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Abstract

Let S be a zero-dimensional compact Hausdorff space and let £ be
a normed space over a non-Archimedean absolute valued division ring
(K,| - |). The space C(S;E) of all continuous functions from S into
E is equipped with the uniform topology given by the supremum norm. A
Weierstrass-Stone Theorem for arbitrary subsets of C(S; E) is established.



1. The main Theorem

Let S be a compact Hausdorff space which is 0-dimensional (i.e., for
any point s belonging to an open subset G, there exists a closed and open
set A with s € A C G). Let (K,| - |) be a complete non-Archimedean
absolute valued division ring. Let E be a non-trivial normed space over
IK, and let C(S;E) be the linear space of all continuous functions from S
into F, equipped with the supremum norm

1f1] = sup{||f(2)]|; = € S}.

In a forthcoming paper [7] we show how to extend some of the results
of this paper to case of a topological ring (E, 7).

Definition 1. A non-empty subset M C C(S; ) is said to have prop-
erty V if

(1) |e(s)] €1, forevery s€ S and 9 € M ;

(2) if ¢ € M, then 1 — ¢ belongs to M ;

(3) if ¢ and 9 belong to M, then oy € M.

Definition 2. Let W C C(S;E) be a non-empty subset. A function
¢ € C(S; ) is called a multiplier of W if

(1) |e(s)] £ 1, for every s € S;

(2)if f and g belong to W, then ¢f + (1 — ¢)g belongs to W.

Clearly, if M denotes the set of all multipliers of W, then M satisfies
conditions (1) and (2) of Definition 1. The identity

() f + (1 —p)g = plf + (1 —¥)g] + (1 — p)g

shows that M satisfies condition (3) as well. Hence M has property V.
Notice that the constant functions 0 and 1 belong to M.

Definition 3. A subset A C C(S; IK) is said to be separating over S, if
given any two distinct points, s and {, of S, there exists a function ¢ € A

such that ¢(s) # o(t).

Definition 4. A subset M C C(S; K) is said to be strongly separating
over S, if given any ordered pair (s,2) € § x S, with s # {, there exists
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a function ¢ € M such that ¢(s) =1, ¢(t) = 0 and |p(z)| < 1 for all
z€S.

Proposition 1. If A is a unitary subalgebra of C(S; ) which is sepa-
rating over S, then A is strongly separating over S.

Proof. Let s # ¢t be given in S. Since A is vector space containing the
constants, there is a € A such that a(s) = 1 and a(t) = 0. Since a
is continuous, a(S) is a compact subset of K. By Kaplansky’s Lemma
(see Lemma 1.23, Prolla [6]) there is a polynomial p : X — JK such that
p(1) =1, p(0) = 0 and |p(y)| <1 for all y € a(S). Let p(z) = p(a(z)),
for all x € S. Then ¢ € A, ¢(s) =1, ¢(t) = 0, and |p(z)] <1 for all
r € S. Hence A strongly separates the points of S. g

Lemma 1. Let M C C(S;IK) be a non-empty subset with property V, and
containing the constant functions 0 and 1. Assume that M is strongly sep-
arating over S. Let N be a clopen subset of S. For each 6 > 0, there is
@ € M such that

(1) 1 —e(t)] <d, forall te N,

(2) |e(t)| < &, forall t € N.

Proof. If N = S, the function ¢(t) =1 for all ¢ € S, satisfies (1) and (2).

If N =0, the function ¢(t) = 0 for all t € S satisfies (1) and (2).
Assume that K = S\N is non-empty. Fix y € S,y ¢ N. For each t € N,
there is ¢, € M such that ¢(t) =0, ¢(y) = 1. By continuity there exists
a neighborhood V/(t) of t such that |p.(s)| < é for all s € V(t). By
compactness of N there are ty,...,t, € N such that N C V(¢{;)U... U
V(t,). Consider ¢, =1 —4, @, ... ¢y,. Then @, € M and ¢,(y) =0,
while |1 — ¢,(t)| < 6, for all t € N. Indeed, if t € N, then t € V(t;) for
some 1 = 1,...,n. Hence

1= oy ()] = leul®)]- TL ey, (1)) < 6.
J#
By continuity there exists a neighborhood W(y) of y such that |p,(s)] < 6
for all s € W(y). By compactness of K, there are y;,...,ym € K such
that K C W(y1)U...UW(yn). Let ¢ = @, - @y, - ... - @y.- Clearly,
¢ € M.. We claim that for each k =1,2,...,m, we have



@) N = (B)pn(t)- ... ¢y, (1) < 6,forall teN.

Clearly, (1) follows from (3) by taking k = m. We prove (3) by induction.
For k =1, (3) is clear, since |1 — ¢ (t)] < é forall t € N and y € K.
Assume (3) has been proved for k. To simplify notation we write ¢; = ¢,
for all 1 <1 < m. Then, for each t € N,

11— 1(2) ... - Py (B)] = 1 = rya(t) + prpa(t) —
—p1(t) - .o k(t) - ()]
< max(|1 = @1 ()], lerna (- 11 —@a(t) - ... - @(t)]) < 8,

because |1 — pr41(t)] < 6, |prs1(t)] < 1, and by the induction hypothesis,
1 —@i(t)- ... r(t)]) < é. Hence (3) is true for k + 1.

It remains to prove (2), i.e. |p(t)] < é for all t € K. Now, if t € K,
then t € W(y;) for some ¢ = 1,...,m. Hence |g;(t)| < §, while |p;(t)] < 1
for all j # i. Therefore |p(t)| < é, and (2) is proved. g

Theorem 1. Let W be a non-empty subset of C(S; E) such that the set M
of all multipliers of W strongly separates the points of S. Let f € C(S;E)
and € > 0 be given. The following are equivalent:

(1) there is some g € W such that ||f — g|| < &;

(2) for each z € S, there is some g, € W such that ||f(z)—g.(z)|| < €.

Proof. Clearly (1) = (2). Conversely, assume that (2) is true. For each
z € S, there is some g, € W such that ||f(z) — gz(z)|| < €. Choose a real
number £(z) > 0 such that ||f(z) — g.(z)|| < e(z) < . Let N(z) be a
clopen neighborhood of z in S such that

N(z)C {te S; [If(t) — g:(DIl < e(z)} .

Select a point z; € S arbitrarily. Let K = S\N(z;). By compactness of
K, there exists a finite set {z;,...,z,} C K such that K C N(z;)U...U
N(zp). Let

Ny = N(z2)\N(z),

N3 = N(z3)\(N(z1) U N(z1)),

----------------- D R A

N = N\ (U M)
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Then N,, Ns,...,N,, are clopen subsets of S, such that K C N, U N3 U
...UNy,, and N;NN; =0 forall ¢ #j (2 <14,j <m). Let us write
8 =9 for all i =3,2,:..;m, and ldi

k= max{[|f — all, If = gall,-- > [If — gmll}-

Choose a number 6§ > 0 so small that dk(m — 1) < & — ¢’ , where
¢’ = max{e(z,),e(z2),-..,6(zm)} . By Lemma 1, there are ¢,,...,pn € M
such that

(1) |1 — @i(t)] <, for all t € N;
(2) |p:i(t)| < 6, for all t & N;

for all 1 =2,...,m. Define N; = N(z;), and

Yy = P2
Y3 = (1 — p2)pa

........................

Pm =1 =p2)(1=p3) ... (1 = Pm-1)Pm -
Clearly, ¥; € M, forall 1 =2,3,...,m. Now
Yot ...+ =1-(1—@a)(1=p3)-...-(1—9j), 1=2,...,m,
can be easily verified by induction. Define
vi=(1—@)(1—p3)...(1 —pm).
Then ¥, € M and ¥, + ¥y + ...+ ¥, = 1. Notice that

(3) |¥i(t)]<é6 , forall tg N;,i=1,2,...,m.

Indeed, if i > 2, then |¥i(t)| < |pi(t)| and (3) follows from (2). If 1 = 1,
and t € N(z,), then t € K. Hence t € N; for some j =2,...,m. By (1),
[1 —¢;(t)] < é and so

(&) =11 —@;(@)]- [T — wil®)l < 6,
i#i

because |1 — @;(¢)| <1 for all i # j. Let g = $191 + 292 + ... + Pmgm.
Then

9 = p292+(1—p2)[aga+(1—@3)[pagat. . . H(1=Pm-1)[PmImn+(1=Pm)a] - . ]| .
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Hence g € W. Let = € S be given. There is exactly one integer 1 <i < m
such that z € N;. Call it j. Then |¢;(z)| - ||f(z) — g;(2)Il £ [¥i(=)] -
e(z;) < €, since |pj(z)| < 1. For all i # j, we have that z ¢ N;. By (3),
|¥i(z)| < 6. Hence

; [i(2)| - lI(z) — gi(2)l| < 6k(m - 1) <e—¢,

and therefore

1£(2) = 9@l = |3 (=) (f(=) - g:(@)l

i=1

<+ Wiz lIf(z) —gie)ll<e’+e—€'=¢. @
i#1

2. Some Consequences

Let us recall the definition of the distance of an element f € C(S;E)
from W:
dist(f; W) = inf{||f — gl| ; g € W}.
Theorem 2. Let W be a non-empty subset of C(S;E) such that the set

M of all multipliers of W strongly separates the points of S. For each
f € C(S;E) there exists z € S such that

dist(f; W) = dist(f(z); W(z)).

Proof. If dist(f; W) = 0, then dist(f(z); W(z)) = 0 for every z € S.
Suppose now that dist(f; W) = d > 0. By contradiction, assume that
dist(f(z); W(z)) < d for every z € S. Hence, for each z € §, there is
some g, € W such that ||f(z) — g:(z)|| < d. Consequently, f and d >0
satisfy condition (2) of Theorem 1. By Theorem 1, there exists g € W such
that ||f — g|| < d, a contradiction, since d =dist(f;W). o

Theorem 3. (Kaplansky [4]) Let A be a unitary subalgebra of C(S;IK)
which is separating over S. Then A is uniformly dense in C(S; IK).

Proof. Let E = IK and W = A. Notice that every element ¢ € A, such
that |p(z)| < 1 for all z € S, is a multiplier of W. By Proposition 1,
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the set M of all multipliers of W is strongly separating over S. Let now
f € C(S;K) be given. By Theorem 2, there exists z € S such that

dist(f; A) = dist(f(z); A(z)).

Since A contains the constants, A(z) = IK. Hence dist(f(z); A(z)) = 0,
and therefore dist(f; A) = 0. This shows that A is uniformly dense in
C(S, H() o

Corollary 1. (Weierstrass Theorem) Let S be a non-empty compact subset
of IK. For every f € C(S;JK) and everye > 0, there exists a polynomial p
with coefficients in IK such that |f(z) — p(z)| <&, forall z € S.

Remark. When /K is the field of p—adic numbers with the p—adic valu-
ation, Theorem 3 and its Corollary 1 were proved by J. Dieudonné in 1944.
(See Dieudonné (2].) In 1947, I. Kaplansky showed that a Weierstrass-
Stone theorem holds for functions with values in topological rings hav-
ing ideal neighborhoods of 0. (See Kaplansky [3].) Now in IK, the set
{X € IK;|A| < 1}, called the valuation ideal of IK, is an ideal neighborhood
of 0. In 1950, Kaplansky showed that the methods of [3] could be extended
to (K,| - |) by proving Theorem 3. In fact, he proved a more general ver-
sion of Theorem 3, by considering S to be a 0-dimensional locally compact
Hausdorff space, and Cy(S; IK) the space of all those f € C(S; ) van-
ishing at infinity, and A C Cy(S;IK) a subalgebra containing for any two
distinct points s,t € S a function vanishing at s but not at t. (See Ka-
plansky [4]). In 1958, K. Mahler gave a constructive proof of Dieudonné’s
Weierstrass theorem (Corollary 1 above) for the case S is the ring of p-adic
integers {A € @, ; |A|, £ 1}. (See Mahler [5].) However, Mahler’s proof is
based on some properties of the cyclotomic extension of @). In 1974, R. Bo-

janic presented another proof of Mahler’s result, which is entirely analytic.
(See Bojanic [1].)

3. Simultaneous approximation and interpolation

Definition 5. A non-empty subset A C C(S; E) is called an interpolat-
ing family for C(S; E) if, for every f € C(S; E) and every finite subset
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F C S, there exists g € A such that f(z) = g(z) for all z € F.

Let us study the problem of simultaneous approximation and interpo-
lation. We start with scalar-valued functions, i.e., subsets of C(S; IK).

Theorem 4. Let A be a uniformly dense linear subspace of C(S;IK).
Then, for every f € C(S;IK), every € > 0 and every finite subset F C S,
there exists g € A such that ||f — g|| < e and f(z) = g(z) for all z € F.

Proof. Let F = {z,,...,z,}. Define a linear mapping T : C(S; K) —
IK™ by
Tg = (g(z1),---,9(zn))
for each g € C(S; IK). By density of A and continuity of T, we have
T(C(S: K)) =T(4) c T(A).
Now T'(A) is a linear subspace of IK™ and therefore T'(A) is closed. Hence
T(C(S; K)) = T(A)

and A is an interpolating family for C(S;IK). Therefore a,,...,a, can
found in A such that

al)=4; ; 1251 SW.

Choose 6 > 0 so that é < ¢ and 6k < ¢, where k = max{Jla;]| ; 1 <1 <
n}. By density of A there is some g; € A such that ||f —g1]| < 6. Let

vi = f(zi) —g1(z:) , 1<i<n.

n
Define g, = Zv;a,—. Then g; € A and g3(z;) = v; for all 1 < j < n. Finally
s=1
, let ¢ = g1 + g2. Then g € A and g(z;) = f(z;) , 1 <j < n. Moreover,
If = gll < max(||f - aill,llg=0) <e,

since ||f — g1]| < € and ||g2|| < 6 max{||ail];1 < i < n}. o

Corollary 2. Let A be a unitary subalgebra of C(S; IK) which is separating
over S. Then, for every f € C(S;IK), every € > 0 and every finite subset




F C S, there exists ¢ € A such that ||f — g|| < € and f(z) = g(z) for all
z€F.

Proof. By Theorem 3, A is a uniformly dense linear subspace of C(S; KK).
It remains to apply Theorem 4. o

Remark. The proof of Theorem 4 does not extend to subsets of C(S; E).
In this case we rely on Theorem 1, as our next result shows.

Theorem 5. Let A C C(S; E) be an interpolating family for C(S; E) such
that the set of multipliers of A strongly separates the points of S. Then, for
every f € C(S; E), every € > 0 and every finite subset F' C S, there exists
g € A such that ||f — g|| < ¢ and f(z) = g(z) for allz € F.

Proof. Let W = {g € A; f(z) = g(z) for all z € F}. Since A is an
interpolating family , W # 0. Notice that every multiplier of A is also a
multiplier of W. Let ¢ € S be given. Consider the finite set F' U {z}.
Since A is an interpolating family for C(S; E), there exists g, € A such
that f(t) = g.(t) for all t € F U {z}. Therefore g € W. Notice that
|f(z) — gz(z)|| = 0 < e. By Theorem 1 there exists ¢ € W such that
If = gll < e. Notice that g € W implies g € A and f(z) = g(z) for all
z€F. g
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