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We extend the Dirac’s quantization condition for the phenomenological non-
abelian magnetic monopoles whose theory was developed in a series of papers in

the last few years.

PACS numbers: 14.80.Hv ; 11.15.Tk

I. Introduction

Since the pioneering work of Dirac', the magnetic monopole have been intensively
studied in order to try to discover, or perhaps to guess, the role of this elusive object
in nature.

One of the striking consequences of the existence of magnetic monopoles is the
quantization of electric charge. In this work we obtain a quantization condition
for phenomenological non-abelian magnetic monopoles. This kind of monopole has
been described in the literature in a series of papers in the last few years’=7. The
main characteristic of these monopoles is that, in contrast with the topological ones,
they are introduced together with the electric charge as a composed (graded) object
in a Grassmann Algebra.

Although there are others quantization conditions, like the Schwinger’s one, we
obtain here a generalized Dirac quantization condition. In our point of view Dirac’s
condition is the only quantization condition compatible with the path dependent
method introduced by Mandelstam® and used by Cabibbo and Ferrari in their, now,

classic work®.



Here we obtain a general quantization condition for an arbitrary Lie group and
with this we extend the result already obtained for to the abelian groups*®. Our
theory of phenomenological magnetic monopoles is a attempt to develop a consis-
tent description of these objects without considering them as topological objects.
The price to be paid for this is that these objects “live” in a Grassmanian World,
where potentials, curvatures, etc are elements of a Grassmann Algebra instead of
the algebra of real numbers. Nevertheless, it is a geometric theory, because it is
founded on a principal fibre-bundle setting over space-time. Roughly speaking this
is a more algebraic than a topological theory.

To be self-contained we give in part II a short review of the theory of phenomeno-
logical magnetic monopoles. In part III we obtain our quantization condition. Fi-

nally in part IV we conclude with some general observations.

II - General theory

Let P(M,G, ) be a principal fiber-bundle over space-time M here considered as
a Lorentzian manifold where the metric is taken with signature (4+1,-1,-1,-1).
Let a and o' be two connections defined in P(M, G, ) with values in the Lie-algebra
g of G, and such that the pull-backs to M are respectively the gauge potentials A
and B.

Also, let A(M,G) = Y Ax(M,G) be the Grassmann Algebra of the G-Valued
k=0
differential k-forms, over space-time. We can choose in § a orthonormal basis

E\,E,....,E, and we denote the inner product by

(E;, B;) = &; (1)

Definition 1. The Generalized Potential is defined by

w=A+x*B e A (M,G)® A*(M,G) (2)



Definition 2. The Generalized Dirac operator associated to w is
D* = D* + 6° (3)
where DA and 62 are the usual covariant derivatives and coderivatives of the usual
gauge theories with gauge group G'°. Next, we need
Definition 8. The generalized field is defined by

Q = D“w=(D*+6%)(A++B)

A B B A
+ 0 T*Q +0§74 + D*(*B) (4)
2— form —=jorm 4—form

where 04 = DAA and QP = DPB as usual.

Eqs. (2) and (3) show that in the general theory the potential is an element of
the odd part of the Grassmann algebra of space-time A(M,g) and the generalized
field is an element of the even part of A(M,g).

The first important remark is that contrary to the usual gauge theories here we
do not have the validity of Bianchi’s identity. Instead we have

D“0 = (D*6% + 62 D*)(A + +B) (5)

which is in general different from zero. The tripotential B allows degrees of freedom
to describe a generalized magnetic monopole. If B = 0 we recover the Bianchi’s
identity, since (5) vanishes identically.

In order to present the field equations of the general theory we need the following
definitions:

Definition 4. The dual operator to ID¥ is defined by
A¥ = xID*x = x(D* + 6%)x = D? + 6* (6)
We have,
A“Q = DBOA 4+ DB(x0P) + DB6PA 4+ DPDA(»B) + 640 +
4+ 6A(+0P) 4 §46P A + 6ADA(+B) (7)
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Eq (7) may be simplified since dim M = 4 and A, B € A'(M, g) we have identi-
cally
DBDA(xB)=0, §%B(A)=0 (8)

We now introduce the field equations throught:

Postulate 1 The field equation of the general theory is
AYQ = Jg + *Jmag 9)

where Jg and *J,.; describe the sources of the generalized field.
In what follows we call dual charges the charges associated to the current *Jpag.

Eq. (9) may be written, using Eq. (7) and Eq. (8), as
{ 5404 + xDBQA + DB§BA Ja

Jmag

§BQP 4 «DAQB + DASAB (10)

In the usual gauge theory based on a principal fiber bundle we have associated
to the connections a and o' the field equations

A0 =J,; and §70° = Joug (11)

The additional terms on the left-hand side of Eqs. (10) show that the general
theory contains a non-trivial interaction between the potentials A and B, which are
represented by interaction currents.

Finally we make an interesting remark: We would like the potentials A and
B to be independent of each other, to a certain degree. This is provided by the
Generalized Lorentz Gauge:

4 B=6%A=0 (12)

Using (12), the Equation (10) can be written as
6404 + +DAQE = J, (13a)

§BQP + «DBQA = J,.., (13b)



These equations can be obtained from a spliced bundle formalism in a very ele-
gant way®.

Definition 5. The interaction currents are
J4® = «DPQOA + DB6E A (14a)
{ Ji(lz"‘) = +DAOP 4+ DA§B. (14b)
If we use the Generalized Lorentz Gauge, Eq.(12), these equations are simplified
to:

Jix®) = «DENA (15a)
JBA = «DAQB, (15b)

We can see that in the usual electrodynamics:
JAB) = «DAOP = +d(dB) = 0

since DA = d for any potential A with values in an abelian group such as U(1). This
shows that the photon field does not have self-interactions in the present theory as
in the usual electrodynamics on a classical level. Eqs. (15) may have a role in strong
interaction theories in which magnetic monopoles are inclued since they establish a
kind of “minimal coupling”.

Using Cartan’s structural equation (}* = da+-;-[a, a] for a = A, B, we can obtain
an expression in components of the generalized field. We get

M, = 8,4, -84, - Cuwped’(B') +
4 SALALCH, — w3 (BYY(B)Ch (16)

where [Ey, E;) = C}, E;, with E; € g. Eq. (16) is a generalization of the Cabibbo-
Ferrari relation® for a non-abelian group G.

III - Non - abelian quantization condition



We define the non-abelian electric charge, e, of a particle as the “charge vector”

e=(€1,€3,...,6,) = Zn:e.-E; (17)

i=1

where each e; is a real number. For example, in QCD the charge vector can be
interpreted as the electric-colour charges.

Using the Generalized Lorentz gauge (12) the generalized curvature € in (4) is
reduced to a usual 2-form

Q=04 4+05, (18)

As done in References 4 and 5 and following Mandelstam®, we can define a path

dependent field ¢(z, P) that satisfies

é(z, P') = ¢(z, P) exp[ fs cile) )] (19)

where P and P’ are two curves that are different only on a finite lenght and S is
any surface that has the closed curve C = P — P’ as a oriented boundary. In other
words, (19) is independent of the surface satisfying S = C.

The inner product in (19) means

(e,0) = 6;e'V = Ze Q7 (20)

=1

Then, (19) can be written as
#aP) = o(eP) e[ i3 0] =
= ¢(z,P) exp : —ie. Y (21)
[3 f -]

where each ); is a IR-valued 2-form, satisfying the Cartan structural Equation.
Now, as (19) is independent of the surface satisfying S = C, for two surfaces S;
and S; with 85, = 8S; = C we have

#(z, P) exp{g ~/51 —ie,—ﬂj] = ¢z, P) exp[Z/ —zeJQ’] (22)

gm=]



and then

ﬁ: /. e, 0¥ ¥ fs' —ie,-nf] =1 (23)

i=1 J=1

exp[

As Sy and S; have the same boundary, they together define a compact oriented
surface without boundary, say S,. Formally we can write

So = S] s Sz i (24)
From (23) and (24) we obtain
exp[ —ie;(V ] = ] 25
34, - (25)
By Stoke’s theorem, this is equivalent to
Ry
exp [‘g [V ie;df ] 1 (26)

where V' is the volume enclosed by S,.

Using again the inner product (1) we can write this equation as

exp [ [~i{e.dn )] ) 27)
Now, in order to obtain a more familiar expression for df} we calculate d2 explic-
itly
) = d(0* ++0°8) =
= d[dA+ (AA A)+*dB ++(BA B) =
= d(ANA)+d+dB+d+(BAB) =
= *6dB+d(ANA)++§(BAB)= (28)

Now, we especialize for the case where we have just one magnetic monopole. In
this case for the generalized potential (2) we have A = 0 which implies Q4 = 0.
So, in this particular case (28) is reduced to

dQ = +6dB + +6(B A B) (29)
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On the other hand the inhomogeneous field equation (9) is reduced to
Tag = 62027 (30)
because A =0 and J,; = 0.
The right hand side of (30) is
Jmag = *DP+[dB+ BA B]=+DP(+dB + +(BA B)] =
= «[d[*dB + *(BA B)|+ BA[*dB + (B A B)]| =
= 6dB + 6(B A B) + «(BAdB)+ +[B A (B A B)|
then
*6dB + +6(B A B) = *Jypag — BA*xdB — B A (B A B) (31)
Comparing (29) and (31) we have:

d) = *Jyag— (BA*dB)— BAx(BAB)
= #Jpag— BA+D®B = +Jpg — B A QP (32)
Now, the easiest way to get magnetic monopoles in this approach is to make the

following constraint-anzatz

BAQP =0 (33)
From (32) and (33) we get
dQY = *Jpag (34)
substituting (34) in (27) we have:

1= e[ [ ~iled)] =ew[i [ Lei(ling)] =

=1

= exp [—i Y e; fv *Jg"] = exp [—i ;i e,-g,-] (35)
=1 J=1
where we have used that the charge g; inside the volume V' is given by
9 = fv - (36)
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Thus, (35) implies that

n
Y egi=2rm  ,m=0,1,2,.. (37)
=1
or i
m
=Y eg =~ =0,1,2,..
e jz:;e_,gJ 5 M 0,1,2 (38)
This is the Generalized Dirac’s quantization condition for non-abelian magnetic
monopoles.

IV - Conclusion

It’s worthy to note that in our theory, such as in the Cabibbo-Ferrari one, there
exist a certain asymmetry in the formulation of the coupling of electric charges
with magnetic monopoles. The electric charge appears as a coupling constant in the
Mandelstam path integral and the magnetic monopoles appears as source, or better,
as a phenomenological current. This is because we are considering, as Cabibbo and
Ferrari®, the electric charge as a test particle in the field of a monopole. In our theory
this current is represented by a 3-form. We think that this, as well the constraint
condition (33), is a shortcoming in these kind of theories. An ideal theory should
eliminate them.

So, we can consider our theory as a provisional step to find an algebraic (or non-

topological) theory that can place magnetic monopoles and electric charges on the
same footing.
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