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We construct one dimensional velocity independent potentials for
which the Schrédinger differential equation can be solved by means of hy-
pergeometric functions and confluent hypergeometric functions.

1. Introduction

Analytical functions are used to furnish numerical approximations.
Thus, for simple sistems - soluble potential - the analytical solutions have
an important role. Soluble potentials are the ones for which the Schrodinger
differential equation can be solved by means of analytical functions.

Analytical solutions for soluble potentials are used, e.g., for the devel-
opment of various approximation techniques; perturbation theory, Padé ap-
proximations, Hill determinants, continued fractions, and variational prin-
ciples. Unfortunately there are few soluble potentials, almost all found
without a single theoretical scheme. :

In a recent paper, Aly and Barut [1] obtained exact solutions for the
one dimensional (radial Schrodinger ) equation with various classes of anhar-
monic oscillator potentials. Using an ansatz for the eigenfunctions, Kaushan
[2] obtained an exact analytic solution for the Schrédinger equation for the
doubly anharmonic potential. The coulomb atom in the presence of some
anharmonic oscillators have been discussed by Dutra [3].

Many years ago Battacharjie and Sudarshan (4] presented a system-
atic method for constructing velocity independent potentials for which the
Schrodinger differential equation can be solved by means of known functions.
The authors have considered a general linear second order differential equa-
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tion which can be reduced to the one dimensional Schrédinger differential
equation.

Another method to construct soluble potentials have been presented
by Cordero and Ghirardi [5] using techniques of Lie algebras.

The treatments made by these authors are not within a single scheme.
Firstly they studied the potentials which comes from a hypergeometric equa-
tion when it is reduced to a Schrédinger’s like equation, and secondly they
studied the potentials which comes from a confluent hypergeometric equa-
tion when it is reduced to a Schrodinger’s like equation. We have made a
confrontation of the methods and we conclude that it is not necessary to
study both cases separately [6].

The purpose of this paper is to point out the fact that we can obtain
potentials coming from the confluent hypergeometric equations when they
are reduced to Schrédinger’s like equations by means of potentials coming
from the hypergeometric equations when they are reduced to a Schrédinger’s
like equation.

This paper is organized as follows: in section 2 we present the reduc-
tion of a general linear second order differential equation to a Schrodinger’s
like equation; in section 3 we show a particular case which reduces the
equation to a hypergeometric equation; in section 4 we obtain the confluent
hypergeometric equation by means of a limit process and finally we present
an example, discussing the isotonic oscillator.

2. Transformation on the General Linear Second Order Differ-
ential Equation

In this section we show how to transform a general linear second order
differential equation into a Schrédinger’s like equation where we can identify
the potential.

We consider the following linear second order differential equation

iiﬂ ¥ P(z)% +Q(z)u=0 (1.1)

where u = u(z).



Introducting the following transformations

z = f(r) u(z) = p(r)¢(r) (1.2)
~ where p(r) # 0, in the eq. (1.1) we obtain a differential equation for ¢(r),

as follows
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where A(r) and B(r) are given by
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where P(r) = p[f(r)], Q(r) = ¢[f(r)] and H(r) = d{-(2 ) d{l(:)

Now, taking A(r) = 0 and B(r) = k? — V(r) with V(r) velocity inde-
pendent we obtain the Schrodinger differential equation

_d’(r)
dr?

+ V(r)e(r) = K*o(r) (16)

where V/(r) is the velocity independent potential and k? is a term involving
the energy.
Then, the general form for the potential is the following

V(r) = k* — B(r) (1.7)

where B(r) is given by eq. (1.5). We note that the potential can be energy
dependent. Aly and Barut [1] have obtained several energy dependent po-
tentials.



3. Transformation on the Hypergeometric Equation

As a first particular case we have the hypergeometric differential equa-

dF z)

tion 2
2(1 —2) F(z)

+lc—(a+b+1)z]——— —abF(z) =0 (2.1)

where a, b, c are consta.nts.
In this case we obtain the potential which comes from a hypergeometric
differential equation. Taking

c—(a+b+1)f(r) —ab
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and using the condition A(r) = 0 we obtain the following differential equa-

tion,
2t} + ST G - E0 =0 @9

The above equation can be integrated for p(r) and then we get

P(r) =

o) = 3 L2 1oy 11 - s} (24

where M is a constant.
Introducing the eq. (2.2) and eq (2.4) in the eq. (1.7) we obtain the
following non linear third order differential equation
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(2.5)
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where f = f(r) and the prime denotes differentiation.

Now, to obtain soluble potentials in terms of hypergeometric func-
tions we must find particular functions f(r) and p(r) which lead to the
Schrodinger differential equation. Battacharjie and Sudarshan [4] have ob-
tained functions for the Poschl-Teller potential, Bargmann’s potentials of
the linear types and others. The above equation can be obtained by means

Wy =12 -ver)
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of Lie algebra [5] with a convenient choice of the parameters [6].
4. Transformation on the Confluent Hypergeometric Equation

In this section we find the general form for the potentials associated
with the confluent hypergeometric equation.

We know that the confluent hypergeometric equation is obtained by a
limit process of the eq. (2.1) and results in

z fig—z)+(c—z) dFd—Ez)—aF(z)=0 (3.1)

where a,c are constants.

Introducing the function f(r) = ef(er) in eq.(2.5) and take the limit
when ¢ — 0 we obtain the following non linear third order differential
equation
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which is the general form for the potential which is reduces a confluent hy-
pergeometric form.

This result is the same obtained by Battacharjie and Sudarshan [4] but
only after repeating the whole procedure which have been made for the case
of the hypergeometric equation.

5. The Isotonic Oscillator

As an example we discuss the isotonic oscillator [7] which results in the
same equation as the one for the two-body problems discussed by Calogero
- [8].

Taking the function f(r) as

where w is a constant, and substituing in the eq. (3.2) we obtain for the
potential

= _fﬁ wr?  (2¢—-1)(2¢-3)
i s 2;1{ 2 . 4r? }



which is the potential of the isotonic oscillator. The solution of the eq.(1.6)
with the above potential can be find in terms of the confluent hypergeomet-
ric function, which are solutions of the eq. (3.1).

Conclusion

In this paper we obtained the general case of the potential associated to
the confluent hypergeometric equation when it is reduced to a Schrodinger’s
like equation by means of a limit process without making the exhaustive
calculation done, e.g. by [4].

Many others potentials can be obtained for a convenient choice of the
function f(r). The important fact is that, when we have f(r), we obtain the
potential (depending or not on the energy) which implies that the solution
of the corresponding Schrodinger equation is a confluent hypergeometric
equation. The same is valid for the potential associated to the hypergeo-
metric equation.
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