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MONOTONICALLY DOMINATED OPERATORS
ON CONVEX CONES

A. O. Chiacchio, J. B. Prolla, M. L. B. Queiroz, M. S. M. Roversi
Campinas, Brasil

§ 1. INTRODUCTION
Let X be a compact Hausdorff space and let (C, d) be a metric convex cone.

The convex cone C(X;C) of all continuous functions from X into (C,d) is
endowed with the topology of uniform convergence, determined by the metric

d(F, G) = sup{d(F(z), G(z)); = € X}

for all F, G € C(X;C).

Our purpose is to establish convergence results and quantitative estimates for
sequences {T,}a>1 of convex conic operators on C(X; C) which are monotonically
dominated, i.e., for some positive linear operator S, on C(X; IR) we have

D(T.F, T.G) < S.(D(F, G)), n=1,23,...

where D(F, G) is the function &+ d(F(t), G(t)),t€ X.

For the definition of metric convex cones and of convex conic operators on them,
see the survey paper of Prolla [4] in these Proceedings.



§ 2. CONVERGENCE RESULTS

For each K € C, we denote by K* the element of C(X; C) defined by K*(t) = K,
forallt € X.

We recall that a linear operator S on C(X; IR) is called positive (or monotone)
if £ > 0 implies S f > 0.

Lemma 1. Let {S,}.>1 be a sequence of positive linear operators on the space
C(X; IRR) such that S,g — g, for all ¢ € C(X; R). If F € C(X;C), then
(Sn(D(F, [F(2)]*)), ) — 0, uniformly in z € X.

Proof. Let F € C(X; C) and € > 0 be given. Choose § > 0 such that §(3 + é) < e.
By the compactness of X and the uniform continuity of F, there exists a finite set
{z1, Z3,...,Zm} C X such that, given z € X thereis: € {1, 2,...,m} such that
d(F(z), F(z;)) < 6. Choose n, so that n > n, implies

(Sneo, ) <1+ 6,

(Su D(F, [F(z:)]"), z) < d(F(z), F(zi)) + 6,
for all z € X and all 1 = 1, 2,...,m, where ey denotes the real-valued function
eo(t) =1, forall t € X.

Let now z € X. Choose i € {1, 2,...m} so that d(F(z), F(z;)) < é. It follows
that

D(F, [F(z)]") < D(F, [F(z:)]") + beo.

Then, for all n > ny we have

(SaD(F, [F(2)]"), ) < (SuD(F, [F(2:)]"), z) + 6(Sneo, z)
< d(F(z), F(z:)) +6+ (1+68) <e.

]

Definition 1. Let T be a convex conic operator on C'(X; C), and let S be a linear
operator on C(X; IR). We say that T is monotonically dominated by S if

D(TF, TG) < S(D(F, G))

for all functions F, G € C(X; C).
Notice that, if 7' is monotonically dominated by S, then S is positive.

Remark. If T is monotonically dominated by S, then D(TK*,TL*) <
d(K, L). S(eo), for all K, L € C.



Example 1. Let J be a finite set, and for each k € J, let t; € X and ¥, € C*(X)
be given. The convex conic operator T, defined on C(X; C), by

(TF, z)=)_¥u(z), F(ts)

keJ
for all F € C(X;C) and z € X is called an operator of interpolation type. Since

d((TF, =), (TG, 2)) = d(3_vu(z)F(t), 3 ¥u(z)G(t))

keJ keJ
< Y ve(e)d(F(ty), G(tk))
kel

= (S(D(F, G)), =)
forallz € X and F, G € C(X; C), where, for each f € C(X; IR),
(Sf, ) =3 br(2) f(tr),
ked
it follows that T is monotonically dominated by S.

Lemma 2. Let {T,}.>) be a sequence of convex conic operators on C(X; C) such
that each T, is monotonically dominated by a linear operator on C(X; IR). Assume
that

(1) Sueo — eq,

(2) T,K* — K*, for every K € C.
Then (T,[F(z))*, ) — F(x), uniformly in z € X, for every F € C(X; C).

Proof. Let F € C(X; C) and € > 0 be given. Choose § > 0 such that §(3 + ) < e.
As in the proof of Lemma 1 there exist 21, 3,...,2m in X such that, given z € X
there is z; such that d(F(z), F(z;)) < é. By (1) and (2) we can choose ng so that
n > ng implies

(3) (Sneo, ) <1+ 46, and

(4) d((Tu[F(2)]", =), F(z)) <6,
foralze€ X andalli=1, 2,...,m.

Let now z € X. Choose z; € X such that d(F(z), F(z;)) < é. It follows that
D([F(z))*, [F(z:)]*) < beo. Since each S, is positive and linear, (3) implies

(SaD([F(2)]", [F(2:)]"), z) < 8(Sneo, ) < 6(1 +9)
for all n > no.

From (4) and the hypothesis that T, is monotonically dominated by S,, we
have, for n > ng

d(Tu[F(2)]", 2), F(z)) < d(T.[F()], ), (Ta[F(z)], 2)) +
+ d(TulF(z:))", 2), F(2)) + d(F(z:), F(2))
<

(SaD(F(@)], [F(@:)]), z) +26 < 6(1 + 6) + 26 <e.

3



Hence (T,[F(z)]*, ) — F(z), uniformly in z € X.
' O

Theorem 1. Let {T,}.>1 be a sequence of convezx conic operators on C(X; C) suc
that each T,, is monotonically dominated by a linear operator S, on C(X; IR). A
sume that

(1) Sn9 — g, for every g € C(X; R),

(2) T,K* — K*, for every K € C.
Then T ,F — F, for every F € C(X; C).

Proof. Let F € C(X; C) and € > 0 be given. By Lemma 1 and Lemma 2, choose n
so that n > ng implies (S, D(F, [F(2)]*), ) < €/2 and d((T,[F(2)]*, z), F(z)) «
€/2, for every z € X. Since T, is monotonically dominated by S,, it follows that
for n > ng

d((ToF, ), F(z)) < d((TWF, z), (Tu[F(2)], 2))
+ d(TH[F(2)]", =), F(z))
b

(S.D(E, [F@)), )+ <

for every z € X. Therefore, T, F — F.
O

Let ¢ be a non negative bounded function defined on X x X, which satisfies the
following conditions:
(A) ¢, is continuous, for each z € X, where ¢,(t) = ¢(2, t), for all t € X

(B) inf {¢(z, y); (z, y) € M} > 0 for every compact and non empty set M of the
complement of the diagonal set A = {(t, t);t € X} in X x X.

Let {Sa}n>1 be a sequence of positive linear operators on C'(X; IR).

We denote by «,, the function defined by

an(z) = (Sa(p2), @)
for all z € X. Notice that a,, depends on S, and .

Example 2. When X is a compact metric space with metric d, then p(z, t) =
d(z, t), for t, z € X, satisfies (A) and (B).

More generally, if X is a compact subset of a metric space (Y, d) then, for eac|
p >0, o(z, t) = [d(z, t)]%, for z, t € X, satisfies the conditions (A) and (B).



Corollary 1. Let {S,}n»1 and {Tn},31 be as in Theorem 1. Assume that ¢ satisfies
(A) and (B), and

(1) Sneo — €o,

(2) an(z) = 0, uniformly inz € X,

(8) T.K* — K*, for every K €C.
Then T,F — F, for every F € C(X; C).

Proof. By Nishishiraho ([2], Theorem 1), the hypothesis (1) and (2) imply that
S.9 — g, for every g € C(X; IR). It remains to apply Theorem 1.
O

Example 3. Let X be a compact Hausdorff space. Let g,,9s,...,9m be elements
of C*(X) such that there exist bounded functions B, By, ...,Bm on X such that, if
we define &
(e, t) = Bi(z)gi(t)
i=1

for all z, t € X, then (z, t) 2 0, ¢(z, ) =0 and (B) is satisfied.

Then H = {eo, g1, 92,---,9m} i8 a Korovkin system in C(X; IR). Indeed,
let {Sn}n>1 be a sequence of positive linear operators on C(X, IR). Assume that
Speo — €0 and S,g; — gi, for every i =1, 2,...,m. Then

a,,(x) = (Sn(wz), =) — 0,

uniformly in 2 € X, since p(z, z) = 0. By Nishishiraho ([2], Theorem 1) it follows
that S,g — g, for all g € C(X; IR). Therefore, H is a Korovkin system in C(X; IR).

Corollary 2. Let {Sn}n31 and {T,}n>1 be as in Theorem 1. Let g1, gay--- 1 9m be
as in Ezample 2. Assume that S,h — h, for every h € {eo, g1, 92,...,9m}, and
that T,K* — K*, for all K € C. Then T, F — F, for all F € C(X; C).

Proof. By Example 2, H = {eo, ¢1, g2,---,9m} i8 a Korovkin system in C(X; IR).
Thus, S,h — h, for all A € H, implies S,g — g, for all ¢ € C(X; IR). It remains to
apply Theorem 1.

O

§ 3. QUANTITATIVE ESTIMATES FOR MONOTONICALLY DOMI-
NATED OPERATORS

Notice that C being a metric space and X being compact, every element F €
C(X; C) is in fact uniformly continuous. In the particular case that X is a compact
metric space, say with metric d, this means that for every € > 0, there exists § > 0
such that z, t € X, d(z, t) < § implies d(F(z), F(t)) < e.
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The modulus of continuity of F' € C(X; C) is then defined as
w(F, 8) = sup{d(F(z), F(t)); 2, t € X, d(z, t) < 6}

for every § > 0. By uniform continuity of F, we have w(F, §) — 0 as § — 0.
Notice also that w(F, &) is monotonically increasing, i.e., §; < §; implies w(F, §;) <
w(F, &,).

Let us consider the following condition:

(*) There exists a constant p with 0 < p < 1 such that w(F, ) < [1 + /\t]w(F, 4),
for all F € C(X; C) and all §, A > 0.

Example 4.

(4.1) Let X be a compact convex subset of a metric linear space (Y, d). Suppose
that dis invariant, i.e., d(z +z, t+2)=d(z, t),forall z, t, 2 € Y, and that
d(Bz, 0) < Bd(z, 0), for all z € Y and all # with 0 < B8 < 1. Then (*) holds for
p=1.

(4.2) Suppose that d has the property that if d(g: t) = a+b, where a > 0 and b > 0.
Then there exists a point z € X such that d(z, z) = a and d(z, t) = b. Then (*)
holds for p = 1.

(4.3) Let X be a compact convex subset of a g-normed linear space (Y, ||| - |||) with
0 < ¢ < 1. Then (*) holds for p = q.

We recall that a ¢g-normed linear space, with 0 < ¢ < 1, is a linear space Y with
a real-valued function ||| - ||| : Y — [0, oo) such that (see Kéthe [1]):

(a) lllylll =0 & y =0,

(b) [lIAglll = [A17 - 1llylll,

() [lly + =1 < Hwlll + =11,
forall A€ Rand y, z € Y. If ¢ = 1, we obtain the concept of a norm.

The class of g-normed spaces includes the spaces €7, for 0 < ¢ < 1, with the
g-norm defined by |||(z.);2, Il = 3_lzal".

n=1

Lemma 3. Assume that (%) holds. Let F € C(X; C) and 6 > 0 be given. Then

d(F(a), F) < [1+ (-@(-“%ﬁ)*]u(F. )

for every pair, z and t, of elements of X.



Proof. If J(a:, t) > 6, then

d(F(z), F(t)) < w(F, d(z, 1)) < [1 + (‘I(””é' t))%]w(F, ).

If d(z, t) < 6 then

-~

b1 o

d(F(z), F(t)) < w(F, §) < [1 + (d(x, t))

; ]w(F, 5).

If {Sn}n>1 is a sequence of positive linear operators on C(X, IR), let
5 1
an(z) = (Sa[d(z, -)]7, z)
for all z € X, where p is given by condition ().

Theorem 3. Assume that () holds. Let {T,}n51 be a sequence of convez conic
operators on C(X; C) such that each T, is monotonically dominated by a linear
operator S, on C(X; IR). Then

A(TLF, 2), F@) < [(Sneo, 2)+ Sran(@)]olF, ) + d(TF @, 2), F@)
Jor every F€ C(X, C), z€ X and § > 0.

Proof. Let F € C(X; C) and é > 0 be given. By Lemma 3, we have for z, t € X

k7 1
d(F(=), F(2)) < [1 + (‘—l-(-%’-i)-)’]w(ﬂ 5).
It follows that, for z € X
D(F, [F@)]) < [ea+ (@) |u(F, 8),

where the function d, is defined by d(t) = d(z, t), for all t € X.
Since S,, is positive and linear

(SaD(F, [F(z)]'), 2) < [(Sneor 2) + fran(xnwm 5).

P

Now T, is monotonically dominated by S,,, and therefore

d(TnF, ), F(z)) < d(T.F, z), (Ta[F(2)]", z)) + d(Tu[F(2)]", 2), F())
< (SnD(F, [F(2)]), z) + d((Tu[F(2)]", z), F(z))

£ [(Soee 2)+ Elga..(xnww. 6) + d(Tu[F()]", ), F(z))



for all z € X.
O

Corollary 3. Let {Sp}n>1 and {Tn}n>1 be as in Theorem 3. If S,eo = eo and
T.K* = K*, for all K € C and n € IN then

d(T.F, z), F(z)) < [1 + sila,.(m)lwm 6)
for every Fe C(X,C), € X and 6 > 0.

Corollary 4. Let {S,}.>1 and {T,}n31 be as in Corollary 3. At every point z € X
where a,(z) > 0, we have

d((ToF, z), F(z)) < 2(F, an(z))
for every FEC(X;C)andn=1, 2,....

Proof. Make § = a,(z) in Corollary 3 and notice that a,(z) < [a,,(m)]t, since
psL

0

Remark. We write a,(z) = 0(n™"), uniformly in z € X, if there is some constant
k > 0 such that nay(z) < kforalln=1, 2, 3,...,and all z € X.

Theorem 4. Assume that (*) holds. Let {T,} be a sequence of convex conic opera-
tors on C(X, C) such that each T, is monotonically dominated by a linear operator
Sn on C(X, IR). Assume that

(i) Sneo — eo,

(i1) T,K* — K~, for every K € C,

(11i) an(z) = 0(n~'), uniformly in z € X.
Then T, F — F, for every F € C(X; C).

Proof. Let F € C(X, C) and € > 0 be given. By (i), (ii) and Lemma 2 choose n,
so that n > n; implies

(1) (Sneo, ) <1 +¢/2,

(2) d((T,,[F(:I:)]', z), F(z)) < ¢/2,
for all z € X. By (iii) there is some constant k > 0 such that

(3) naa(z) <k,
forn=1, 2,... and all z € X. Since w(F, §) — 0 as § — 0, we can choose n, such
that n > n,; implies

(4) w(F, n"?) <e/2(1 + k+¢/2)7.



By Theorem 3 and (1) - (4), it follows that for n > ny = max{n,, na}

d(T,F, z), F(z) < [(Sueo, z)+3‘;an(znw(ﬂ §) + d(To[F(2)]", ), F(z))

= [(Sneo, z) + nan(m)]w(F, n~?) + d((T,,[F(a:)]', z), F(z))
< (14+k+e/2uw(F, n?)+e/2 <,

for all z € X.
(m]

Corollary 5. Let {S,}.>; and {To}n>1 be as in Theorem 4. Assume that
Sneo = €9, T.K* = K*, for all K € C and n € IN, and a,(z) = 0(n=1), uni-
formly in z € X. Then T,F — F, for every F € C(X; C).
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