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Homoclinic Orbits for a Quasilinear Hamiltonian System
Pedro Ubilla

Abstract

The aim of this paper is to prove existence of nontrivial homoclinic orbits for the
following Quasilinear Hamiltonian System

(a(l'P) ' PP~2u’) = b(lulP)luf~*u + Wi(t, w) =0 in R
that is, to prove existence of u : IR — IR" satisfying the system above and

u(—o0) = u'(—00) = u(+00) = u/(+o0) = 0.
§1. Introduction.

In P. Rabinowitz [4] is studied the existence of homoclinic orbits for the second order
Hamiltonian system:

u” + V/(t, u) =0

where u : IR — IR™ and V satisfies:

(V1) V{2, v) =

function and W

L(t)u - u + W(t, u), where L is continuous T-periodic matrix valued

C'(R x K", R) is T-periodic in ¢,

Mpo| =

(V2) L(t) is positive definite symmetric for all ¢ € [0, 7]

(V3) there is a constant p > 2 such that

0 < uW(t, u) < Wit, u)-u, forall ue R"\ {0}
(V4) W.(t, u) = 0(|u]) as u — 0 uniformly for ¢ € [0, T
For the conservative case see A. Ambrosetti and M. L. Bertotti [1].

In this paper, we will obtain an extension of this result in the case L(t) = tdgn, that is,
we will prove the existence of a nontrivial homoclinic orbit for the following Quasilinear
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Hamiltonian System

(P) (a(Ju'1P) e P~*u") = b(julP)ul?~*u + Wi(t, u) =0

where a, b € C(JR*, IR) and p > 1. By a homoclinic we mean an u : IR — IR" satisfying:

we OB, B), ()P € C\(R, ),
u # 0, wich solves (P) and such that
u(t) — 0, w/(t) — 0 as t — xoo.

The greatest difficulties in studying this System are due ta the particular behaviour of
a and the lack of compaciness of the functional usually associated with the Problem (P).
So we are interested in the homoclinic solutions of Problem (P) where the function «
satisfies the following conditions:

(1.1) e € C(R*, R)
(1.2) a(#7)t*! is strictly increasing as ¢ increases,
(1.3) there exist constants 1 < ¢ <p, a; >0, ¢ =1, 2, 3, 4 such that
ayt? + ayt? < a(tP)t? < azt?! + a4t?, for each t >0,
and the function b satisfies
(1.4) be C(ER', R)
(1.5) there exist constants &; > 0, 2 = 1, 2, 3, 4 such that
byt? + byt? < b(IP)tP < byt? + byt?, foreach >0,
and the function W € C'(IR x IR*, IR) satisfies the tollowing condition:

There exist positive constants g, p, and a such that

a4 ag a4z a4y by <bz

(1.6) — < —, R
o P Y4 q iy P Hy q

LT) Wit u)-u > p,W(t, u) >0, for each, 0 < |u| < a
J q



(1.8) Wi(t, w)-u > p,W(t, u) > 0, for each, |u| > o and we suppose that
(1.9) W(¢, u) is T-periodic in ¢ and
(1.10) W.(2, u) - u = O(|ul?)

The following theorem is the main result in this paper

Theorem 1.1. Suppose that the function a satisfies (1.1)-(1.3), the function b satisfies

(1.4)-(1.5) and W verifies (1.6)-(1.10). Assume that g, < p. Then Problem (P) possesses
a homoclinic orbit.

We will prove this theorem using the same method used by Rabinowitz in [4], that is,
we apply the Mountain Pass Theorem (See [7]) to obtain a sequence of periodic solutions
with large period and then let the period go to infinity.

We denote the space of the T-periodic functions v : [0, 7] — R" by
WE p={u€W"?(0, T) / u(0) = w(T)}

where in W7 p the norm is defined by

ol = ([ 1P+ [ W1 = lulln. 50,2y

Remark 1.1. If in Theorem 1.1 we suppose that p = g, using the same method employed
in the case p > ¢, we observe that the proof this Theorem is more diret.

Remark 1.2. There are several results on existence and multiplicity of solutions consid-

ering the same type of elliptic operator so in System (P), that is, operators in divergence
form

Lyu = —div (a(|VulP)|VulP~2Vu).
See, for instance N. Hirano [3], M. Badiale and G. Citti [2] and P. Ubilla [5, 6).



§2. Existence of periodic orbits through Mountain Pass.

We consider the following Problem,

(a(lw'P)e[P~20) = bjufP)|ulP~2u + W(t, u) =0
P o i i’ i
(P)s { w(0) —u(T) =4 (0) - (T)=0

and let us consider the functional associated to (P)r I: Wp r — IR, defined by

l ¥ 7 1..0p * r
fw) = ([ A(P) + BlP) = [F WG, w)

where A(t) = [; a{o)do and B{t) = [ b(c)do. It is well known that the critical points of
the functional [ are the weak solutions of Problem (P)r.

Theorem 2.1. Uunder hypotheses of Theorem 1.1, Problem (P)r possesses at least one
non-trivial weak solutiou.

Proof. We will prove that [ satisfies the hypothesis of Montain Pass Theorem, that is,
(a) There exists § > 0 and p > 0 such that
I(u) > 6, foreach u € 8BH(0)
where B? = {u € Wg 1 / |lull,,r < p},
{b) I(0) = 0 and there exists ¢ € WT. p \ B2(0) such that, I(e) < 0
(c) I satisfies Palais-Smale Condition.

We first analyse the geometric conditions (a) and (b). Using (1.7) and (1.8) we have
that there exist constant ¢,, ¢, > 0 such that

(LT W(t, u) < ejlul#, for each ju] <1, and
(1.8 W(t, u) = c,|ul#?, for each ju| > 1.
On the other hand, from the compact inclusion W} p <+ C[0, T}, we have that there

exists p; > 0 such that,
ully, 7 < p1 = JullLeo, 1) S 1,



thus, using (1.3), (1.5) and (1.7)’ we obtain that for each ||u||, 7 < p; there are constants
¢, ¢ > 0, such that

I(v) 2 adllully, 7 + eallullp 7 — eqllullzhap, -
And hence from inclusion Wy p < L#4[0, T there exists a constant c3 > 0 such that
I(u) 2 cllluHE, 7 — ¢3llu qu i Cz”“”i.:r
Since g, > g, there exist p < py, such that,
lullp, 7 = p = I(u) 2 c2p” =:

that is (a) holds. For (b) we first see that 1(0) = 0. Next we take v € W7 p, v # 0 and
obtain from (1.3), (1.5) and (1.8)" that for each t € IR

I(tv) < alt]?|ll;, 7 + c2ltPllv]f, - — p|t|up||U”?,ip{o, 7)1t 3
where ¢;, ¢; and c3 are positive constants. Since g, > p > ¢ we have

Jim I(tv) = oo,

then by choosing f large enough and defining e = tv we obtain
Ie) <0 and |lellyr> p,

that is (b) holds. We still need to prove the Palais Smale Condition for I. Let {u,} be a
sequence in W] p, such that there exists a constant C such that

le(un)| <C
(2.1)

@'(un) — 0.
First we will prove that {u,} is bounded. In fact, from (2.1) we have
( 1

T !p P T
~C < ([ AlP)+ B(uP) ~ [ Wt ) C, and

T T
(22) [ a2, o'+ [ buallunl v

__/OTW;:(t, un) - v| S eullvlly, 7



for each v € W} p and €, — 0. Hence that we have

B [ AQual) + Bl = () alluh Pl + bl

T
¥ /0 Wo(t, tn) - tn = o W(t, tn) < enllunlly, 7 + #,C,

thus using (1.3), (1.5), (1.6), (1.7) and (1.8) we obtain

T b &
(B2 = a) [M P+ (222 ) [ fual < calliall 7 + 0,
p 1] p 0

that is, there exists C such that

@““n“?, 7 < Enllunllp T + 1y C,

hence {u,} is bounded in W} . All we have to prove is that {u,} contains a subsequence
wich converges in the norm of W1 . Since {u,} is bounded, there exists a subsequence
{un;} converging weakly in WJ. p to some ug.

On the other hand, using the second assertion in (2.2) with v = u,; — us and taking
limits over the subsequence we obtain that

T
I alhun P 12 - Gt =) 0.
0 Ny —++400

Let J: WH?(0, T') — IR be the functional defined by
J(u) = le A(lP) .
pJo
The strong convergence of the subsequence {u,;} is consequence of the following lemma -

Lemma 2.1. Suppose that the function « satisfies (1.1), (1.2) and assume that there
exist constants oy, a, > 0 such that

(2.3) la(t?)tP7 ! < oy + apft]P™Y, foreach te€ R, and
(2.4) there exist £, 32 > 0 such that
A(|t]P) = py|t)P — B2, foreach te R.
Then J' belong to the class (S),. That is, for all sequences {u,} C W ?(0, T) such that
Uy — U
(2.3) { lim sup(J’(zn), un — ) < 0

n—+4oo



it follows that u,, — .

Proof. Using (1.2) it is not difficult to verify that
u,(t) — u'(t) a. e,

we observe that
T
(T (), =) = [ alful )t P2, - (o, = ).
1]

Denoting S, (t) =: |u (£)[P~%u},(t) - (ul,(¢) — w/(t)), we have
T T

! . s ! p ! p K :

() =) = [ alll, IS X, + [ all )5,

where An={t €0, T]/ |u,(t)] < M} and M is a positive constant. We will prove that

T
« (2.6} lim allul |PYS. XN, . A
0

n—+oo n-++00
In fact, we define
1 (t) = a(fuy (£)7) S (1)X 4, (1)
Then n,, satisfies
M(t) = 0 ae in [0, T)
{ 1 (8)] < a(MPYMPY(M + [u'(2)]),

hence, using Lebesgue Dominated Convergence Theorem we have (2.6). Thus for each
M > 0 we have

T
(2.7) lim sup{J'(u,), u, —u) = lim sup/ a(|u, ?)SaX 4c.
n—oo =00 0 B

We denote

Sp = {tel0, T]/ S.(t) = 0}
S = {telo, T)/ S.(t) <0},

from (1.2) and (2.4) we have that

P
a(ryer > 20 5 By B
hence for M large enough
e T T
[ allP)Sixa; = [ alhP)S.xagxs; + | alluP)Suxagxs;
1] il

7



T ri..l l!’] . £ i I'I" '-;
(p = r‘:]j; ."J-.."t_a;."._.,-g b -I-szm nn‘k_q;‘t_ﬁ;

where ) < & < 1‘ aud & = 0, Thos
)

: ol T o 25 h i
28) [ a(ui)Sava, 2 (2 6] [ Skt loathi- 24 8)- [ S
o P o i "

MNow we will prove thal
T
(2.9) fim Jﬁ XX = i

i e
Diefininge
Uu(l) = g - 8 X,

1 is mot diffienlt to venfy that il { € 5, we have that [ {{}] < |u'(1)]. Hence
() < 2|u'(e)?, for each & [0, T)

Bul, I {1} D ae. i 0, 7] Thus by Lehesgue Dominated Convergence Theorem

we have proved (2.9). Hoenee nsing (2.7) and (2.8} we obtain

:r ) ) j' .
('I;j ﬂ'_},.'.’.‘ﬂmﬁup SaXas = HIE?LHUP{JTH“}, tn —u) <0

n
Consequently, since L / Sala, = 0 we have
o

(OEE TN

;
lim sup j. P N

thal is, nllmg sup{Joltn), wy  u} = 0 where J(u) = :' '[P, but it is well koown that
.f;; belongs to the class [(5),. Observe that J2 is the known p Laplacian. ‘Thus we praved
that

i, = iﬁt]iﬁllj;;l

The proof of Lemma 2.1 is complete. Consequently by {a}, (b) e {¢) using Montain Pass
‘Theorem there exists u, € WE ., wg # 0 such that [{ug) = 0, hence there s a non-Lrivial
solubion of Problem (£ ), The proof of Theorem 2.1 s complete, Observe that the ceitical
level s

o= inf sap Jfgi{s)
L (aisl)

wliere
U= g e U0, L], WE p) [ g(0) =0, g{l) = c}



§3. Proof of Theorem 1.1

We consider the following problem for k€ IV

(al P2’ — b{lul) el 2u + W(L u) =0

a h“"{ u(0) — u(2kT) = w'(0) — w(2ET) = 0.

From Theorem 2.1 there exists a von-trivial solution u; 2kT periodica with critical value

% = mf I
o el ::;EJ] ELH{EH

where
P = {g € {0, 1], Wir )} [ 9(0) = 0, g(1) = ex}
and

1 T ‘ =
Lw) = ([ AlWP)+ B(wP) - [ Wit, )

It what follows we oblain an estimate for ¢; and w, independent of k. If we consider a
function e € Wir, r such that e(0) = ¢{2T) = 0 and I,(} < 0 {such an ¢ exists according
to reasoning in Theorem 2.1). Thus we can define ¢, € Wi, . by

[ ety & tefo, 20
“"*[”—{ 0 if te[2T, 2kT)

bence, Ip(er) = Nie) < 0 and if we define

ﬂ'&'[-*]' = 5€y

then g € T’y and

0< < sup Ie(ge(t)) = sap Nia{t)) =M
e, 1] i, 1]

that is, we obtained an estimate for c;. Now we will find an estimate for g independent
of k. In fact, we have that [i{u,) = o, and [{(w, e, = 0, that is,

1 e
@3.1) S M)+ BlwP) - [ Wi w) =, and
2k ET iy
(3:2) L etharir + [ sl = [ W w) - .
Let w, > p, be, such that
(33) Sl s gk AN
Bp W P Be W P



hence, from (3.1} and (3.3) using (1.3), (1.5) and (1.6) we have
ax [T

(3 A) " 3 o bS 2T . i 26T % 1 b kT
£ o Cl = — A IU;‘.I +"— |uk| + (_anl |u‘k! + 4

2k
tq thg JO Wy 0 0

2KT
—] Wi(t, uy).
0

On the other hand, using (3.2), (1.3) and (1.5), we have

lus|”)

r2k
0

2T P2KT 26T & 2T
(3.5)/0 WL, ug) up < a3 /0 lus|? + a4/0 lug P + b3 / g + b,;/o [ui]?.

hus, from (3.4) and (3.5) we obtain

| [ 1 | p2kT
(3.6) cp = ag(— — -—)/ fug |9 + by(— — —) [ fug|?

By byt Jo Ly wp Jo

2kT 1 } :
+f (—W!(L, us) - up — W(t, w)).
0wy

On the other hand using {1.7) and (1.8) we have that there exist constants K, K,>0
such that

(3.7) Wit, up < Kjlul*?, foreach 0 < |ul<a, and
(3.8) Wi(t, u) > K,|u|*?, foreach |u|> «, where 0 < a <1,
Thus, from (1.7), (1.8), {3.7) and {3.8) we obtain

UT | " _—
/ (=Wt wp) we — W(E, w)) > (Z2 K, [ g [P
0wy W, Jo
+ (0= 2k ¢ (i) [ e
w Kot (5 = DK o Tl Xuuoie)

hence, there are constants ¢;, ¢, > 0 such that
2Rl ! [ H
% > 3 A+ P . | j [
(3.9) jo w—Wu(t, ug) - up — W(t, ug) 2 clHuk||L,,p{Q akT) — r..-b,;[u;v.|[LLpE0!2m > —ay
P

where ap € IR is independent of k. Since ¢ is bounded independent of k, using (3.6) and
(3.9) we obtain

(3.10) Hukllg, 260 < C foreach ke N

where C is a constant. For any function u € Wir p we have
i
fu(t)] < Ju(s)] + | [ u'(o)del, t, s €0, 2kT)
Js

16



and integrating over [f — L

3 t4 %] we obtain

i+ i+ t
(3.11) ol < f funfau-i-w L1 wieordetas

1

+
< A (A + o))}
Hence there exists a constant K snch that
(3.12) lhedlrio, 26y = Ky, 2ur,
thus using (3.10) and (3.12) we have
(3.13) leilliomun < KO
Since p > p, from (3.4), (3.7) and (3.13) we obtain a constant ¢” such that

[luallp, 2er < C.

Here it is convenient to define a new function m, by t.raumlal.ing g
ve(t) = np(t + kT), where te[- kT, kT

thus ;

(3.14) [ (1l + o) < M
—ET

where M is positive constant.

Using a diagonal provedure it is not diffienlt to verify that Lhere exists a subsequence
that also we denote by {#.} such that,

my —u in E, foreach me N

1

where E_ = WhP(—mT, mi).

On the other hand, we have that for each p € E,,
g e T T
(3.15) [ alireil o o'+ [ bl Yoet e = [7 Wilt, )+
—mT —mT —ml

a(l(mT )P )i m )P 2ol ()@ (mT ) a([oh ~mT )P )b —mT W~ v (= wnT o ~-mT)

11



Let o = vy - w be in (313). Using the same argument of {3.12), we have that {vi} is
bounded in [-mT, mT|, heuce

T
il r[mr*'il*’il”l'll'il" o (v = u') =0,

thus using Lemma 2.1, we have that
vg o+ u (strong)n Ko for each gn,

hence we have waing (3.15) that for each g € K,

m] 7 : i , T 4 T "
(3.16) f T::Hu L T L7 e TR ’r[ r!b”u,""'][uF" g = Ffﬂ-u{h u)-ip

Wf =Ty

where B, o = {¢ € K. [ o({—mT) = @(mT) = 0}. Thus a{ju'{"}|u" ' € C1{R, B*)
and for cach t £ |

(3.17) o Laf|w' (P YT S ()Y Sl )" aul )P #ue(t) = WL, u(f)),

[urthermore, using {3.14) and the strong convergence of {voe} in compacts, it is easy to
verily that w € WU F). Now we will verify that

{4.18) w0} = w'f-na) = aldoo) = ol o) = i,

mn fact, u salislies (3.11), hence that uf - 0o} = u{+o0) = 0. So to verify that u—-oo) =
w(+o0o) =0 we observe that the following inequality is holds

(3.19) |l Ju (D[P ) ' ()PP ()] =

“.!: " # !+é i
2 Wallul w2y P + [ lale o2y,
Ji-} g
furthermore |
I+yg
(3.20) limn [ W (s, w)lds =0
e 1 :.._l:
becanse w(too) = 0 and WL, 0) < 0 for each £ Thus wstng, [5.17), {3.19), (3.20) and

that u € W) we oblain that w'{—o0) = u'{ $ 22} = 0, 30 that (3.18) holds. We still
have that 1o prove that « # 0. Since I{{m} = 0 we haw

K kI &
(3.21) [ weir + [ sl = [ w2, w) - we
—kT —k LX)
Let 3y = [} he defined by

!-vl':“, MR

ll';,l"F L ]_|_'|,,‘_|__:-i,{ - _-|u|‘7 — J|" {'i!i.l "_ llli'klljr,W1...H'l.l:i'] and ¢ L= H}

12



using (1.9), (1.10) and (3.13) we have that

T T
(3.22) o [+ [ fod <A [t

thus since v # 0 we obtain
(3.23) A=t >0, foreach ke N,
consequently for a constant (7 > 0

lvilli=(-er ey =2 C, foreach ke N.
Finally we observe that if u is a 2kT periodic solution of System (P), then u(t + jT),
7 € & 15 also solution. This allows us to traslate v, if necessary so that its maximum is
always achieved in the interval 0, T]. Then

""k| |L“I-H. KTy = ”"ﬁ”.u-m )

and since v converges Lo u (strongly) in L7°(0, T), the function w cannot be zero. That
is, Problem (P) possesses a homoclinic orbit. The proof of Theorem 1.1 is complete.

13



4. Examples.

Assuma that W satisfies the hypothesis of Theorem 1.1, the following systems possess
a Homoclinic Orbit a0 M — 5™

(4.1) (o %) — a2 4+ Wit w) =0
where p = q.
1
(4.2) {1+ =) P2uY = %+ WL wl =10

(1 + fufryr

whete p = ¢, Observe thal in Lhis case we need 2p < .
(4.3) (P20 4 (20 =l — a2 1 W2GE, w) = 0

where p > g > 1,

L—
Remark 4.1. Tf in System [P} we consider a{t) = ¢ 7 ¢ft), so that ¢ € C(HRT, B)is
strictly increasing we can construct many othey examples,
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