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1 - Introduction In a general framework, let X = L2(R*) be the
weighted Lebesgue space associated with w(t) = e, Y = L?(c,d) and A :
X — Y the Laplace transform operator,

(Az)(s) = [ e a(t)dt = y(s) 1)

As is known, the problem of solving (1.1), for a given y € Y, is ill-posed. The
problem of determining A*y, where A* is the generalized inverse of A, is still
ill-posed: the solution depends discontinously upon y.

If we only know the perturbed data y;, with

lly — yslly < & (2)

then one must use “regularization methods”. This is a family of operators
Ry : Y — X, indexed by some regularization parameters N, together with
some strategy to choose the parameter such that Ryys is an approximation to
A*y. There are also other kinds of perturbations when, instead of the operator
A, we use an approximation Ay such that ||Ay — A|| < By.

In this paper, we use the arguments presented by Vainikko, in [6], to design
an algorithm for the inversion of the Laplace transforms of data with noise.
As it is well known, the Laplace transform methods are helpful techniques for
differential and integral equations; however when discretization is required to
solve the problem in the Laplace domain, errors are introduced. Similar situa-
tions arise when we deal with the Laplace inversion of scientific measurements
or observations.

2 - The Laguerre approximations: Let V;,C V; C ... be a sequence
of finite-dimensional subspaces of X where Vy is spanned by the Laguerre
polynomials of degree < N [1]. The Laguerre polynomials, ¢;(t), are such that

f: e~ di(t)g;(t)dt = 6;;

and they form a complet set in L2(R*) [2, for ex]. We will denote by Py the
orthogonal projection of X onto Vy and Ay = APy.
We can obtain an approximation solution to (1.1), for a given y; as in (1.2),
using
2 =X + A A O + A) (3)
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where A* is the adjoint operator of A; this is the well-known implicit sucessive
approximation method. In the finite dimensional subspace Vy, we define the
approximation

N
oy =) a;idi(t)
=1

such that
(M + AN ANz, 85) = O2h + Avys, ¢5),7=1,...,N,A>0.
Now, let ¥;(s) € Y be the Laplace transform of ¢i(t), ¥i(s) = [5° e~ " ¢i(t)dt;

with these functions we construct a matrix M,

My = [ (o s(s)ds =

cl'+.f L - A dl'+.f+1
i+j+1

and a vector f,
d
fi= [ uila)bils)ds.

Therefore, the variational formulation of the implicit scheme (3), in Vy, will
be

(AL + M)a* = da*~! 4 f, (4)
and, for a given A, we state the
Procedure
1. Do the Cholesky decomposition
LLT =M + I
2 a=0
For k=12 ...

solve the system LLTa* = Xa*~' 4+ f

We must observe that, in this process, the regularization is an important fea-
ture: the condition number of M become insuppartable as N increase; for
example, if N = 15 the condition number of M is 10!

By direct calculations we can show that the adjoint operator A* is, in this
case, A* : L*(c,d) — Li(R"),

(A*v)(t) = € [ e “v(s)ds;
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also, we can see that z(t) = (A™v)(t), v(s) € Y, is an analytical function and
fork =01, 0

2P = /: e~ N(1 — s)ky(s)ds. (5)

3. Error bound estlmates. Assume that the data are on the interval (¢, d)

< and d= ;d ltxsewdenttha.t|c|<land|d|<1

Lemma: Let a =max{|¢ |, | d |}; then

and let c= L

a(N+1)

ﬂN = ”A AN” s \/_ g)llg

Proof: As we known

1A = Axll = ||A(T = Pu)ll = I(J — Pn)A7| = ..i}}i’l{”(" — Py)A™||x}

Let z(t) = (A*v)(t), v € Y, s.t. ||v]ly = 1. Then

(I = Pn)Av]|x = |I(1 — Pn)z(t)llx = [|2(2) ZM.(i llx

i=}

where b; are the Laguerre-Fourier coefficients of z(t). The next step is to
calculate the rate of convergence of the Laguerre-Fourier approximates; we
will use a basic property of the Laguerre polynomials (1]

ety = o —di(t*e-‘) k=01
LA T S

By sucessive integration by parts and the last equation we get

_1)k
b= F e'z(t)pi(t)dt = L [m e~ t* 2P (t)dt;
o k' Jo
using (5) and the Laplace transform of t*,

_1\k
bh 8 ( k];) /cdv(s)(l _S)kjnwe-sttkdt ds = (6)
(1 [ 2 o(s)as. (7




By the Schwarz’s inequality,
l1—-3s

bl < ([ S s}l = ®)
,. = (G =) = e - ), 9)

where, by the mean value theorem, y(k) € (E, ¢)). But —1 < =2 <1, if
1 ~ e s
"z >, then —1 <d< (k) <e< 1. If a = max{| ¢ |,| d |},

2
00 & . 00 : = ~ 2(N+1)
Y BSE-) Y o¥=(E-9T—g
k=N+1 i=N+1 =

and the lemma will follow by the completness of the Laguerre polynomials. O

The method of sucessive approximations (3) is familiar for ill-posed problems
»[3, 6]. In particular, the theorem 1 in [6] is concerned with “a priori” specifi-
Fcation of the regularization parameter. It claims that if
" () v e R(4)

(ii) z* € R([A*A]P/?), z* the solution of (1) closet to 0
(iii) k = dy (8 + B)-2/(+)

then
l|lzx — z||x < da(6 + B)PP*', dy = const (p,dr).
Our final conclusion follows directly from this result and the previous lemma.

Proposition: Under the conditions (i) - (iii), the sucessive approximations
(4), with

N+ = o
E=dy(6+ ——_y-2p1a=max{|c|, |d]},
o+ (1- az)‘”) " d; = const

will give z, such that

a4

P+1
(1 ey 02)1/2 )pl

llzx — 2||x < daf6 +



where d, = dy(p, dy).

4. Numerical Experiments and Conclusions: The examples of this sec-
tion will show a qualitative idea of the performance of the proposed scheme.
We choose A in such way that the first iterate is an approximation for zt: this
is possible since the first iterate is the Tikkonov regularization solution. In
this case there are “a priori” estimates for A as is showed in [3]. To stop the
iterative process we use the residue limitation:

Res = f — Ma* = \(a* — a*") (10)
||Res||eo < TOL. (11)

Example 1. If y(s) = ta.n‘“](:ij) then z(t) = % sint. In the figure 1 we plot

2(t) and zn(t) computed using TOL= 107"° and (a)N =10, ()N = 20. The
simbol A is used to show zx(¢) and the full-line for z(t).

Example 2. Now we introduce a noise in the y(s) used in the previous exam-
ple, adding p(s) = 107 sin (10'2s), s € (1,5); in this case we used TOL= W
The zy computed are plotted in the figures 2 : (¢) with N = 10 and (b) with
N =28

The error bound presented here, as well as the above numerical computations,
motivate the use of the successive approximation method in the Laplace in-
version problem. In different tests we got similar results but specially good
results were obtained when we used polynomials for ().

The increase of the error for ¢ > 5, exhibited in the the figures, is compatible
with the norm used to measure the error: the weight e™* allows these large
absolute errors. On the other hand, Laguerre polynomials exhibit strong os-
cilations when N and ¢ increase [1]; we believe that this fact also produces

damaging effects. In the future we intend to test functions :;; (t) = e2¢(t),
for ¢;(t) Laguerre polynomials; these functions form a complet set in L?(R*)

~

and | §; (1) €1, t>0,i=0,1,....
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