THE WEIERSTRASS-STONE THEOREM IN ABSOLUTE VALUED DIVISION RINGS

João B. Prolla

RELATÓRIO TÉCNICO Nº 53/91

Let S be a zero-dimensional compact Hausdorff space and let E be a normed space over a non-Archimedean absolute valued division ring $(K, |\cdot|)$. The space C(S; E) of all continuous functions from S into E is equipped with the uniform topology given by the supremum norm. A Weierstrass-Stone Theorem for arbitrary subsets of C(S; E) is established.

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Ciência da Computação IMECC - UNICAMP Caixa Postal 6065 13.081 - Campinas - SP BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade do autor.

The Weierstrass-Stone Theorem in Absolute Valued Division Rings

João B. Prolla

Departamento de Matemática,

IMECC — UNICAMP, Caixa Postal 6065

13081 Campinas, SP, Brazil

Abstract

Let S be a zero-dimensional compact Hausdorff space and let E be a normed space over a non-Archimedean absolute valued division ring $(I\!\!K,|\cdot|)$. The space C(S;E) of all continuous functions from S into E is equipped with the uniform topology given by the supremum norm. A Weierstrass-Stone Theorem for arbitrary subsets of C(S;E) is established.

1. The main Theorem

Let S be a compact Hausdorff space which is 0-dimensional (i.e., for any point s belonging to an open subset G, there exists a closed and open set A with $s \in A \subset G$). Let $(I\!\!K, |\cdot|)$ be a complete non-Archimedean absolute valued division ring. Let E be a non-trivial normed space over $I\!\!K$, and let C(S;E) be the linear space of all continuous functions from S into E, equipped with the supremum norm

$$||f|| = \sup\{||f(x)||; x \in S\}.$$

In a forthcoming paper [7] we show how to extend some of the results of this paper to case of a topological ring (E, τ) .

Definition 1. A non-empty subset $M \subset C(S; \mathbb{K})$ is said to have **property** V if

- (1) $|\varphi(s)| \leq 1$, for every $s \in S$ and $\varphi \in M$;
- (2) if $\varphi \in M$, then 1φ belongs to M;
- (3) if φ and ψ belong to M, then $\varphi\psi \in M$.

Definition 2. Let $W \subset C(S; E)$ be a non-empty subset. A function $\varphi \in C(S; \mathbb{K})$ is called a multiplier of W if

- (1) $|\varphi(s)| \le 1$, for every $s \in S$;
- (2) if f and g belong to W, then $\varphi f + (1 \varphi)g$ belongs to W.

Clearly, if M denotes the set of all multipliers of W, then M satisfies conditions (1) and (2) of Definition 1. The identity

$$(\varphi\psi)f + (1-\varphi\psi)g = \varphi[\psi f + (1-\psi)g] + (1-\varphi)g$$

shows that M satisfies condition (3) as well. Hence M has property V. Notice that the constant functions 0 and 1 belong to M.

Definition 3. A subset $A \subset C(S; \mathbb{K})$ is said to be separating over S, if given any two distinct points, s and t, of S, there exists a function $\varphi \in A$ such that $\varphi(s) \neq \varphi(t)$.

Definition 4. A subset $M \subset C(S; \mathbb{K})$ is said to be strongly separating over S, if given any ordered pair $(s,t) \in S \times S$, with $s \neq t$, there exists

a function $\varphi \in M$ such that $\varphi(s) = 1$, $\varphi(t) = 0$ and $|\varphi(x)| \le 1$ for all $x \in S$.

Proposition 1. If A is a unitary subalgebra of $C(S; \mathbb{K})$ which is separating over S, then A is strongly separating over S.

Proof. Let $s \neq t$ be given in S. Since A is vector space containing the constants, there is $a \in A$ such that a(s) = 1 and a(t) = 0. Since a is continuous, a(S) is a compact subset of $I\!K$. By Kaplansky's Lemma (see Lemma 1.23, Prolla [6]) there is a polynomial $p:I\!K \to I\!K$ such that p(1) = 1, p(0) = 0 and $|p(y)| \le 1$ for all $y \in a(S)$. Let $\varphi(x) = p(a(x))$, for all $x \in S$. Then $\varphi \in A$, $\varphi(s) = 1$, $\varphi(t) = 0$, and $|\varphi(x)| \le 1$ for all $x \in S$. Hence A strongly separates the points of S.

Lemma 1. Let $M \subset C(S; \mathbb{K})$ be a non-empty subset with property V, and containing the constant functions 0 and 1. Assume that M is strongly separating over S. Let N be a clopen subset of S. For each $\delta > 0$, there is $\varphi \in M$ such that

- (1) $|1 \varphi(t)| < \delta$, for all $t \in N$,
- (2) $|\varphi(t)| < \delta$, for all $t \notin N$.

Proof. If N = S, the function $\varphi(t) = 1$ for all $t \in S$, satisfies (1) and (2). If $N = \emptyset$, the function $\varphi(t) = 0$ for all $t \in S$ satisfies (1) and (2). Assume that $K = S \setminus N$ is non-empty. Fix $y \in S$, $y \notin N$. For each $t \in N$, there is $\varphi_t \in M$ such that $\varphi_t(t) = 0$, $\varphi_t(y) = 1$. By continuity there exists a neighborhood V(t) of t such that $|\varphi_t(s)| < \delta$ for all $s \in V(t)$. By compactness of N there are $t_1, \ldots, t_n \in N$ such that $N \subset V(t_1) \cup \ldots \cup V(t_n)$. Consider $\varphi_y = 1 - \varphi_{t_1} \cdot \varphi_{t_2} \cdot \ldots \cdot \varphi_{t_n}$. Then $\varphi_y \in M$ and $\varphi_y(y) = 0$, while $|1 - \varphi_y(t)| < \delta$, for all $t \in N$. Indeed, if $t \in N$, then $t \in V(t_i)$ for some $i = 1, \ldots, n$. Hence

$$|1 - \varphi_y(t)| = |\varphi_{t_i}(t)| \cdot \prod_{j \neq i} |\varphi_{t_j}(t)| < \delta.$$

By continuity there exists a neighborhood W(y) of y such that $|\varphi_y(s)| < \delta$ for all $s \in W(y)$. By compactness of K, there are $y_1, \ldots, y_m \in K$ such that $K \subset W(y_1) \cup \ldots \cup W(y_m)$. Let $\varphi = \varphi_{y_1} \cdot \varphi_{y_2} \cdot \ldots \cdot \varphi_{y_m}$. Clearly, $\varphi \in M$. We claim that for each $k = 1, 2, \ldots, m$, we have

(3)
$$|1 - \varphi_{y_1}(t)\varphi_{y_2}(t) \cdot \ldots \cdot \varphi_{y_k}(t)| < \delta$$
, for all $t \in \mathbb{N}$.

Clearly, (1) follows from (3) by taking k = m. We prove (3) by induction. For k = 1, (3) is clear, since $|1 - \varphi_y(t)| < \delta$ for all $t \in N$ and $y \in K$. Assume (3) has been proved for k. To simplify notation we write $\varphi_i = \varphi_{y_i}$ for all $1 \le i \le m$. Then, for each $t \in N$,

$$\begin{aligned} &|1 - \varphi_{1}(t) \cdot \ldots \cdot \varphi_{k+1}(t)| = |1 - \varphi_{k+1}(t) + \varphi_{k+1}(t) - \\ &- \varphi_{1}(t) \cdot \ldots \cdot \varphi_{k}(t) \cdot \varphi_{k+1}(t)| \\ &\leq \max(|1 - \varphi_{k+1}(t)|, |\varphi_{k+1}(t)| \cdot |1 - \varphi_{1}(t) \cdot \ldots \cdot \varphi_{k}(t)|) < \delta, \end{aligned}$$

because $|1 - \varphi_{k+1}(t)| < \delta$, $|\varphi_{k+1}(t)| \le 1$, and by the induction hypothesis, $|1 - \varphi_1(t) \cdot \ldots \cdot \varphi_k(t)| < \delta$. Hence (3) is true for k + 1.

It remains to prove (2), i.e. $|\varphi(t)| < \delta$ for all $t \in K$. Now, if $t \in K$, then $t \in W(y_i)$ for some i = 1, ..., m. Hence $|\varphi_i(t)| < \delta$, while $|\varphi_j(t)| \le 1$ for all $j \ne i$. Therefore $|\varphi(t)| < \delta$, and (2) is proved.

Theorem 1. Let W be a non-empty subset of C(S; E) such that the set M of all multipliers of W strongly separates the points of S. Let $f \in C(S; E)$ and $\varepsilon > 0$ be given. The following are equivalent:

(1) there is some $g \in W$ such that $||f - g|| < \varepsilon$;

(2) for each $x \in S$, there is some $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$.

Proof. Clearly (1) \Rightarrow (2). Conversely, assume that (2) is true. For each $x \in S$, there is some $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$. Choose a real number $\varepsilon(x) > 0$ such that $||f(x) - g_x(x)|| < \varepsilon(x) < \varepsilon$. Let N(x) be a clopen neighborhood of x in S such that

$$N(x) \subset \left\{ t \in S \, ; \, ||f(t) - g_x(t)|| < \varepsilon(x) \right\}.$$

Select a point $x_1 \in S$ arbitrarily. Let $K = S \setminus N(x_1)$. By compactness of K, there exists a finite set $\{x_2, \ldots, x_m\} \subset K$ such that $K \subset N(x_2) \cup \ldots \cup N(x_m)$. Let

$$N_2 = N(x_2) \setminus N(x_1),$$

$$N_3 = N(x_3) \setminus (N(x_1) \cup N(x_2)),$$

$$\dots$$

$$N_m = N(x_m) \setminus \left(\bigcup_{j=1}^{m-1} N(x_j)\right).$$

Then N_2, N_3, \ldots, N_m are clopen subsets of S, such that $K \subset N_2 \cup N_3 \cup \ldots \cup N_m$, and $N_i \cap N_j = \emptyset$ for all $i \neq j$ $(2 \leq i, j \leq m)$. Let us write $g_i = g_{x_i}$ for all $i = 1, 2, \ldots, m$, and let

$$k = \max\{||f - g_1||, ||f - g_2||, \dots, ||f - g_m||\}.$$

Choose a number $\delta>0$ so small that $\delta k(m-1)<\varepsilon-\varepsilon'$, where $\varepsilon'=\max\{\varepsilon(x_1),\varepsilon(x_2),\ldots,\varepsilon(x_m)\}$. By Lemma 1, there are $\varphi_2,\ldots,\varphi_m\in M$ such that

- (1) $|1 \varphi_i(t)| < \delta$, for all $t \in N_i$
- (2) $|\varphi_i(t)| < \delta$, for all $t \notin N_i$

for all i = 2, ..., m. Define $N_1 = N(x_1)$, and

$$\psi_2 = \varphi_2$$

$$\psi_3 = (1 - \varphi_2)\varphi_3$$

$$\vdots$$

$$\psi_m = (1 - \varphi_2)(1 - \varphi_3) \cdot \dots \cdot (1 - \varphi_{m-1})\varphi_m.$$

Clearly, $\psi_i \in M$, for all i = 2, 3, ..., m. Now

$$\psi_2 + \ldots + \psi_j = 1 - (1 - \varphi_2)(1 - \varphi_3) \cdot \ldots \cdot (1 - \varphi_j), \quad j = 2, \ldots, m,$$

can be easily verified by induction. Define

$$\psi_1 = (1 - \varphi_2)(1 - \varphi_3) \dots (1 - \varphi_m).$$

Then $\psi_1 \in M$ and $\psi_1 + \psi_2 + \ldots + \psi_m = 1$. Notice that

(3)
$$|\psi_i(t)| < \delta$$
, for all $t \notin N_i$, $i = 1, 2, ..., m$.

Indeed, if $i \geq 2$, then $|\psi_i(t)| \leq |\varphi_i(t)|$ and (3) follows from (2). If i = 1, and $t \notin N(x_1)$, then $t \in K$. Hence $t \in N_j$ for some $j = 2, \ldots, m$. By (1), $|1 - \varphi_j(t)| < \delta$ and so

$$|\psi_1(t)| = |1 - \varphi_j(t)| \cdot \prod_{j \neq i} |1 - \varphi_i(t)| < \delta$$
,

because $|1 - \varphi_i(t)| \le 1$ for all $i \ne j$. Let $g = \psi_1 g_1 + \psi_2 g_2 + \ldots + \psi_m g_m$. Then

$$g = \varphi_2 g_2 + (1 - \varphi_2) [\varphi_3 g_3 + (1 - \varphi_3) [\varphi_4 g_4 + \ldots + (1 - \varphi_{m-1}) [\varphi_m g_m + (1 - \varphi_m) g_1] \ldots]].$$

Hence $g \in W$. Let $x \in S$ be given. There is exactly one integer $1 \le i \le m$ such that $x \in N_i$. Call it j. Then $|\psi_j(x)| \cdot ||f(x) - g_j(x)|| \le |\psi_j(x)| \cdot \varepsilon(x_j) < \varepsilon'$, since $|\psi_j(x)| \le 1$. For all $i \ne j$, we have that $x \notin N_i$. By (3), $|\psi_i(x)| < \delta$. Hence

$$\sum_{i\neq j} |\psi_i(x)| \cdot ||(x) - g_i(x)|| \le \delta k(m-1) < \varepsilon - \varepsilon',$$

and therefore

$$||f(x) - g(x)|| = ||\sum_{i=1}^{m} \psi_i(x)(f(x) - g_i(x))||$$

$$\leq \varepsilon' + \sum_{i \neq j} |\psi_i(x)| \cdot ||f(x) - g_i(x)|| < \varepsilon' + \varepsilon - \varepsilon' = \varepsilon. \quad \Box$$

2. Some Consequences

Let us recall the definition of the distance of an element $f \in C(S; E)$ from W:

$$dist(f; W) = \inf\{||f - g||; g \in W\}.$$

Theorem 2. Let W be a non-empty subset of C(S; E) such that the set M of all multipliers of W strongly separates the points of S. For each $f \in C(S; E)$ there exists $x \in S$ such that

$$dist(f; W) = dist(f(x); W(x)).$$

Proof. If $\operatorname{dist}(f;W)=0$, then $\operatorname{dist}(f(x);W(x))=0$ for every $x\in S$. Suppose now that $\operatorname{dist}(f;W)=d>0$. By contradiction, assume that $\operatorname{dist}(f(x);W(x))< d$ for every $x\in S$. Hence, for each $x\in S$, there is some $g_x\in W$ such that $\|f(x)-g_x(x)\|< d$. Consequently, f and d>0 satisfy condition (2) of Theorem 1. By Theorem 1, there exists $g\in W$ such that $\|f-g\|< d$, a contradiction, since $d=\operatorname{dist}(f;W)$.

Theorem 3. (Kaplansky [4]) Let A be a unitary subalgebra of $C(S; \mathbb{K})$ which is separating over S. Then A is uniformly dense in $C(S; \mathbb{K})$.

Proof. Let $E = \mathbb{K}$ and W = A. Notice that every element $\varphi \in A$, such that $|\varphi(x)| \leq 1$ for all $x \in S$, is a multiplier of W. By Proposition 1,

the set M of all multipliers of W is strongly separating over S. Let now $f \in C(S; \mathbb{K})$ be given. By Theorem 2, there exists $x \in S$ such that

$$dist(f; A) = dist(f(x); A(x)).$$

Since A contains the constants, $A(x) = \mathbb{K}$. Hence $\operatorname{dist}(f(x); A(x)) = 0$, and therefore $\operatorname{dist}(f; A) = 0$. This shows that A is uniformly dense in $C(S; \mathbb{K})$.

Corollary 1. (Weierstrass Theorem) Let S be a non-empty compact subset of \mathbb{K} . For every $f \in C(S; \mathbb{K})$ and every $\varepsilon > 0$, there exists a polynomial p with coefficients in \mathbb{K} such that $|f(x) - p(x)| < \varepsilon$, for all $x \in S$.

Remark. When K is the field of p-adic numbers with the p-adic valuation, Theorem 3 and its Corollary 1 were proved by J. Dieudonné in 1944. (See Dieudonné [2].) In 1947, I. Kaplansky showed that a Weierstrass-Stone theorem holds for functions with values in topological rings having ideal neighborhoods of 0. (See Kaplansky [3].) Now in IK, the set $\{\lambda \in \mathbb{K}; |\lambda| < 1\}$, called the valuation ideal of \mathbb{K} , is an ideal neighborhood of 0. In 1950, Kaplansky showed that the methods of [3] could be extended to $(\mathbb{K}, |\cdot|)$ by proving Theorem 3. In fact, he proved a more general version of Theorem 3, by considering S to be a 0-dimensional locally compact Hausdorff space, and $C_0(S; \mathbb{K})$ the space of all those $f \in C(S; \mathbb{K})$ vanishing at infinity, and $A \subset C_0(S; \mathbb{K})$ a subalgebra containing for any two distinct points $s,t \in S$ a function vanishing at s but not at t. (See Kaplansky [4]). In 1958, K. Mahler gave a constructive proof of Dieudonné's Weierstrass theorem (Corollary 1 above) for the case S is the ring of p-adic integers $\{\lambda \in Q_p : |\lambda|_p \leq 1\}$. (See Mahler [5].) However, Mahler's proof is based on some properties of the cyclotomic extension of Q. In 1974, R. Bojanic presented another proof of Mahler's result, which is entirely analytic. (See Bojanic [1].)

3. Simultaneous approximation and interpolation

Definition 5. A non-empty subset $A \subset C(S; E)$ is called an interpolating family for C(S; E) if, for every $f \in C(S; E)$ and every finite subset

 $F \subset S$, there exists $g \in A$ such that f(x) = g(x) for all $x \in F$.

Let us study the problem of simultaneous approximation and interpolation. We start with scalar-valued functions, i.e., subsets of $C(S; \mathbb{K})$.

Theorem 4. Let A be a uniformly dense linear subspace of $C(S; \mathbb{K})$. Then, for every $f \in C(S; \mathbb{K})$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. Let $F = \{x_1, \ldots, x_n\}$. Define a linear mapping $T : C(S; \mathbb{K}) \to \mathbb{K}^n$ by

$$Tg = (g(x_1), \ldots, g(x_n))$$

for each $g \in C(S; \mathbb{K})$. By density of A and continuity of T, we have

$$T(C(S; I\!\!K)) = T(\overline{A}) \subset \overline{T(A)}.$$

Now T(A) is a linear subspace of \mathbb{K}^n and therefore T(A) is closed. Hence

$$T(C(S; \mathbb{K})) = T(A)$$

and A is an interpolating family for $C(S; \mathbb{K})$. Therefore a_1, \ldots, a_n can found in A such that

$$a_i(x_j) = \delta_{ij}$$
 , $1 \le i, j \le n$.

Choose $\delta > 0$ so that $\delta < \varepsilon$ and $\delta k < \varepsilon$, where $k = \max\{\|a_i\| ; 1 \le i \le n\}$. By density of A there is some $g_1 \in A$ such that $\|f - g_1\| < \delta$. Let

$$v_i = f(x_i) - g_1(x_i) , 1 \le i \le n.$$

Define $g_2 = \sum_{i=1}^n v_i a_i$. Then $g_2 \in A$ and $g_2(x_j) = v_j$ for all $1 \leq j \leq n$. Finally, let $g = g_1 + g_2$. Then $g \in A$ and $g(x_j) = f(x_j)$, $1 \leq j \leq n$. Moreover,

$$||f - g|| \le \max(||f - g_1||, ||g_2||) < \varepsilon,$$

since $||f - g_1|| < \varepsilon$ and $||g_2|| \le \delta \max\{||a_i||; 1 \le i \le n\}$.

Corollary 2. Let A be a unitary subalgebra of $C(S; \mathbb{K})$ which is separating over S. Then, for every $f \in C(S; \mathbb{K})$, every $\varepsilon > 0$ and every finite subset

 $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. By Theorem 3, A is a uniformly dense linear subspace of $C(S; \mathbb{K})$. It remains to apply Theorem 4.

Remark. The proof of Theorem 4 does not extend to subsets of C(S; E). In this case we rely on Theorem 1, as our next result shows.

Theorem 5. Let $A \subset C(S; E)$ be an interpolating family for C(S; E) such that the set of multipliers of A strongly separates the points of S. Then, for every $f \in C(S; E)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. Let $W = \{g \in A ; f(x) = g(x) \text{ for all } x \in F\}$. Since A is an interpolating family, $W \neq \emptyset$. Notice that every multiplier of A is also a multiplier of W. Let $x \in S$ be given. Consider the finite set $F \cup \{x\}$. Since A is an interpolating family for C(S; E), there exists $g_x \in A$ such that $f(t) = g_x(t)$ for all $t \in F \cup \{x\}$. Therefore $g_x \in W$. Notice that $||f(x) - g_x(x)|| = 0 < \varepsilon$. By Theorem 1 there exists $g \in W$ such that $||f - g|| < \varepsilon$. Notice that $g \in W$ implies $g \in A$ and f(x) = g(x) for all $x \in F$.

References

- [1] R. BOJANIC, A simple proof of Mahler's Theorem on approximation of continuous functions of a p-adic variable by polynomials, J. Number Theory 6 (1974), 412-415.
- [2] J. DIEUDONNÉ, Sur les fonctions continues p-adiques, Bull. Sci. Math. 68 (1944), 79-95.
- [3] I. KAPLANSKY, Topological rings, Amer. J. Math. 69 (1947), 153-183.
- [4] I. KAPLANSKY, The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc. 1 (1950), 356-357.

- [5] K. MAHLER, An interpolation series for continuous functions of a p-adic variable, J. reine angewandte Math. 199 (1958), 23-24 and 208 (1961), 70-72.
- [6] J. B. PROLLA, "Topics in Functional Analysis over valued divison rings", North-Holland Math. Studies 77, North-Holland Publ. Co., Amsterdam, 1982.
- [7] J. B. PROLLA, Uniform approximation of functions with values in topological rings, in preparation.

RELATÓRIOS TÉCNICOS — 1991

- 01/91 Um Método Numérico para Resolver Equações de Silvester e de Ricatti Vera Lucia da Rocha Lopes and José Vitório Zago.
- 02/91 "Regge-Like" Relations for (Non-Evaporating) Black Holes and Cosmological Models Vilson Tonin-Zanchin and Erasmo Recami.
- 03/91 The Exponential of the Generators of the Lorentz Group and the Solution of the Lorentz Force Equation J. R. Zeni and Waldyr A. Rodrigues Jr.
- 04/91 Tensornorm Techniques for the (DF)-Space Problem Andreas Defant and Klaus Floret.
- 05/91 Nonreversibility of Subsemigroups of Semi-Simple Lie Groups Luiz San Martin.
- 06/91 Towards a General Theory of Convolutive Sets (With Applications to Fractals) Jayme Vaz Jr.
- 07/91 Linearization of Holomorphic Mappings of Bounded Type Jorge Mujica.
- 08/91 Topological Equivalence of Diffeomorphisms and Curves M. A. Teixeira.
- 09/91 Applications of Finite Automata Representing Large Vocabularies Cláudio L. Lucchesi and Tomasz Kowaltowski.
- 10/91 Torsion, Superconductivity and Massive Electrodinamics
 Cartan's Torsion Vector and Spin-0 Fields L. C. Garcia de Andrade.
- 11/91 On The Continuity of Fuzzy Integrals G. H. Greco and R. C. Bassanezi.
- 12/91 Optimal Chemical Control of Populations Developing Drug Resistance M. I. S. Costa, J. L. Boldrini and R. C. Bassanezi.
- 13/91 Strict Monotonicity of Eigenvalues and Unique Continuation Djairo G. de Figueiredo and Jean-Pierre Gossez.
- 14/91 Continuity of Tensor Product Operators Between Spaces of Bochner Integrable Functions Andreas Defant and Klaus Floret.
- 15/91 Some Remarks on the Join of Spheres and their Particular Triangulations — Davide C. Demaria and J. Carlos S. Kiihl.
- 16/91 Sobre a Equação do Telégrafo e o Método de Riemann L. Prado Jr. and E. Capelas de Oliveira.
- 17/91 Positive Solutions of Semilinear Elliptic Systems Ph. Clément, D. G. de Figueiredo and E. Mitidiere.
- 18/91 The Strong Coupling Constant: Its Theoretical Derivation from a Geometric Approach to Hadron Structure Erasmo Recami and Vilson Tonin-Zanchin.

- 19/91 Time Analysis of Tunnelling Processes, and Possible Applications in Nuclear Physics Vladislavi S. Olkhovsiky and Erasmo Recami.
- 20/91 Procedimento, Função, Objeto ou Lógica? M. Cecília Calani Baranauskas.
- 21/91 The Relation Between 2-Spinors and Rotations W. A. Rodrighes Jr. and J. R. Zeni.
- 22/91 Boundaries for Algebras of Analytic Functions on Infinite Dimensional Banach Spaces R. M. Aron, Y. S. Choi, M. L. Lourenço and O. W. Paques.
- 23/91 Factorization of Uniformly Holomorphic Functions Luiza A. Moraes, Otilia W. Paques and M. Carmelina F. Zaine.
- 24/91 Métrica de Prohorov e Robustez Mario Antonio Gneri.
- 25/91 Cálculo de Funções de Green para a Equação de Schrödinger pelo Método de Expansão Tipo Sturm-Liouville — L. Prado Jr. and E. Capelas de Oliveira.
- 26/91 On the Weierstrass-Stone Theorem João B. Prolla.
- 27/91 Sull'Equazione di Laplace nell'Universo di De Sitter E. Capelas de Oliveira and G. Arcidiacono.
- 28/91 The Generalized Laplace Equation in Special Projective Relativity

 E. Capelas de Oliveira and G. Arcidiacono.
- 29/91 The Projective D'Alembert Equation E. Capelas de Oliveira and G. Arcidiacono.
- 30/91 The Generalized D'Alembert Equation in Special Projective Relativity

 E. Capelas de Oliveira and G. Arcidiacono.
- 31/91 A General Algorithm for Finding the Minimal Angle between Subspaces Alvaro R. De Pierro and Alfredo N. Iusem.
- 32/91 Scalar Curvature on Fibre Bundles Maria Alice B. Grou.
- 33/91 Sur la Dimension des Algèbres Symétriques Rachid Chibloun, Artibano Micali et Jean Pierre Olivier.
- 34/91 An Inverse Column-Updating Method for Solving Large-Scale Nonlinear Systems of Equations José M. Martínez em Mário C. Zambaldi.
- 35/91 Parallel Implementations of Broyden's Method Francisco A. M. Gomes and José M. Martínez.
- 36/91 Equivalência Elementar entre Feixes A. M. Sette and X. Caicedo.
- 37/91 Unique Ergodicity for Degenerate Diffusions and the Accessibility Property of Control Systems — Luiz San Martin.
- 38/91 Unobservability of the Sign Change of Spinors Under a 2π Rotation in Neutron Interferometric Experiments — J. E. Maiorino, J. R. R. Zeni and W. A. Rodrigues Jr.
- 39/91 Disappearance of the Numerically irrelevant Solutions (NIS) in Non-Linear Elliptic Eigenvalue problems — Pedro C. Espinoza.
- 40/91 Positive Ordered Solutions of a Analogue of Non-Linear Elliptic Eigenvalue Problems Pedro C. Espinoza.
- 41/91 On von Neumann's Variation of the Weierstrass-Stone Theorem João B. Prolla.

- 42/91 Representable Operators and the Dunford-Pettis Theorem Klaus Floret.
- 43/91 Simultaneous Approximation and Interpolation for Vector-Valued Continuous Functions João B. Prolla.
- 44/91 On Applied General Equilibrium Analysis José A. Scaramucci.
- 45/91 Global Solutions to the Equations for the Motion of Stratified Incompressible Fluids José Luiz Boldrini and Marko Antonio Rojas-Medar.
- 46/91 A characterization of the set of fixed points of some smoothed operators Alfredo N. Iusem and Alvaro R. De Pierro.
- 47/91 Lyapunov Graphs and Flows on Surfaces K. A. de Rezende and R. D. Franzosa.
- 48/91 On the Multiplicative Generators of Semi-Free Circle Actions J. Carlos S. Kiihl and Claudina Izepe Rodrigues.
- 49/91 A Priori Estimate and Existence of Positive Solutions of Nonlinear Cooperative Elliptic Equations Systems Marco Aurelio S. Souto.
- 50/91 On a Class of Theories of Mechanics Part I Jayme Vaz Jr.
- 51/91 Complexification of Operators Between Lp-Spaces Klaus Floret.
- 52/91 Function Spaces and Tensor Product Raymundo Alencar.