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Uniform approximation:
the non-locally convex case

Jodo B. Prolla

Abstract : If S is a compact Hausdorff space of finite covering dimension and (E, ) is a real
or complex topological vector space (not necessarily locally convex), we prove a Weierstrass-
Stone theorem for subsets of C(S; E), the space of all continuous functions from S into E,
equipped with the topology of uniform convergence over S.
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§1. Definitions and Lemmas

Throughout this paper S is a non-empty compact Hausdorff spase of finite covering di-
mension and (E,7) is a non-trivial real or complex topological vector space. C(S;E) is the
linear space of all continuous functions from S into E, equipped with the topology of uniform
convergence determined by the fundamental system of neighborhoods of the origin given by the
family of all subsets of C(S; ) of the form

{f € C(S;E); f(s)eV,g€ S}

when V' ranges over a fundamental system of neighborhoods of the origin in the space E.

The purpose of this paper is to prove a Weierstrass-Stone theorem for subsets, and in
particular linear subspaces, of C(S; E). As a corollary we get A.H. Shuchat’s result that
C(S; R) ® E is uniformly dense in C(S; E). (See Corollary 2 below and Shuchat [6]). The
main idea of the proof is analogous to that of Theorem 1 of Prolla [5], in which E is a normed
space. The loss of local convexity for E is compensated by the finite covering dimension of
S . Notice that going from the normed case to the locally convex case is straightforward and
presents no new difficulty: only the non-locally convex case presents new difficulties. In fact,
many results proved in [5] in the normed case, and which could be easily extended to the locally
convex case, are without analogues in the present paper. They remain open problems in the
non-locally convex case.

A particular and interesting case is the one in which E is a W-monotone quasi-normed
space,i.e. the topology considered on E comes from a W-monotone quasi-norm ||v|| defined
on it. We recall that a W-monotone quasi-norm on E is a real-valued function v — ||v|| such
that

(1) [Joll 2 0,

(2) [l + vll < Jlull + [0,

(3) | = ull = Null, '

(4) I vfl < CIAL) - [foll,
for all u,v € E and A € IK, where ¥ is a non-decreasing function from [0, co] into itself such
that ¥(a) — 0 as a — 0, and

W |Apl) S CCIAL) - ¥( ul )

for all A\, u € IK. Clearly, every normed space is quasi-normed, with ¥(a) = «, for all a > 0.
Another example is L?[0,1] with 0 < p < 1 and

17 = [ 15(z)Pda.

Here ¥(a) = o®, for all a > 0.
A more interesting example is given by the block spaces introduced by Taibleson and Weiss

[7], in which
wor=afs+or (1)

for all & > 0. The metric d making E a metric linear space is

d(u,v) = ju — ]|
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for all u,v € E. Qur Theorem 1 below is then true for functions with values in these spaces
and say S C IR", a compact subset. But whether the formula

dist(f; W) = sup dist(f(z); W(z))
z€

( which is true in the case of normed spaces) remains true for quasi-normed spaces is an open
problem.

When E = IR, we denote by C(S;[0, 1]) the subset of C(S;IR) consisting of those functions
from S into the unit interval [0, 1] C IR. Following Jewett [6] we state the following definition.

Definition 1. A non-empty subset M C C(S;[0, 1]) is said to have property V, if
(1) ¢ € M implies 1 — ¢ belongs to M;
(2) p€ M and ¥ € M implies p3p € M.

Following Feyel and De La Pradelle [3] and Chao-Lin [2], we state our next definition.

Definition 2. Let W C C(S; E) be a non-empty subset. A function ¢ € C(S;[0, 1]) is called

a multiplier of W if ¢of + (1 — ¢)g belongs to W, for every pair, f and g, of elements of
w.

Let M be the set of all multipliers of W. It is easy to see that the set M has property
V.

Definition 3. A subset X C C(S;R) is a said to separate the points of S if, given any
two distinct points, s and ¢, of S, there is a function ¢ € X such that ¢(s) # ¢(t).

Our first two lemmas are taken from Jewett [4]. (See also Burckel [1].)

Lemma 1. Let 0 < a < b <1 and 0 < 6 < 1/2 be given. There erists a polynomial
p(z) = (1 — 2™)*, such that

(1) p(t)y>1—-6, forall 0<t<a,
(2) p(t) < 6, for all b<t<l.

Proof. See Lemma 2, Jewett [4]. ¢

Lemma 2. If M C C(S;[0, 1]) has property V, and ¢ and 3 belong to M, then max(ep, )
belongs to the uniform closure of M.

Proof. See Theorem 1, Jewett [4]. Just notice that the uniform closure of M in C(S;][0, 1])
has property V too. g

Lemma 3. Let M C C(S;[0, 1]) be a non-empty separating subset with property V. Let
z € S andlet N be an open neighborhood of =z in §. There exists ¢ € M such that

(1) p(z) > 3/4,



(2) p(t) < 1/4, for all  t¢&N.

Proof. Let K be the complement of N. For each t € K, there is ¢, € M such that ¢,(t) <
@i(z). Choose real numbers a and b such that ¢(t) < a < b < ¢(z). By Lemma 1, there is
a polynomial pi(u) = (1 — u™)" such that p(u) < 1/4 for b < u <1, and p,(u) > 3/4 for
0 < u £ a. Hence p,(¢pi(z)) < 1/4 and p(pi(t)) > 3/4. Let U(t) = {s € S; p(pi(s)) > 3/4}.
Then U(t) is an open neighborhood of t. By compactness, there are t;,...,t,, € K such that
KcCcU(t)UlU(t)U---UU(t,,). Foreach i =1,...,m let p;(s) = pi, (¥, (8)), s € S. Clearly,
@i € M,forall i =1,...,m. Let ¥(s) = max(p1(8),...,¥m(3)), s € S.

By Lemma 2 the function ¥ belongs to the uniform closure of M. Notice that ¥(z) < 1/4
and ¥(t) > 3/4, for all t € K. Choose € > 0 so that ¥(z) + ¢ < 1/4 and ¥(t) — € > 3/4 for all
t € K. Let n € M be such that || — || <€ and let ¢ =1 —n. The ¢ € M and () > 3/4,
while p(t) < 1/4 forallt € K. ¢

§2. The Weierstrass—-Stone Theorem

Theorem 1. Let W be a non-empty subset of C(S; E) such that the set M of all multipliers
of W separates the points of S. Let f € C(S;E) be given. The following are equivalent:

(1) f belongs to the uniform closure of W;

(2) for each = € S, the vector f(z) belongs to the uniform closure of W(z) = {g(z);9 € W}
in E.

Proof. Clearly (1) = (2). Conversely, assume (2) is true. Let n be the covering dimension
of S and let U be on open neighborhood of the origin in £ . Choose an open and balanced
neighborhood V of 0 in E such that the (n + 3)-fold sum V + ...+ V is contained in U.
By (2), for each z € S, there is some w, € W such that f(z) — w;(z) € V. Consider the open
covering U of S given by

Us={teS; f(t)—ws(t)e V},z € S.

By our hypothesis, there exists an open refinement V of U which is of order at most n+1.
Let V = {Vo}aea. Foreach a € A, let S, = {z € S;V, C U,}.

Since V is a refinement of I, the set S, is non-empty. By the Axiom of choice, there is
a mapping s : A = S such that s(a) € S,, for all @ € A. Hence V, C Uy(q).

For each z € S, let A, = {a € A;z € V,}. Since V is a covering of S, the set A, is
non-empty. By the Axiom of choice, there is a mapping A : S = A such that A(z) € A,, for all
z € S. Hence

(1) T e V,\(_t} (5 U,(,\(,,)) , forall z €S.

By lemma 3, applied to N = V), there is ¢, € M such that
0<w: <1, @) > 2 and ¢,(t) <} for all t ¢ Vy(;). Define W, = {t € S;p.(t) > 2}.
Then W, is open and contains z. Moreover, w, C V\(;). By compactness of S, there are
Z1y...,Tm € S such that S is contained in the union W,, U...U W, . Notice that

(2) W, C VA(:,) C U,(A(m)),l' =1...,m.



To simplify notation, let us define

@i = @z ,where x =X

W; W, ,where x=x

Vi = V, ,where a=A(x;)
Ui = U, ,where x=s(\(xi))

w; = w, ,where x=s(A(x;)).

Choose an open neighborhood V' of 0 in E such that the m-fold sum V' 4 ... 4+ V' is

contained in V. Let

B= ([ - w(s)].

i=1

The set B is compact. Hence it is bounded in E. Choose 0 < § < 1/2 so that |A\| < § and

v € B implies Av € V'.

By Lemma 1, there is a polynomial g : IR — IR of the form ¢(¢) = 1 — (1 —t*)*,t € IR, such

that 0 < ¢(t) <1, for all £ € [0, 1],
(a) 0<gq(t) < é,forall 0 <t <1/3,
(b)1>gq(t)>1-6,forall 2/3<t<1.

Let ¥, =q 0 ¢;,i =1,2,...,m. Then 0 < 3; <1 and ¥; € M . Moreover

(3) 0 < wilt) < 6,if t ¢V,
(4) 12> pi(t) >1—6,if te W,

Define
Y1 =1
w2 =(1—1) ¥a
em = (1 — ¢1)(1 - \bz) te (1 - ¢‘m-1) Ym-
Then
(5) Prroat-temn=1=-(1=%1)(1—92) (1 - ¥m).

Let ¢m1 = (1 —¥1)(1 —¥2) - (1 — ¥m). Then pmss € M.

Given z € S, there is some index i such that = € W,

Yi(z) > 1 — 4, and therefore § > 1 — 1;(z). Hence
(6) pm1(2) = (1 = 9i(2)) - [J(1 = ¥5(2)) < 8.

i#
On the other hand, (3) and ¢;(t) < 9;(t) imply
(7) 0<epi(t) <6, if tgV;
foreach i=1,2,....,m.

By (4),



m+1
Let w = Z<p,-w.- where w,, 4y = w;. Then w € W, because w = hw; + (1 — ¥)[aws +

=1
(1 =)[hsws + - -+ + (1 = Y ) [omwpm + (1 = P )wn] -+ )]
Let z € S be given. Define two sets of indices I(z) and J(z) by
I(z) = {1€i<m; z€V},
J(z) = {1 SIS cgV:)

Notice that the cardinality of I(z) is at most n + 1. Now, for each ¢ € I(x) we have
pi(z)(f(z) —wi(z)) e V
because V; C U; = Us(x(z))s Wi = Ws(r(z)) 0 < wi(z) < 1, and V is balanced. Hence

Y eilz)(f(z) — wi(z)) € V + -+ + V,((n + 1)-fold sum).
i€l(z)

On the other, for each i € J(z), we have z ¢ V; and by (7), ¢i(z) < . The cardinality of
J(z) is at most m . Hence

Y wi(z)(f(z) — wi(z)) € V' + -+ + V', (m-fold sum).
i€J(z)

Consequently,

(8) icp.'(:r)(f(a:) —wi(z)) €V +---+ V,((n + 2)-fold sum).
i=1
Finally, ¢m41(2)(f(2) —wm4a(z)) € V', because by (6) pm4a(z) < 6, and f(z) -~ wm4a(z) =
f(z) — wy(z) belongs to B. Hence V' C V implies

m+1

(9) er.(:n)(f(n:) —wi(z)) €V + -+ V,((n + 3)-fold sum).

=1

It remains to notice that (5) implies that @1(z) + @2(z) + -+ + @m(z) + Pm41(z) =1 and

m+1

f(z) —w(z) = Y @i(z)(f(z) — wi(z)) € V +--- + V,((n + 3)-fold sum).

i=1

Since the (n + 3)-fold sum V + --- 4+ V is contained in U and U was arbitrary, this ends
the proof that W is uniformly dense in C(S;E). o

Corollary 1. Let W be a non-empty subset of C(S; E) such that

(1) for each pair of distinct points, x and y, of S there is some multiplier ¢ of W such
that o(z) # ¢(y);

(2) for each z € S,W () is dense in E.

Then W is dense in C(S; E).



Proof. By (1), the set M of all multipliers of W is separating over S. By (2), the set
{9(z); g € W} is dense in E. Hence, every f € C(S;E) verifies (2) of Theorem 1, and
therefore belongs to the uniform closure of W in C(S;E). ¢

Our next result is a Weierstrass—Stone theorem for linear subspaces of C(S;E).

Theorem 3. Let W C C(S; E) be a vector subspace such that
A={p € C(S;R);pg €W, forall ge¢ W}

separates the point of S, and for each z € S, W(z) is dense in E.
Then W is uniformly dense in C(S;E).

Proof. Notice that the set A4 is a subalgebra of C(S;IR) containing the constants. The set
M={pe A; 0<¢p<1} is the set of all multipliers of W. Given z # y, by hypothesis there
is some ¢ € A such that p(z) # o(y). Since A is an algebra containing the constants, a stan-
dard argument shows that we may assume that @(z) =0 and ¢(y) = 1. Let ¢ = /1.
Then 3 € M, and ¥(z) = 0, Y(y) = 1. Hence M separates the points of S, and condition
(1) of Corollary 1 is verified. By hypothesis, condition (2) of Corollary 1 is verified also. =

Corollary 2. Let A C C(S;IK) be a dense linear subspace, which is assumed to be self-adjoint
in the complez case and let W = A® E C C(S;E). Then W is uniformly dense in C(S;E).
In particular, C(S;IK) ® E is uniformly dense in C(S; E).

Proof. It is clear that the real part of A is contained in
{p € C(S;R) ; pgeW,forallge W},

and therefore the result follows from Theorem 3. o

Corollary 3. Let A be a dense linear subspace of C(S;IK). Then A® E is uniformly dense
in C(S; E).

Proof. Let f € C(S;E) and let V be an open neighborhood of 0 in E. Choose an open and
balanced neighborhood U of 0 in E such that U/ + U C V. By Corollary 2, there is some
9 € C(5;K)® E such that f(s) —g(s)e U, forall s € S. Let '

4= Zhivi
=1
where h; € C(S;K), and v; € E,i = 1,...,m. Choose another neighborhood W of 0 in E
such that the m-fold sum W + ... 4+ W is contained in U. Choose § > 0 so that \v € W,
for all |]\] < 6§ and v € {vi,v3,-+,vm}. Let aj,++-,am € A be such that lai = k|| < 6.
Then w = ayvy + -+« + a0y, belongs to A® E and g(s) — w(s) € U for all s € S. Hence
f(8)—w(s)eV,forallse S o



§3. Simultaneous approximation and interpolation

We can apply our Theorem 1 to get results on simultaneous approximation and interpola-
tion of vector-valued functions. Let us say that a subset A C C(S; E) is an interpolating
family for C(S;E) if, given any finite subset F' C S and any f € C(S;FE), there exists
g € A such that f(z) = g(z) forall z € F.

Theorem 4. Let A C C(S;E) be an interpolating family such that the set of multipliers of
A separates the points of S. Then, for every f € C(S;E), every open neighborhood V of the
origin in E and every finite subset F' C S, there exists g € A such that f(s)— g(s) € V for
all s € S, and f(z)= g(z) for all x € F. In particular, A is uniformly dense in C(S;E).

Proof. Define W = {g € A; f(z) = g(z) for all z € F}. Since A is an interpolating family,
W # 0. Now it is easy to verify that each multiplier of A is also a multiplier of W. Let z € S
be given. Consider the finite set F'U {z}. Since A is an interpolating family for C(S;FE),
there exists g, € A such that f(f) = ¢.(t) for all t € F U {x}. In particular, f(t) = g.(t)
for all t € F. Hence g, € W. On the other hand f(z) = g,(x) shows that f(z) € W(z). By
Theorem 1, there exists ¢ € W such that f(s) — g(s) € V, for all s € S, and g € W implies
g€ A and g(t) = f(t) forall te F. g

Theorem 5. Let A be a dense linear subspace of C(S; ). Let AQ E = W. Then, for every
f € C(S;E), every open neighborhood V of 0 in E and every finite subset F C S, there
exists g € W such that f(s) — g(s) €V forall s € S, and f(z) = g(z) for all z € F.

Proof. Case 1: F = 0.

By Corollary 3, W = A @ E is dense in C(S;E) and therefore
f(s)—g(s) € V for all s € S, for some g € W.

Case 2: F = {z,...,2,} #0.
We first remark that A is an interpolating family for C(S;I). Indeed, if we define
T:C(S;K)— K™ by
Tg = (g9(z1),...,9(n))
for each g € C(S; IK), then by density of A and continuity of T, we have

T(C(S; K)) = T(A) ¢ T(A) = T(A),

where the last equality is a consequence of the fact that T(A) is a linear subspace of IK™,
because A is a linear subspace of C(S; IK).
Let ay,...,a, € A be such that

ai(®;) =85, 1<54,)<n.
Choose N an open and balanced neighborhood of 0 in E such that the (n + 1)-fold sum

N + .-+ N is contained in V. Let A = max{|lei;1 < i < n}. Let U be the open
neighborhood A~1N. Notice that A > 1 implies U = A"'N C N, because N is balanced. By



Case 1, W is dense in C(S; E). Hence there is some g, € W such that f(s) — g,(s) € U, for
all s € S. Let

v; = f(z;) —g(zi) , 1<i<n.
Since A® E = W, it follows that
92(z) = ) ai(z)v; , z€S,
t=1

belongs to W. Notice that gy(x;) = v; for all 1 < j < n. Hence g(z;) = f(z;), for all
1 <j<n,if g€ W isdefined to be g, + g,. On the other hand,

92(8) = ZiLy ai(s)v = T, [ai(s)A "] Av; € N + - - + N, (n-fold sum),
because |a;(8)A™'| < 1,and Av; e AU = N, for all i =1,2,...,n, and N is balanced. Hence
f(8) —g(s) = f(s) — g1(s) —g2(s) E N+ N +--- + N,((n + 1)-fold sum).

Since the (n + 1)-fold sum N + N + --- 4+ N is contained in V', we have f(s) — g(s) € V, for
&ll 8 € S o
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