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Abstract - In [M - S] it was shown that the space Str(7) of all structures of finite type 7 has
a natural pseudometric which generates the elementary topology and which is “Cauchy Com-
plete”’. In this note we generalize this result to arbitrary type 7, eliminating the hypothesis of

total boundedness of the pseudometric. Finally, a new interpretation of Los’ Theorem is given.

The elementary topology of Sir(r), the space of all structures of arbitrary similarity type
7, is generated by the following basis: {Mod (¢) / ¢ € L7}, which does not necessarily satis-
fies the second axiom of countability. We show in this note that this topology is uniformizable
for every type 7 in such a way that the resulting uniform space is totally bounded.

As we shall see, the definition of uniformity given here is very natural, by the reasons
explained bellow.

Let {U,} be a uniform structure underlying Str(7) (not necessarily totally bounded). In
particular for every a there exists 3 such that Uz o Uy C U,, and for every A € Str(r), the
collections U,[A] = {B | (A, B) € U,} are open sets in the elementary topology.

Definitions.

1. Let (D, <) be a directed set; a net in Str(7) is any family of structures (A:)iep.
(Ai)iep is a Cauchy net if for every a there exists k € D such that for every i,7 > &k,
(A.', AJ') EU,.
3. lim; A; = A if for every a there exists k € D such that for every : > k, (A, A;) € U,.
4. Let U be an ultrafilter over D; then limy A; = A if for every a there exists X € U such that
for every i € X, (A, A;) € U,; or equivalently, if for every a, {i € D [/ (A, A;)) e U,} € U.
5. An ultrafilter U over D is called free if it contains all the subsets Yy = {1 € D /
1>k}, ke D.

Observe that the notion of free ultrafilter over a directed set generalizes the notion of
non-principal ultrafilter over w. Note also that {Y}}sep enjoys the finite intersection property.
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Theorem. Let (A;)i;ep be a Cauchy net and U a free ultrafilter over D; if A = Iy A; represents
the ultraproduct of A; modulo U, then A = lim; A,.

Proof. We show first that A = limy A;. Suppose by contradiction that there exists a such
that {i € D / (A,A) ¢ Ua)} = {i € D | A ¢ Ua]A]} € U.
Since U,[A] is open in the elementary topology and A € U,[A] then there exists



¥4 such that A € Mod (¥,) C U,[A], iie. A | ¥4 and U [A] D Mod (¥4), hence
{i € D JA; ¢ UJAI} C {i € D [A; ¢ Mod ($a)}, ie. {i € D | A; |~} € U; there-
fore, by Los’ Theorem A |= —f,4, a contradiction. It is interesting to note that this part of the
proof makes no appeal to the fact that uniformity is totally bounded; the hypothesis of total
boundedness is also unnecessary in the proof given in [M - SJ.

We prove now the main claim, namely, that A = lim; A;.

We have already proved that given a there exists X, € U such that for every 1 € X,,
(A, A;) € U,. Moreover, the fact that (A;);ep is a Ca.uchy net implies that there exists k, € D
such that for every i,7 > k., (Ai, A;) € U,.

For a given a consider # such that Us o Uy C U,, then, there are Xz and kg as above.
Since U is free, we have that Z = Xz NY,, € U. Let k be any element of Z.

Claim. For every 1 > k, (A, A;) € U,.

Indeed, if ¢ > k, then as k € X3 we have that (A, A,) € Up. But as i,k > kg we also have
that (Ag, A;) € Up, hence (A, A,) € Ug olUy C U,. This proves that A = lim; A;.

QED

The previous proof shows the Cauchy completeness of the uniform space Str(r) indepen-
dently whether or not that space being totally bounded. Hence Los Theorem can be interpreted
as a proof of completeness. Compactness is then a trivial topological consequence in the case
the space is totally bounded.

We note finally that Str(7) possesses a natural uniform structure which is is totally bounded:
for every sentence ¢ € L], we define TS e

U, ={(A,B) | AE ¢ & B ¢}.

It is easy to see that the collection {I{,} is a subbasis for the intended uniformity, having
the additional property that for every structure A,

[ Mod (p), if AE
“"["]*{ Nl ke

this proprerty guarantees that the elementary topology is generated by the uniformity and that
uniformity is totally bounded.
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