ON THE SOLUTION OF HOMOGENEOTUS
GENERALIZED WAVE EQUATION

E. Capelas de Oliveira

RELATORIO TECNICO N2 01/92

Abstract. We present the solutions for the homogeneous generalized wave equation when
we have a local problem.

Universidade Estadual de Campinas

Instituto de Matematica, Estatistica e Ciéncia da Computacio
IMECC - UNICAMP

Caixa Postal 6065

13.081 — Campinas — SP

BRASIL

O contelido do presente Relatério Técnico é de inica responsabilidade do autor.

Janeiro — 1992



On The Solution of Homogeneous
Generalized Wave Equation

E. Capelas de Oliveira
Departamento de Matematica Aplicada
IMECC - UNICAMP
13081 Campinas (SP) Brasil

Abstract. We present the solutions for the homogeneous generalized wave
equation when we have a local problem.

I. Introduction

In a recent paper Hillion®) studies the Goursat problem (boundary value
problem with data on the characteristics) for the tridimensional wave equation
where he said that the modal waves seem to be the most natural solutions.
Bélanger(® obtained modal waves for the free-space homogeneous wave equa-
tion, writing the solutions in terms of Laguerre functions which propagates in
a straight line with the velocity of light and remaining focused for all time.
Brittingham® showed that packetlike beams are solutions to the homogeneous
Maxwell equations.

Recently™® we have discussed and solve the generalized Laplace equation
extended to the De Sitter universe by means of Jacobi polynomials, which
depends of one parameter N, known as, the degree of homogeneity of the
function. Yet, in another recent paper(®) we have solved the D’Alembert wave
equation extend to the De Sitter universe by means of the same polynomials
depending also on the parameter N. In both cases we have the classical result
when the radius of the De Sitter universe goes to infinite.

In this paper, we discuss the homogeneous D’Alembert generalized wave
equation when we have a small distance (local problem) and we obtain cer-
tain solutions for the homogeneous D’Alembert generalized wave equation by
means of Hillion procedure. When the radius of the De Sitter universe goes to
infinite we obtain exactly Hillion’s solutions.



II. Generalized D’Alembert Wave Equation

The generalized D’Alembert wave equation is given by(®
Op(Z4) = 0404%(T4) =0 (1)

where A = 0,1,...4. Writing this equation in cartesiane coordinates we have
the following differential equation

R%0 d’(z;) =
= A’(Rzaf - I,—:t_,'a,'aj + 22.‘3.‘)1,[)(:12") + N(N + K — l)ﬂJ(I;) =0 (2)

wherei,j =0,1,...3; A2 = 14+a?—4? = 1+q;a; witha; = z;/R y=ct/R,R
is the radius of the De Sitter universe; N is a parameter, known as, the degree
of homogeneity of the function and 1 < K < 4 because the function ¥(z;) has
a K-number of independent variables.

Introducing the function ¢ = AN+ and considering K = 4 we obtain the
following differential equation

R*0y(z;) = A¥N{R?0? + 2:2;0,0; + (N + 3)(N — 22;8))}p(z;) =0 (3)

where ¢,7 = 0,1...3.
Now, we discuss the above differential equation when we have a local

problem (% << 1) then we obtain the following D’Alembert wave equation
{0 + *-N (N +3)}p(z:) =0 (4)
That writing in the explicit form is given by

d? o 9? i & 1
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we note that when we take the limit R — oo we obtain exactly the classical
tridimensional D’Alembert wave equation studies by Hillion(?).
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IIT. Solution of the D’Alembert Wave Equation

Introducing the characteristics
{=2—c and p=z+d

in eq.(5) and considering the variables z and y as parameters we have

0? 1
4 ~_N(N } a0 6
{4365 + T2+ @V + 9 fon(6m,z,y) ©
where V, = 37 + 597 is the bidimensional Laplacian. To solve eq.(6) we

introduce polar coordinates, orthogonal to n and £, by means of z = pcosé
and y = p sin 0, and we have the following differential equation

# &P 18 1
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Now, we consider only the completly separable problem defined by

SPN(QTBP) = HN(‘f: 1]).[(,0) (8)

and we have the following differential equations

£ 1d N
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(1 6‘;’3” 3 Hy(e,m) =0 (9b)

where K? is a constant and we have defined A? = K2 — N(N + 3)/R2.
Considering a Fourier expansion we can write the solution of the eq.(9a)
by means of

10)= 3 Andulkine) (10

where ji, j2 ... are the positive zeros of the Bessel function, Jy(x), given in a
crescent order of amplitudes.



To solve the eq.(9b) we use a Green’s function technique associated with
the Riemann method(”. Then the Green’s function is given by the following
expression

G(&.€ m,1) = L(WE=Ey =) (1)

where Ip() is a modified Bessel function. Considering f;(£€) and f5(n) as the
data of the Gousart problem and using the Riemann method we obtain the
solution given as an integral representation,

a6 = [ {0 =9} 22 ¢ [ 10 /e =9} 220 a1

Using the eq.(8) we have the solution of the eq.(7) given by
‘PN(&-: 7, P) = E AmJG(ijp)HN(Ea 1’,‘)
m=1
which in the original variables is given by the following expression

(PN(x,y, Z,t) = Z AmJO(ij vzﬂ 3 y2) J

m=1

.{Lz_ Ig{.\\/z+ct )z —ct— )}6f1( )ds-l- (13)

4 /:M IQ{A\/(z — ct)(z +ct — s)}-a—{;g—s)ds}

where A? = K? — N(N + 3)/R?.

IV. Particular Case (Hillion Results)

When we have 3f,(s)/0s = 0f2(s)/0s = 6(s) where §(s) is the Dirac
distribuition we get an exactly solution of the eq.(13) as follow

ON(T, U 2,8) = T A, elbrIz—(u—)et Jo( K22 + yz)
TR



where 4uv = K? — N(N + 3)/R%. Now, taking the limit R — oo we have
exactly the Hillion Results.
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