ON THE PAPER "CAUCHY COMPLETENESS OF ELEMENTARY LOGIC" OF D. MUNDICI AND A.M. SETTE

J. C. Cifuentes

Junho

RP 06/92

RT-IMEC IM/4127

Relatório de Pesquisa

Instituto de Matemática Estatística e Ciência da Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS Campinas - São Paulo - Brasil

Abstract - In [M-S] it was shown that the space $Str(\tau)$ of all structures of finite type τ has a natural pseudometric which generates the elementary topology and which is "Cauchy Complete". In this note we generalize this result to arbitrary type τ , eliminating the hypothesis of total boundedness of the pseudometric. Finally, a new interpretation of Los' Theorem is given.

IMECC - UNICAMP Universidade Estadual de Campinas CP 6065 13081 Campinas SP Brasil

O conteúdo do presente Relatório de Pesquisa é de única responsabilidade do autor.

ON THE PAPER "CAUCHY COMPLETENESS OF ELEMENTARY LOGIC" OF D. MUNDICI AND A.M. SETTE

J. C. Cifuentes

Abstract - In [M-S] it was shown that the space $Str(\tau)$ of all structures of finite type τ has a natural pseudometric which generates the elementary topology and which is "Cauchy Complete". In this note we generalize this result to arbitrary type τ , eliminating the hypothesis of total boundedness of the pseudometric. Finally, a new interpretation of Los' Theorem is given.

The elementary topology of $Str(\tau)$, the space of all structures of arbitrary similarity type τ , is generated by the following basis: $\{\text{Mod }(\varphi) \mid \varphi \in L^{\tau}_{\omega\omega}\}$, which does not necessarily satisfies the second axiom of countability. We show in this note that this topology is uniformizable for every type τ in such a way that the resulting uniform space is totally bounded.

As we shall see, the definition of uniformity given here is very natural, by the reasons

explained bellow.

Let $\{\mathcal{U}_{\alpha}\}$ be a uniform structure underlying $Str(\tau)$ (not necessarily totally bounded). In particular for every α there exists β such that $\mathcal{U}_{\beta} \circ \mathcal{U}_{\beta} \subseteq \mathcal{U}_{\alpha}$, and for every $A \in Str(\tau)$, the collections $\mathcal{U}_{\alpha}[A] = \{B \mid (A, B) \in \mathcal{U}_{\alpha}\}$ are open sets in the elementary topology.

Definitions.

1. Let (D, \leq) be a directed set; a net in $Str(\tau)$ is any family of structures $(A_i)_{i \in D}$.

2. $(A_i)_{i\in D}$ is a Cauchy net if for every α there exists $k\in D$ such that for every $i,j\geq k$, $(A_i,\ A_j)\in\mathcal{U}_{\alpha}$.

3. $\lim_{i} A_{i} = A$ if for every α there exists $k \in D$ such that for every $i \geq k$, $(A, A_{i}) \in \mathcal{U}_{\alpha}$.

- 4. Let U be an ultrafilter over D; then $\lim_{U} A_i = A$ if for every α there exists $X \in U$ such that for every $i \in X$, $(A, A_i) \in \mathcal{U}_{\alpha}$; or equivalently, if for every α , $\{i \in D \mid (A, A_i) \in \mathcal{U}_{\alpha}\} \in U$.
- 5. An ultrafilter U over D is called *free* if it contains all the subsets $Y_k = \{i \in D \mid i \geq k\}, k \in D$.

Observe that the notion of free ultrafilter over a directed set generalizes the notion of non-principal ultrafilter over ω . Note also that $\{Y_k\}_{k\in D}$ enjoys the finite intersection property.

Theorem. Let $(A_i)_{i \in D}$ be a Cauchy net and U a free ultrafilter over D; if $A = \Pi_U A_i$ represents the ultraproduct of A_i modulo U, then $A = \lim_i A_i$.

Proof. We show first that $A = \lim_U A_i$. Suppose by contradiction that there exists α such that $\{i \in D \mid (A, A_i) \notin \mathcal{U}_{\alpha}\} = \{i \in D \mid A_i \notin \mathcal{U}_{\alpha}[A]\} \in U$.

Since $\mathcal{U}_{\alpha}[A]$ is open in the elementary topology and $A \in \mathcal{U}_{\alpha}[A]$ then there exists

 ψ_A such that $A \in \text{Mod } (\psi_A) \subseteq \mathcal{U}_{\alpha}[A]$, i.e. $A \models \psi_A$ and $\mathcal{U}_{\alpha}[A] \supseteq \text{Mod } (\psi_A)$, hence $\{i \in D \mid A_i \notin \mathcal{U}_{\alpha}[A]\} \subseteq \{i \in D \mid A_i \notin \text{Mod } (\psi_A)\}$, i.e. $\{i \in D \mid A_i \models \neg \psi_A\} \in U$; therefore, by Los' Theorem $A \models \neg \psi_A$, a contradiction. It is interesting to note that this part of the proof makes no appeal to the fact that uniformity is totally bounded; the hypothesis of total boundedness is also unnecessary in the proof given in [M - S].

We prove now the main claim, namely, that $A = \lim_{i} A_{i}$.

We have already proved that given α there exists $X_{\alpha} \in U$ such that for every $i \in X_{\alpha}$, $(A, A_i) \in \mathcal{U}_{\alpha}$. Moreover, the fact that $(A_i)_{i \in D}$ is a Cauchy net implies that there exists $k_{\alpha} \in D$ such that for every $i, j \geq k_{\alpha}$, $(A_i, A_j) \in \mathcal{U}_{\alpha}$.

For a given α consider β such that $\mathcal{U}_{\beta} \circ \mathcal{U}_{\beta} \subseteq \mathcal{U}_{\alpha}$, then, there are X_{β} and k_{β} as above. Since U is free, we have that $Z = X_{\beta} \cap Y_{k_{\beta}} \in U$. Let k be any element of Z.

Claim. For every $i \geq k$, $(A, A_i) \in \mathcal{U}_{\alpha}$.

Indeed, if $i \geq k$, then as $k \in X_{\beta}$ we have that $(A, A_k) \in \mathcal{U}_{\beta}$. But as $i, k \geq k_{\beta}$ we also have that $(A_k, A_i) \in \mathcal{U}_{\beta}$, hence $(A, A_i) \in \mathcal{U}_{\beta} \circ \mathcal{U}_{\beta} \subseteq \mathcal{U}_{\alpha}$. This proves that $A = \lim_i A_i$.

QED

The previous proof shows the Cauchy completeness of the uniform space $Str(\tau)$ independently whether or not that space being totally bounded. Hence Los Theorem can be interpreted as a proof of completeness. Compactness is then a trivial topological consequence in the case the space is totally bounded.

We note finally that $Str(\tau)$ possesses a natural uniform structure which is totally bounded: for every sentence $\varphi \in L^{\tau}_{\omega\omega}$ we define

$$\mathcal{U}_{\varphi} = \{(A, B) \mid A \models \varphi \Leftrightarrow B \models \varphi\}.$$

It is easy to see that the collection $\{\mathcal{U}_{\varphi}\}$ is a subbasis for the intended uniformity, having the additional property that for every structure A,

$$\mathcal{U}_{\varphi}[A] = \left\{ \begin{array}{ll} \operatorname{Mod} (\varphi), & \text{if} \quad A \models \varphi \\ \operatorname{Mod} (\neg \varphi), & \text{if} \quad A \not\models \varphi; \end{array} \right.$$

this proprerty guarantees that the elementary topology is generated by the uniformity and that uniformity is totally bounded.

REFERENCE

[M - S] Mundici, D. and Sette A. M. Cauchy Completeness of Elementary Logic. To appear.

RELATÓRIOS DE PESQUISA — 1992

01/92	Uniform Approximation the: Non-locally Convex Case — João B. Prolla.
02/92	Compactificação de $L^{\tau}_{\omega\omega}(Q)$ com τ Finito — A. M. Sette and J. C. Cifuentes.
03/92	Um Modelo para Aquisição da Especificação — Cecilia Inés Sosa Arias and Ariadne Carvalho.
04/92	Convergence Estimates for the Wavelet Galerkin Method — Sônia M. Gomes and Elsa Cortina.
05/92	Optimal Chemotherapy: A Case Study with Drug Resistance, Saturation Effect and Toxicity — M. I. S. Costa, J. L. Boldrini and R. C. Bassanezi.