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ABSTRACT — A new Maximum Principle for elliptic equations has appeared recently in works of
Berestycki, Nirenberg and Varadhan, see for instance [BN]. The aim of this note is to extend this Maximum
Principle to cooperative elliptic systems and then to apply it to monotonicity and symmetry properties
of nonlinear elliptic systems. In this way we get more general results than the ones in [T] and [B], with
even simpler proofs. The interest in these results comes from their use in obtaining a priori bounds for
positive solutions of semilinear elliptic systems [CFM].
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1. Introduction. A new Maximum Principle for elliptic equations has appeared
recently in works of Berestycki, Nirenberg and Varadhan, see for instance [BN]. The aim
of this note is to extend this Maximum Principle to cooperative elliptic systems and then
to apply it to monotonicity and symmetry properties of nonlinear elliptic systems. In this
way we get more general results than the ones in [T] and [B], with even simpler proofs.
The interest in these results comes from their use in obtaining a priori bounds for positive
solutions of semilinear elliptic systems [CFM].

Let @ C RN be an arbitrary domain and consider the differential operators
Ly(D) =) 5(2)D:D; + 3 b(a)Di, 1<k<n

which are assumed to be uniformly elliptic with L* coefficients. We may assume without
loss of generality that for a suitable constant ¢y > 0 we have

g |EF < Lo (z)éizj < €],  Vz € QN
Vk VéEER

and
bF(z)| <o,  Vi,k.

We consider these operators acting on functions which are in E =: W2N (©2) n C°({}). So

loc
the matricial operator

Ly



acts on Ex .7». x E.
Let A = (a;(z)) be a cooperative n x n matrix with entries a;; € L. Cooperativeness

means a;;(z) > 0 for ¢ # j. We use capital letters to denote vector functions I/ (z) =

(ua(z), ..., un(2)).
We write U(z) > 0 to mean u;(z) >0, Vj=1,...,n.
Following [BN] we introduce the

Definition. A Maximum Principle holds for £+ A in Q if

(L+AU>0 in O
limsupU(z) >0
=8

implies U <0 in 9.

We start by proving the Maximum Principle for bounded domains ).

Proposition 1. Assume that diam Q < d. Then there exists § > 0 depending on N,n,d

and co, such that the maximum principle holds if the Lebesgue measure 1] of Q is less
than 6.

Proof. Consider the k** equation

Ly + Zakj(:c)uj >0

and rewrite it in the form
Liyuy — apuy = —az'kuk - Z Qi th; -
ik
Since A is cooperative we get
Liuy — agug > —afuf — Zakju:}" .
itk
Applying the Aleksandrov maximum principle, see for instance [GT] for statement and

proof, we get

supw < Cllafiuf + 3 afiuf o,
i#k



where C depends on N,d and ¢o. Replacing supu; by supuf and adding up these n

inequalities we get
S supuf < CncolQ™ Y supuf .
So ¥ supujf <0 if we choose § = (Cnep) ™V .

|
2. Semilinear elliptic systems. Now we consider the system
(2.1) LU+ E{U}=0 im 9
A
where £ = ;and F(U) = (fi(wry---run)y-e oy falua, ... us))
A
We assume that F': R* — B" is C? and its Jacobian has all off-diagonal entries > 0, i.e.
af;

agj(é)ZO VEER", i #5.

We consider nonnegative solutions of system (1.2) which vanish on 9Q2. We remark that

1 is not necessarily bounded.

Fix a direction v, i.e., v € RV, |y| = 1. We suppose that there is ¢ > —oo such that
Yy-z>a Vz €.

This means that (2 is at one side of some hyperplane normal to . For simplicity, assume
v=(1,0,...,0). Werecall the following standard notation, [GNN]. For A € R and writing
T = (:BI: y)

B=fee Nz wa=l}

EA)={z€Q: ~v.-z<A}

T ={s€R¥: ez
where z* is the reflection of 2 with respect to Th. Le., if 2 = (2y,y) then 2* = (2A —zy,y).

Let Ag = sup{A : T\ N = f}. Now we make the following assumption on the domaijn
(D) Je>0 st for Ag <A< Ao+, B'(X) CQ,and Y (A is bounded.

This assumption is satisfied in the case considered in [T]: Q bounded, 99 of class C?. (D)

is also satisfied on the assumptions in [B].



Now define
X =sup{):X'(g) C O, (p) bounded, Vpu < A}.

Theorem. Let U > 0 be a solution of (2.1) in W2 (Q) N C°(R) with U = 0 on 49.

loc

Then, each ug(z) is monotonically increasing with respect to z; for z € £(}).

Remark 1. On the assumptions of the theorem, each u, satisfies
Aup—agur >0 and u, >0

in the whole of Q. Since ux = 0 on 92, we have by the maximum principle that either
up =0 or ug > 01in Q.

2. Without loss of generality we assume that u, # 0 for all k. Indeed if for one such a
k, ur where = 0, we reduce the system to the remaining k — 1 functions and equations.

So we may assume that U > 0in Q, i.e. ux > 0 in Q for all k.

Proof. The proof follows the usual ideas of the moving plane method, as used by [GNN],
[BN] and later papers. For each ), with Ay < XA < X we define

ve(z; A) = vz, y5 A) = uk(2A — 24,93 0), Vz e Z(N)
and wy(z; ) = ve(z; A) — ux(z). Using the invariance of the Laplacian we get

Awr + fe(viy. .. y00) = fe(ua, ..., u,) =0

or

0
(2:2) Awi + Y 5—?(8?(:8)’ B (@) w; =0
J
where 0%(z) is between wu;(z) and vi(z). So the coefficients of (2.2) are bounded, and
a little argument shows that they are measurable. Now if A — Ay is small enough the

Lebesgue measure of (1) is small and we are in condition to apply Proposition 1 to

(2.2) and conclude that W > 0 in (A). Now let
A =sup{A < A: W(z;)) >0 in Z(\)}.

If \* = ), the proof is complete. Suppose by contradiction that A* < X. By continuity
W(z;A*) > 0 and using Remark 1 above we see that W(z,A*) > 0 in ¥ (A*). Let now



d be the diameter of }°(A*). By Proposition 1 there is a § > 0 such that a Maximum
Principle holds for system (2.2) in domains of measure less than §. Take a compact set
K CX(A) st [Z(A*)\ K| < 8/2. Let a > 0 be such that wy(z;\*) > a for z € K and
k=1,...,n. By continuity we can find A, with \* < X < X, such that | () \ K| < &
and wi(z;A) > a/2 for 2 € K and k = 1,...,n. So applying Proposition 1 we see that
W(z;A) 2 0in (X)) \ K. So W(z;A) >0 in Y(A), contradicting the definition of \* -

The next two results are immediate consequences of the above theorem. The first
one is an extension of Theorem 1.3 [BN]. In particular, it gives the radial symmetry of
positive solutions of (2.1) subject to Dirichlet boundary conditions in the case that §) is a
ball. The second one is proved in [B]. It gives monotonicity of solutions of (2.1) in certain

directions, for domains like cones, paraboloids, cylinders.

Corollary 1. Let © be an arbitrary bounded domain in RB" which is convex on the T,
direction and symmetric with respect to the plane 2, = 0. Let I/ > 0 be a solution of
the system (2.1) subject to Dirichlet boundary conditions. [ satisfies the conditions put
in the beginning of Section 2. Then U is symmetric with respect to z; and Uy, < 0 for
z; < 0in Q.

Corollary 2. Suppose Q is unbounded domain satisfying the following property: there
are ay € IR", |y| =1 and a number a > —o0 such that

yz-y>a, Vz e,

H)VzeeQ=z+tyeN, Vi>0

iii) VA theset {z €Q:2-7< A} is bounded.

Let U be a positive solution of (2.1) under Dirichlet boundary conditions. Then U is

(strictly) increasing in the direction ~.
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