £ = &(r) > 0, § = §(r) > 0 such that if

llro — #u|l < £ and ||Hy — J(2.)l| < &, the sequence {z4} generated by Broyden is well
defined, converges to £., and salufies



llexsr = 7l = 7 i — 2| (3.3)
forall £ =0,1,2,....

Proof. See Dennir and Schnabel [19583]. 5

Theorem 1,3 is the classical theorem on the order of convergence of Newton (quadratic
when p = 1), and Theorem 3.4 say= that the convergence of Broyden is (}-superlinear.

Theorem 3.3 Under the hypolheses of Theorem 3.4, if {zi} is gencrated by Newton's
melthod, there ensis ¢ = 0 such that

l2541 ~ 2]l £ € flze — 2P (3.4)
forall E=0,1,2 ...

Prool. See, for instawe, Oriega and Rheinboldt [1970], Dennis and Schnabel [1983],

4]

Theorem 3.4 (/nder the hypotheses of Theorem 3.2, if {xy} is generuied by Broyden's
methid, we haoe hat

Jim [leeys — 2|/ |len — 2] = 0 (3.5)
Proof. See Dennis and Schuabel [1983]. 4

Lt s consider now the Columm - Updating method. In 1981, Martinez proved that,
under the usual hypotheses on F', this method has local and superlinear convergence
with Jacobwan restarts re ry i deralfions. This owans that we nge the formnla {2,5} if
k41 s not & mulliple of 2 fixed integer m > 0, and we set iy, — J{za,, ) ctherwise.
This theoretical resmlt is pot completaly salisfactory, since we koow that it is satisfied
by methods whose perforimance is poorer Lhan the performance of the Column-Updating
method, In fact, numerical esperiments performed in the last ten yoars showed that, in
et practical vases, the behavior of the Column Updating method is very similar to the
behavior of Broyden. The following results were proved recently and tend to reduce the
gap between Lheory and practice with respect to this method.

Theorem 3.5 Suppose thal the sequence {r,} gencrated by the Column - Updating
method, is well defined, converges to x., and satisfies (3.3). Then,

Jina (a2l lh2a — 2,

= 0 (3.6)
and



S |lzp - 2 =0 (3.7)
Proof. Sec Martines [1992c]. o

Theorem 3.8 Assume that n = 2 . Given r € (0,1), there exists ¢ = g(r) > 0,
b = b(r) > 0, such that if llxo — x.|| < ¢, and ||By - J(z.)]| < & the sequence {2}

gencrated by Column - Updating method, is well defined, converges to z., and saizsfies
(3.3), (3.6) end (3.7).

Proof. See Martines [1992¢). o

Theorem 2.7 Civen r € (0,1), m g powmlive infeger, there exists ¢ = £(r) > 0,
& = r) > 0, such that if ||zo — z.|| < €, and ||By — J(=.)|| < § if k is o multiple
n-fnhllrHﬂtk{:{:&mrnldhh=[ﬂlﬁgmﬂad,ﬁuﬁpn&mﬁﬁ:ﬁ
is multsple of m, is well defined, converges to z., end salisfies (3.3), (3.6} and (3.7).

Prool. See Martinez [1992c]. o

Up Lo now, Theorems 1.5, 3.6 and 1Tu:thehutmlhwehwh'mphi1ﬁlg
the mumerical bebavior of the Column-Updating method. There is still a large gap bet-
ween Lheory and practice. In particular, we do not keow yet if a local convergence result
like Theorem 3.2 holds for this method il n # 2. Theorem 3.5 says that, asmming |-
near convergence, R- superlincar convergence ((Ortega and Rheinboldt [1970)) takes place.
However, this is 2 weak result compared with the () superlinear convergence of Broyden.
Thminpmbhniﬂhnhhumhmhudlﬂwndndbﬂﬂhuﬁmmh{ﬂmm
Dennis and More [1974]) allowing the sccummlation of infinite many small deteriorations
in the updating of B,. Such results are easy Lo obtain in the case of Broyden and other
least Change Secant ['pdate (LOSU) methods (Dennis and Schnabel [1983], Dennis and
Walker [1981), Martinez [1990b]) becasse LCSU algorithms involve orthogonal projects-
ons, which is not the casc of the Column- Updating method.

4.- The Cavity Problem and its Discretization

IhmﬂWfﬁm—mﬁljmmh-ﬁuuinmEmd;Mﬂm
Hlow in the following form (Peyret and Taylor [1985]):

TFw— o Au=0 (41)
w+ A9 =0, (4.2)
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whoere ¢ is the stream function, w is the vorticily, Re is the Reynolds Number and 7 =
(u, ) is the velocity with components expressed in termm of the stream function. That is,
i = H’H‘ L R .

Suitable boundary conditions must be added to equations (1.1} and (4.2) in order to
cumplete the formulation of the bowndary value problem.

Setting w = ~ Vb in (4.1), we obtain a nonlinear fourth-order equakion for the stream
fuaction:

P(v) = A% + Re [iho(A), — ,(A¥);] = 0 (4.3)
For Re = 0 this equation reduces to the biharmonic linear equation

Al =10, (4.4)

We assume that the cavily is the unit square R = f(z.p)e B* |0 < x,3 < 1}
and we use Lhe boundary conditions proposed by Rourcier and Franguin [see Peyrel and
Taylor [1985, p. 199]: é(x,y) = 0 on the boundary, 3£ = 16z%(1 —z)?ify = 1, and
Bopify#1,

The equation (4.3) defines, with the boundary conditions above, an elliptic fourth -

wrder two dimeasional boumidary problem in a single unknowa, which we atlempt to solve
using its hinite difference aproximation.

For the aproximation of the noolinear vperator Py], we set (Collats, 1973]):
P (@] = {2050 - B(Wens + Wikt + Pk + Yid-1) 1 200001 | $oa0 + Pinga +
Wid 1 1 FW ) pat et et Re [(Winia =% 1 al® 100 4 UNISE & TR
ez = ipni-1 F M - — Piaea) 4 Biaen = Piao 1) (Whan — W00 — Yy a
Bakiy T495 10— ¥ as t P00 — P )i}

Uring this discretization , and varying the Reynolds number e, we obtain different
nonlinear systems

flz, Re) =0 (4.5)

where the nonlinearily incrcases with Re.

5.- Numerical Experiments

Qe Lests consist of solviag the system (4.5) for Re = 250, 500, ... 2000, using the
solution of fx, Re) = 0 as luitial approximation for the resolution of f(x, Re+250) = 0.
Observe that if fte = 0, the system is linear, so, in absence of ronnding errors, the methods
deseribed in Section 2 solve it o exactly one iteration,

A similar computational beliavior was observed for different grid sizes. Here we report
the results obtamed dividing the interval [0, 1] into 32 subintervals. Thus, the nonlinear
system has 29 x 20 = 841 sguations and unknowns.

To ensure a [air comparison, we ran the different methods in the following way: We

B



ran the complete set of experiments using Newton's method, with the stopping criterion
easr — Zeflo = 10 Ylz]lo. For cach experiment (identified by the Reynolds number
Re), we call & Re) = || f{z{ Re), Re)||oo, where ={ He) is the “solution” obtained by New-
lon, according Lo the stopping criterion mentioned ahove, The stopping criterion used for
the experients with Quasi Newton methods was || f{z,. He)llsw < e{Re). In this way,
we ensure that (Quasi-Newton methods obtain an approximate solution at least as good
as the one obtained by Newton.

The results are presented iu Table 1. The result of & particular experiment 18 re
presented by two uumbers (NI, TIME), where NI is the number of iterations performed,
and TIME is the computer CPU time used, in a SUN Workstation, Adding the CPU
times for all the experiments, we observe that the Column Updating method ranked first,
with 99.92 seconds, the Modified Newton Method used 106.6 seconds, while Broyden and
Newton wasied 1224 seconds and 207,92 seconds respectively. The fact that, on average,
the Modified Newtow method bebaved better than Broyden was quile surprising for ys,
We also tried to solve this set of problems using the Diagonal Scaling method and the
Row-Sealing method (Gomes Ruggiers, Martinez and Moretti [1992]) but the results tur

ned to be completely disappointing. In fact, these methods did not converge even for
He = 250

| Reynolds | Newton | Mod. Newton | Brayden -Thi-unm~lF]:t'i;r
250 | 4;30.11 | 56;25.21 |70:34.28 | 20 13.88
500 4; 30.10 30; 16.71 28; 17.03 29; 17.00
750 3 23.52 10; 10.84 IT; 13.36 13; 11.84
1000 | 3 24.21 19; 13.94 10; 11.13 8; 10.48
1250 3 24.55 9; 10.88 13; 1298 4, 9.31
1500 3; 24.88 5; 9.68 3 9.71 6; 9.98
Ta0 3; 25.20 5: 9.82 3 9.78 6; 10.12
000 4 25,35 4; 9.52 19; 14.83 26; 16.81
Table 1 Numerical Fxperiments.



8.- Conclusions

Boundary value problems coming from the Navier Stokes equations are very impor-
tant, not only becanse their intrinsic relevance but also becanse they are representative
of other problems thal model physical and engineeting peoblems,

In this paper we showed that some Quasi-Newton methods are reliable alternatives
Lo Newton for these problems.

Ihe NIGHTINGALE package was used for solving the Fluids Dyoamies problems
vonsidered in Lhis paper. One of the strenghts of Lhis code is (he careful troatment of the
sulution of the linear systems. For this purpose, we use the partial pivoting rule, which
ensires numerical stahility, and the static data structure introduced by George and Ng
[1987]. In Newion we solve many nonlinear systems with the sane Jacobias structure,
w0 the symbolic phase of the George  Ng method, which defines the data strcture, is
exccnted only once,

In our tests we nsed true Jacobians at the first iteration, S0, we were forced to
perform a complete LU factorization of a sparse matrix at this ileration, We Lried to
alleviate this work by replacing the true Jacobian by a “False Jacobian”. With that
purpose, we climinated some sub diagonals of the true Jacobian, =0 that the factoriza-
tion became less expensive. We expected thal the Quasi-Newton methods could correct
this simplification, incorporating the mising information as the provess progreeded, This
phenvmenon had ocurved in other tests coneerning boundary valne problems {Martines
and Zambaldi [1992]). Unhappily, in the problems studiad in Lthis paper, the behavior
of Quasi - Newton methods was very seositive to “errors™ on the initial Jacobian, and
their behavior turmed to be very poor, even for modest sinplilications {say, dropping only
one suhe diagonal). Arcording to thess regults, our present ferling 15 that Quasi Newton
methods are in fact very useful for large problems, when the structnre of the Jacobian is
such that the sparse LIV [actorization is possible. For very large problems, say, 3D boun-
dary value problems, or nonlinear syatems coming from very fine discretizations, Inexact
Newton methods (Dembe, Fisenstat and Steihang [1983]), perhaps oxing Quasi- Newton
wchemes as proconditioners (Martinez [1990b, 1992b]), seem to be the best choiee. Forther
reasarch is necessary to characterize problems where the performance of Quasi-Newton
methods is not seriously affected by “proposital™ errors on the initial Jacobian,

Acknowledgementa: We are indebled to Francisea A M. Gomes and Mario C, Zambaldi
[ helpful discassions during the ellaboration of this work.
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