RT-IMECC IM/4117

MONOTONICALLY DOMINATED OPERATORS ON CONVEX CONES

A. O. Chiacchio
J. B. Prolla
M. L. B. Queiroz
and
M. S. M. Roversi

Julho

RP 17/92

Relatório de Pesquisa

Instituto de Matemática Estatística e Ciência da Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS Campinas - São Paulo - Brasil

ABSTRACT – Let X be a compact Hausdorff space and let (\mathcal{C}, d) be a metric convex cone. The convex cone $C(X; \mathcal{C})$ of all continuous functions from X into (\mathcal{C}, d) is endowed with the topology of uniform convergence. Our purpose is to establish convergence results and quantitative estimates for sequences $\{T_n\}_{n\geq 1}$ of convex conic operators on $C(X; \mathcal{C})$ which are monotonically dominated.

IMECC - UNICAMP Universidade Estadual de Campinas CP 6065 13081 Campinas SP Brasil

O conteúdo do presente Relatório de Pesquisa é de única responsabilidade dos autores.

MONOTONICALLY DOMINATED OPERATORS ON CONVEX CONES

A. O. Chiacchio, J. B. Prolla, M. L. B. Queiroz, M. S. M. Roversi Campinas, Brasil

§ 1. INTRODUCTION

Let X be a compact Hausdorff space and let (C, d) be a metric convex cone. The convex cone C(X; C) of all continuous functions from X into (C, d) is endowed with the topology of uniform convergence, determined by the metric

$$d(F, G) = \sup\{d(F(x), G(x)) ; x \in X\}$$

for all $F, G \in C(X; \mathcal{C})$.

Our purpose is to establish convergence results and quantitative estimates for sequences $\{T_n\}_{n\geq 1}$ of convex conic operators on $C(X; \mathcal{C})$ which are monotonically dominated, i.e., for some positive linear operator S_n on $C(X; \mathbb{R})$ we have

$$D(T_n F, T_n G) \leq S_n(D(F, G)), \quad n = 1, 2, 3, \dots$$

where D(F, G) is the function $t \mapsto d(F(t), G(t)), t \in X$.

For the definition of metric convex cones and of convex conic operators on them, see the survey paper of Prolla [4] in these Proceedings.

§ 2. CONVERGENCE RESULTS

For each $K \in \mathcal{C}$, we denote by K^* the element of $C(X; \mathcal{C})$ defined by $K^*(t) = K$, for all $t \in X$.

We recall that a linear operator S on $C(X; \mathbb{R})$ is called **positive** (or monotone) if $f \geq 0$ implies $S f \geq 0$.

Lemma 1. Let $\{S_n\}_{n\geq 1}$ be a sequence of positive linear operators on the space $C(X; \mathbb{R})$ such that $S_ng \to g$, for all $g \in C(X; \mathbb{R})$. If $F \in C(X; \mathcal{C})$, then $(S_n(D(F, [F(x)]^*)), x) \to 0$, uniformly in $x \in X$.

Proof. Let $F \in C(X; \mathcal{C})$ and $\varepsilon > 0$ be given. Choose $\delta > 0$ such that $\delta(3 + \delta) < \varepsilon$. By the compactness of X and the uniform continuity of F, there exists a finite set $\{x_1, x_2, \ldots, x_m\} \subset X$ such that, given $x \in X$ there is $i \in \{1, 2, \ldots, m\}$ such that $d(F(x), F(x_i)) < \delta$. Choose n_0 so that $n \geq n_0$ implies

$$(S_n e_0, x) < 1 + \delta,$$

 $(S_n D(F, [F(x_i)]^*), x) < d(F(x), F(x_i)) + \delta,$

for all $x \in X$ and all i = 1, 2, ..., m, where e_0 denotes the real-valued function $e_0(t) = 1$, for all $t \in X$.

Let now $x \in X$. Choose $i \in \{1, 2, ... m\}$ so that $d(F(x), F(x_i)) < \delta$. It follows that

$$D(F, [F(x)]^*) \le D(F, [F(x_i)]^*) + \delta e_0.$$

Then, for all $n \geq n_0$ we have

$$(S_n D(F, [F(x)]^*), x) \leq (S_n D(F, [F(x_i)]^*), x) + \delta(S_n e_0, x)$$

 $\leq d(F(x), F(x_i)) + \delta + (1 + \delta) < \varepsilon.$

Definition 1. Let T be a convex conic operator on $C(X; \mathcal{C})$, and let S be a linear operator on $C(X; \mathbb{R})$. We say that T is monotonically dominated by S if

$$D(TF, TG) \le S(D(F, G))$$

for all functions $F, G \in C(X; C)$.

Notice that, if T is monotonically dominated by S, then S is positive.

Remark. If T is monotonically dominated by S, then $D(TK^*, TL^*) \leq d(K, L)$. $S(e_0)$, for all $K, L \in \mathcal{C}$.

Example 1. Let J be a finite set, and for each $k \in J$, let $t_k \in X$ and $\psi_k \in C^+(X)$ be given. The convex conic operator T, defined on $C(X; \mathcal{C})$, by

$$(TF, x) = \sum_{k \in J} \psi_k(x), F(t_k)$$

for all $F \in C(X; \mathcal{C})$ and $x \in X$ is called an operator of interpolation type. Since

$$d((TF, x), (TG, x)) = d(\sum_{k \in J} \psi_k(x) F(t_k), \sum_{k \in J} \psi_k(x) G(t_k))$$

$$\leq \sum_{k \in J} \psi_k(x) d(F(t_k), G(t_k))$$

$$= (S(D(F, G)), x)$$

for all $x \in X$ and $F, G \in C(X; C)$, where, for each $f \in C(X; \mathbb{R})$,

$$(Sf, x) = \sum_{k \in I} \psi_k(x) f(t_k),$$

it follows that T is monotonically dominated by S.

Lemma 2. Let $\{T_n\}_{n\geq 1}$ be a sequence of convex conic operators on $C(X; \mathcal{C})$ such that each T_n is monotonically dominated by a linear operator on $C(X; \mathbb{R})$. Assume that

(1) $S_n e_0 \rightarrow e_0$,

(2) $T_nK^* \to K^*$, for every $K \in \mathcal{C}$.

Then $(T_n[F(x)]^*, x) \to F(x)$, uniformly in $x \in X$, for every $F \in C(X; C)$.

Proof. Let $F \in C(X; \mathcal{C})$ and $\varepsilon > 0$ be given. Choose $\delta > 0$ such that $\delta(3 + \delta) < \varepsilon$. As in the proof of Lemma 1 there exist x_1, x_2, \ldots, x_m in X such that, given $x \in X$ there is x_i such that $d(F(x), F(x_i)) < \delta$. By (1) and (2) we can choose n_0 so that $n \geq n_0$ implies

(3) $(S_n e_0, x) < 1 + \delta$, and

(4) $d((T_n[F(x_i)]^*, x), F(x_i)) < \delta$,

for all $x \in X$ and all i = 1, 2, ..., m.

Let now $x \in X$. Choose $x_i \in X$ such that $d(F(x), F(x_i)) < \delta$. It follows that $D([F(x)]^*, [F(x_i)]^*) \le \delta e_0$. Since each S_n is positive and linear, (3) implies

$$(S_n D([F(x)]^*, [F(x_i)]^*), x) \le \delta(S_n e_0, x) \le \delta(1 + \delta)$$

for all $n \geq n_0$.

From (4) and the hypothesis that T_n is monotonically dominated by S_n , we have, for $n \geq n_0$

$$d((T_n[F(x)]^*, x), F(x)) \leq d((T_n[F(x)]^*, x), (T_n[F(x_i)]^*, x)) + d((T_n[F(x_i)]^*, x), F(x_i)) + d(F(x_i), F(x)) \leq (S_n D([F(x)]^*, [F(x_i)]^*), x) + 2\delta < \delta(1 + \delta) + 2\delta < \varepsilon.$$

Hence $(T_n[F(x)]^*, x) \to F(x)$, uniformly in $x \in X$.

Theorem 1. Let $\{T_n\}_{n\geq 1}$ be a sequence of convex conic operators on $C(X; \mathcal{C})$ suc that each T_n is monotonically dominated by a linear operator S_n on $C(X; \mathbb{R})$. As sume that

- (1) $S_n g \to g$, for every $g \in C(X; \mathbb{R})$,
- (2) $T_nK^* \to K^*$, for every $K \in \mathcal{C}$. Then $T_nF \to F$, for every $F \in C(X; \mathcal{C})$.

Proof. Let $F \in C(X; \mathcal{C})$ and $\varepsilon > 0$ be given. By Lemma 1 and Lemma 2, choose n so that $n \geq n_0$ implies $(S_n D(F, [F(x)]^*), x) < \varepsilon/2$ and $d((T_n[F(x)]^*, x), F(x)) < \varepsilon/2$, for every $x \in X$. Since T_n is monotonically dominated by S_n it follows that for $n \geq n_0$

$$d((T_n F, x), F(x)) \leq d((T_n F, x), (T_n [F(x)]^*, x)) + d((T_n [F(x)]^*, x), F(x))$$

$$\leq (S_n D(F, [F(x)]^*), x) + \frac{\delta}{2} < \varepsilon$$

for every $x \in X$. Therefore, $T_n F \to F$.

Let φ be a non negative bounded function defined on $X \times X$, which satisfies the following conditions:

- (A) φ_x is continuous, for each $x \in X$, where $\varphi_x(t) = \varphi(x, t)$, for all $t \in X$;
- (B) inf $\{\varphi(x, y); (x, y) \in M\} > 0$ for every compact and non empty set M of the complement of the diagonal set $\Delta = \{(t, t); t \in X\}$ in $X \times X$.

Let $\{S_n\}_{n\geq 1}$ be a sequence of positive linear operators on $C(X; \mathbb{R})$.

We denote by α_n the function defined by

$$\alpha_n(x) = (S_n(\varphi_x), x)$$

for all $x \in X$. Notice that α_n depends on S_n and φ .

Example 2. When X is a compact metric space with metric \tilde{d} , then $\varphi(x, t) = \tilde{d}(x, t)$, for $t, x \in X$, satisfies (A) and (B).

More generally, if X is a compact subset of a metric space (Y, \tilde{d}) then, for each $\rho > 0$, $\varphi(x, t) = [\tilde{d}(x, t)]^{\rho}$, for $x, t \in X$, satisfies the conditions (A) and (B).

Corollary 1. Let $\{S_n\}_{n\geq 1}$ and $\{T_n\}_{n\geq 1}$ be as in Theorem 1. Assume that φ satisfies (A) and (B), and

(1) $S_n e_0 \rightarrow e_0$,

(2) $\alpha_n(x) \to 0$, uniformly in $x \in X$,

(3) $T_nK^* \to K^*$, for every $K \in \mathcal{C}$. Then $T_nF \to F$, for every $F \in C(X; \mathcal{C})$.

Proof. By Nishishiraho ([2], Theorem 1), the hypothesis (1) and (2) imply that $S_n g \to g$, for every $g \in C(X; \mathbb{R})$. It remains to apply Theorem 1.

Example 3. Let X be a compact Hausdorff space. Let g_1, g_2, \ldots, g_m be elements of $C^+(X)$ such that there exist bounded functions $\beta_1, \beta_2, \ldots, \beta_m$ on X such that, if we define

$$\varphi(x, t) = \sum_{i=1}^{m} \beta_i(x)g_i(t)$$

for all $x, t \in X$, then $\varphi(x, t) \ge 0$, $\varphi(x, x) = 0$ and (B) is satisfied.

Then $\mathcal{H} = \{e_0, g_1, g_2, \dots, g_m\}$ is a Korovkin system in $C(X; \mathbb{R})$. Indeed, let $\{S_n\}_{n\geq 1}$ be a sequence of positive linear operators on $C(X, \mathbb{R})$. Assume that $S_n e_0 \to e_0$ and $S_n g_i \to g_i$, for every $i = 1, 2, \dots, m$. Then

$$\alpha_n(x) = (S_n(\varphi_x), x) \to 0,$$

uniformly in $x \in X$, since $\varphi(x, x) = 0$. By Nishishiraho ([2], Theorem 1) it follows that $S_n g \to g$, for all $g \in C(X; \mathbb{R})$. Therefore, \mathcal{H} is a Korovkin system in $C(X; \mathbb{R})$.

Corollary 2. Let $\{S_n\}_{n\geq 1}$ and $\{T_n\}_{n\geq 1}$ be as in Theorem 1. Let g_1, g_2, \ldots, g_m be as in Example 2. Assume that $S_nh \to h$, for every $h \in \{e_0, g_1, g_2, \ldots, g_m\}$, and that $T_nK^* \to K^*$, for all $K \in \mathcal{C}$. Then $T_nF \to F$, for all $F \in C(X; \mathcal{C})$.

Proof. By Example 2, $\mathcal{H} = \{e_0, g_1, g_2, \ldots, g_m\}$ is a Korovkin system in $C(X; \mathbb{R})$. Thus, $S_n h \to h$, for all $h \in \mathcal{H}$, implies $S_n g \to g$, for all $g \in C(X; \mathbb{R})$. It remains to apply Theorem 1.

§ 3. QUANTITATIVE ESTIMATES FOR MONOTONICALLY DOMINATED OPERATORS

Notice that $\mathcal C$ being a metric space and X being compact, every element $F \in C(X; \mathcal C)$ is in fact uniformly continuous. In the particular case that X is a compact metric space, say with metric $\tilde d$, this means that for every $\varepsilon > 0$, there exists $\delta > 0$ such that $x, t \in X$, $\tilde d(x, t) < \delta$ implies $d(F(x), F(t)) < \varepsilon$.

The modulus of continuity of $F \in C(X; C)$ is then defined as

$$\omega(F,\ \delta)=\sup\{d(F(x),\ F(t));\ x,\ t\in X,\ \tilde{d}(x,\ t)\leq \delta\}$$

for every $\delta > 0$. By uniform continuity of F, we have $\omega(F, \delta) \to 0$ as $\delta \to 0$. Notice also that $\omega(F, \delta)$ is monotonically increasing, i.e., $\delta_1 \leq \delta_2$ implies $\omega(F, \delta_1) \leq \omega(F, \delta_2)$.

Let us consider the following condition:

(*) There exists a constant p with $0 such that <math>\omega(F, \lambda \delta) \le [1 + \lambda^{\frac{1}{p}}]\omega(F, \delta)$, for all $F \in C(X; \mathcal{C})$ and all $\delta, \lambda > 0$.

Example 4.

- (4.1) Let X be a compact convex subset of a metric linear space (Y, \tilde{d}) . Suppose that \tilde{d} is invariant, i.e., $\tilde{d}(x+z, t+z) = \tilde{d}(x, t)$, for all $x, t, z \in Y$, and that $\tilde{d}(\beta x, 0) \leq \beta \tilde{d}(x, 0)$, for all $x \in Y$ and all β with $0 \leq \beta \leq 1$. Then (*) holds for p = 1.
- (4.2) Suppose that \tilde{d} has the property that if $\tilde{d}(x, t) = a + b$, where a > 0 and b > 0. Then there exists a point $z \in X$ such that $\tilde{d}(x, z) = a$ and $\tilde{d}(z, t) = b$. Then (*) holds for p = 1.
- (4.3) Let X be a compact convex subset of a q-normed linear space $(Y, ||| \cdot |||)$ with 0 < q < 1. Then (*) holds for p = q.

We recall that a q-normed linear space, with $0 < q \le 1$, is a linear space Y with a real-valued function $||| \cdot ||| : Y \to [0, \infty)$ such that (see Köthe [1]):

- (a) $|||y||| = 0 \Leftrightarrow y = 0$,
- (b) $|||\lambda y||| = |\lambda|^q \cdot |||y|||$,
- (c) $|||y + z||| \le |||y||| + |||z|||$,

for all $\lambda \in \mathbb{R}$ and $y, z \in Y$. If q = 1, we obtain the concept of a norm.

The class of q-normed spaces includes the spaces ℓ^q , for 0 < q < 1, with the q-norm defined by $|||(x_n)_{n=1}^{\infty}||| = \sum_{n=1}^{\infty} |x_n|^q$.

Lemma 3. Assume that (*) holds. Let $F \in C(X; \mathcal{C})$ and $\delta > 0$ be given. Then

$$d(F(x), F(t)) \le \left[1 + \left(\frac{\tilde{d}(x, t)}{\delta}\right)^{\frac{1}{p}}\right] \omega(F, \delta)$$

for every pair, x and t, of elements of X.

Proof. If $\tilde{d}(x, t) \geq \delta$, then

$$d(F(x), F(t)) \le \omega(F, \tilde{d}(x, t)) \le \left[1 + \left(\frac{\tilde{d}(x, t)}{\delta}\right)^{\frac{1}{p}}\right] \omega(F, \delta).$$

If $\tilde{d}(x, t) \leq \delta$ then

$$d(F(x), F(t)) \le \omega(F, \delta) \le \left[1 + \left(\frac{\tilde{d}(x, t)}{\delta}\right)^{\frac{1}{p}}\right] \omega(F, \delta).$$

If $\{S_n\}_{n>1}$ is a sequence of positive linear operators on $C(X, \mathbb{R})$, let

$$\alpha_n(x) = (S_n[\widetilde{d}(x, \cdot)]^{\frac{1}{p}}, x)$$

for all $x \in X$, where p is given by condition (*).

Theorem 3. Assume that (*) holds. Let $\{T_n\}_{n\geq 1}$ be a sequence of convex conic operators on $C(X; \mathcal{C})$ such that each T_n is monotonically dominated by a linear operator S_n on $C(X; \mathbb{R})$. Then

$$d((T_nF, x), F(x)) \leq \left[(S_ne_0, x) + \frac{1}{\delta_p^{\frac{1}{2}}} \alpha_n(x) \right] \omega(F, \delta) + d((T_n[F(x)]^*, x), F(x))$$

for every $F \in C(X, C)$, $x \in X$ and $\delta > 0$.

Proof. Let $F \in C(X; \mathcal{C})$ and $\delta > 0$ be given. By Lemma 3, we have for $x, t \in X$

$$d(F(x), F(t)) \le \left[1 + \left(\frac{\tilde{d}(x, t)}{\delta}\right)^{\frac{1}{p}}\right] \omega(F, \delta).$$

It follows that, for $x \in X$

$$D(F, [F(x)]^*) \le \left[e_0 + \frac{1}{\delta_p^{\frac{1}{p}}} (\tilde{d}_x)^{\frac{1}{p}}\right] \omega(F, \delta),$$

where the function \tilde{d}_x is defined by $\tilde{d}_x(t) = \tilde{d}(x, t)$, for all $t \in X$. Since S_n is positive and linear

$$(S_n D(F, [F(x)]^*), x) \le [(S_n e_0, x) + \frac{1}{\delta^{\frac{1}{p}}} \alpha_n(x)] \omega(F, \delta).$$

Now T_n is monotonically dominated by S_n , and therefore

$$d((T_nF, x), F(x)) \leq d((T_nF, x), (T_n[F(x)]^*, x)) + d((T_n[F(x)]^*, x), F(x))$$

$$\leq (S_nD(F, [F(x)]^*), x) + d((T_n[F(x)]^*, x), F(x))$$

$$\leq [(S_ne_0, x) + \frac{1}{\delta^{\frac{1}{p}}}\alpha_n(x)]\omega(F, \delta) + d((T_n[F(x)]^*, x), F(x))$$

for all $x \in X$.

Corollary 3. Let $\{S_n\}_{n\geq 1}$ and $\{T_n\}_{n\geq 1}$ be as in Theorem 3. If $S_ne_0=e_0$ and $T_nK^*=K^*$, for all $K\in\mathcal{C}$ and $n\in\mathbb{N}$ then

$$d((T_n F, x), F(x)) \le [1 + \frac{1}{\delta^{\frac{1}{p}}} \alpha_n(x)] \omega(F, \delta)$$

for every $F \in C(X, C)$, $x \in X$ and $\delta > 0$.

Corollary 4. Let $\{S_n\}_{n\geq 1}$ and $\{T_n\}_{n\geq 1}$ be as in Corollary 3. At every point $x\in X$ where $\alpha_n(x)>0$, we have

$$d((T_n F, x), F(x)) \le 2\omega(F, \alpha_n(x))$$

for every $F \in C(X; C)$ and n = 1, 2, ...

Proof. Make $\delta = \alpha_n(x)$ in Corollary 3 and notice that $\alpha_n(x) \leq [\alpha_n(x)]^{\frac{1}{p}}$, since $p \leq 1$.

Remark. We write $\alpha_n(x) = 0(n^{-1})$, uniformly in $x \in X$, if there is some constant k > 0 such that $n\alpha_n(x) \le k$ for all $n = 1, 2, 3, \ldots$, and all $x \in X$.

Theorem 4. Assume that (*) holds. Let $\{T_n\}$ be a sequence of convex conic operators on C(X, C) such that each T_n is monotonically dominated by a linear operator S_n on $C(X, \mathbb{R})$. Assume that

- (i) $S_n e_0 \rightarrow e_0$,
- (ii) $T_nK^* \to K^*$, for every $K \in \mathcal{C}$,
- (iii) $\alpha_n(x) = 0(n^{-1})$, uniformly in $x \in X$.

Then $T_nF \to F$, for every $F \in C(X; \mathcal{C})$.

Proof. Let $F \in C(X, \mathcal{C})$ and $\varepsilon > 0$ be given. By (i), (ii) and Lemma 2 choose n_1 so that $n \geq n_1$ implies

- (1) $(S_n e_0, x) < 1 + \varepsilon/2$,
- (2) $d((T_n[F(x)]^*, x), F(x)) < \varepsilon/2,$

for all $x \in X$. By (iii) there is some constant k > 0 such that

(3) $n\alpha_n(x) \leq k$,

for $n=1, 2, \ldots$ and all $x \in X$. Since $\omega(F, \delta) \to 0$ as $\delta \to 0$, we can choose n_2 such that $n \ge n_2$ implies

 $(4) \omega(F, n^{-p}) \le \varepsilon/2(1+k+\varepsilon/2)^{-1}.$

By Theorem 3 and (1) - (4), it follows that for $n \ge n_0 = \max\{n_1, n_2\}$

$$d((T_n F, x), F(x)) \leq [(S_n e_0, x) + \frac{1}{\delta^{\frac{1}{p}}} \alpha_n(x)] \omega(F, \delta) + d((T_n [F(x)]^*, x), F(x))$$

$$= [(S_n e_0, x) + n\alpha_n(x)] \omega(F, n^{-p}) + d((T_n [F(x)]^*, x), F(x))$$

$$< (1 + k + \varepsilon/2] \omega(F, n^{-p}) + \varepsilon/2 < \varepsilon,$$

for all $x \in X$.

Corollary 5. Let $\{S_n\}_{n\geq 1}$ and $\{T_n\}_{n\geq 1}$ be as in Theorem 4. Assume that $S_ne_0=e_0,\ T_nK^*=K^*,\ for\ all\ K\in\mathcal{C}\ and\ n\in\mathbb{N},\ and\ \alpha_n(x)=0(n^{-1}),\ uniformly\ in\ x\in X.$ Then $T_nF\to F$, for every $F\in C(X;\mathcal{C})$.

REFERENCES

- [1] G. Köthe, Topologische lineare Räume I, Springer-Verlag, Berlin-Göttingen-Heildelberg 1960.
- [2] T. Nishishiraho, Convergence of positive linear approximation processes, Tôhoku Math. J. 35(1983), 441-458.
- [3] J. B. Prolla, Approximation of Continuous Convex-Cone-Valued Functions by Monotone Operators, to appear in Studia Math. 102.
- [4] J. B. Prolla, Uniform Approximation of Continuous Convex-Cone-Valued Functions, these *Proceedings*.

IMECC - UNICAMP Caixa Postal 6065 13081970 - Campinas, Brasil

RELATÓRIOS DE PESQUISA — 1992

- 01/92 Uniform Approximation the: Non-locally Convex Case João B. Prolla.
- 02/92 Compactificação de $L^{\tau}_{\omega\omega}(Q)$ com τ Finito A. M. Sette and J. C. Cifuentes.
- 03/92 Um Modelo para Aquisição da Especificação Cecilia Inés Sosa Arias and Ariadne Carvalho.
- 04/92 Convergence Estimates for the Wavelet Galerkin Method Sônia M. Gomes and Elsa Cortina.
- 05/92 Optimal Chemotherapy: A Case Study with Drug Resistance, Saturation Effect and Toxicity M. I. S. Costa, J. L. Boldrini and R. C. Bassanezi.
- 06/92 On the Paper "Cauchy Completeness of Elementary Logic" of D. Mundici and A. M. Sette J. C. Cifuentes.
- 07/92 What is the EM Algorithm for Maximum Likelihood Estimation in PET and How to Accelerate it Alvaro R. De Pierro.
- 08/92 Bifurcation from infinity and multiple solutions for an elliptic system Raffaele Chiappinelli and Djairo G. de Figueiredo.
- 09/92 Approximation Processes for Vector-Valued Continuous Functions João B. Prolla.
- 10/92 Aplicação do Método de Fraissé à Compactificação de Lógicas com Quantificadores Co-filtro — A. M. Sette and J. C. Cifuentes.
- 11/92 Absolutely Summing Holomorphic Mappings Mário C. Matos.
- 12/92 The Feynman-Dyson Proof of Maxwell Equations and Magnetic Monopoles Adolfo A. Jr. and Waldyr A. R. Jr.
- 13/92 A Generalized Dirac's Quantization Condition for Phenomenological Non-abelian Magnetic Monopoles Adolfo M. Jr. and Waldyr A. R. Jr.
- 14/92 Multiplicity Results for the 1-Dimensional Generalized p-Laplacian Pedro Ubilla.
- 15/92 Nowhere Vanishing Torsion Closed Curves Always Hide Twice Sueli R. Costa. and Maria Del Carmen R. Fuster.
- 16/92 Uniform Approximation of Continuous Convex-Cone-Valued Functions João B. Prolla.