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Abstract. We prove a result on global existence in time for strong so-
lutions to the three dimensional stratified Navier-Stokes equations. These
equations describe the motion of nonhomogeneous incompressible fluids. For
the result, as in the usual Navier-Stokes equations, it is required small initial
velocities and external force fields with a weak form of decay.

1. Introduction

In this work we will be concerned with global existence in time of strong
solutions to the three dimensional stratified Navier-Stokes equations, that is,
the equations fot the motion of a nonhomogeneous incompressible fluid (ob-
tained as a mixture of miscible incompressible fluids, for instance). Being
) C R® a C®-regular bounded open set, T > 0 these equations are:

0
T pau + pu.Vu — Au — grad p = pf,

div u = 0,

A

(1.1) % +u.Vp=0 inQ;

u=0 on 90 x(0,T);

Pli=o(z) = po(z) in
| u|i=0(z) = uo(z) in 0,

where [0, T') is the interval of time being considered; ) is the container where
the fluid is in; u(z,t) € IR® denotes the velocity of the fluid at a point z €



and at time t € [0,T);p(z,t) € R and p(z,t) € IR denote, respectively, the
density and the hydrostatic pressure of the fluid; uo(z) and po(z) are the
initial velocity and density, respectively; f(z,t) is the density by unit of mass
of the external force acting on the fluid; here, without loosing generality, we
have normalized the viscosity to be one; the fluid adheres to the wall 9}
of the container which is at rest. The expressions grad, A and div denote
the gradient, Laplacian and divergence operators, respectively (we also denote

the gradient opera.tor by V and E by u¢); the ith component of u.Vu is

given by (u.Vu); Zu,a '; u.Vp = Eu,§ The first equation in (1.1)
=1 =1

corresponds to the l;ala.nce of linear mcimentum, the third to the balance of

mass, and the second stokes that fluid is incompassible. The unknowns in the

problem are u, p and p.

The classical Navier-Stokes equations corresponds to the special case
where p(z,t) = po is a positive constant; in this case the third equation in
(1.1) drops out. This case has been much studied (see Ladyshenskaya (7] and
Temam [12] and the references there in). Equations (1.1) have been much less
studied, maybe due to their mixed parabolic-hiperbolic character. Antonzev
and Kazhikov [1], Kazhikov [5], Simon [11] and Kim [6] have studied local and
global existence for weak solutions to (1.1). Stronger local or global solutions
were obtained by Ladyszhenskaya and Solonnikov [8] by linearization and fixed
point arguments, and by Okamoto [9] by using evolution operators techniques
and also fixed point arguments. The more constructive spectral semi-Galerkin
method was used by Salvi [10] to obtain local strong solutions and to study
conditions for regularity at { = 0 and by Boldrini and Rojas-Medar [2] also to
obtain local strong solutions and to study their regularity for ¢ > 0.

In this work we present results of global existence for strong solutions (see
section 2 for the exact definitions) under certain regularity assumptions on the
initial data and external force field (see section 3 for the details). In particular,
as in the case of the usual Navier-stokes equations, we will require smallness
of the L?(Q) norm of the initial velocity and of the L*(£2 x (0,T))-norm of the
force field.

Our result can be compared with the ones by Ladyzhenskaya, Solonnikov
and Okamoto as follows. In their results the initial velocity can be a little
less regular then in ours, but, by working with fractional powers of the Stokes
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operator applied to the multipliers that we used, one could weaken our regular-
ity requiriments. On the other hand, Ladyzhenskaya and Solonnikov require
exponential decay in time of the (small) L?(£2)-norm (g > 3) the external force
field f; Okamoto works with f identically zero, and, in order to obtain the
result with nonzero force field, at least an exponential decay in time of the
L?*(2)-norm of f would be required. We require a weaker form of decay in the
sense that we allow a (small) f belonging to L*([0, 00); L?(R2)). Concerning
the conditions on the initial velocity, Okamoto requires small initial velocities
in the H3**(Q)-norm, ¢ > 0, and initial densities po with small enough L*(1)
norm of V pg; Ladyzhenskaya and Solonnikov demand small initial velocities in
the W2_%'Q(Q)-norm, g > 3. In our result it is enough to require small initial
velocity in the H'(Q)-norm.

2. Preliminaries
In what follows we will assume € of class C2. We will consider the usual
Sobolev spaces

W™4(D) = {f € LY(D); 1 lluap) < +00, (lad < m)},

m=0,1,2,...,1<¢<00,D=0Ro0r Nx(0,T),0<T < +o0, with the usual
norm. When ¢ = 2, we denote H™(D) = W™?*(D) and HJ'(D) = closure
of C§°(Q) in H™(D). If B is a Banach-space, we denote by L9([0,T"), B) the
Banach space of the B-valued functions defined in the interval [0,7) that are
Li-integrable in the sense of Bochner.
Let Cg2,(Q) = {v = (v1, v2, v3) € C(Q)?;div v = 0 in 0}; V = closure of
oo () in Hy(2)?, and H = closure of Cg5, () in L?(Q)*

Let P be the orthogonal projection from L?(f2)® onto H obtained by the
usual Helmholtz decomposition. Then the operator A: H — H given by A =
—PA with domain D(A) = H%(Q)"NV is called the Stokes operator. It is well
known that A is a positive definite self-adjoint operator and is characterized

by the relation
(Aw, v) = (Vw, Vv) for all w e D(A),v € V.

From now on, we denote the inner product in H (i.e., the L?-inner product)
by (,). The LP-norm will be denoted by || ||z»(q)-
The following assumptions on the initial data will hold throughout this

paper.



(A.1) The initial value for the density po belongs to W"*(£2) and
satisfies 0 < a < po(z) £ B < +o0 aein (d.

(A.2) The initial value uo belongs to V N H2(f)

Now, using the properties of P, we can reformulate problem (1.1) as
follows: find p € Wh°(Q x (0,T)) and u € C'([0,T),H) N C((0,T), D(A))
such that

% +u.Vp =0 for ae (z,t) € Q2 x (0,T)

(s ©) + (pu.Vu,v) + (Au,v) = (pf,v), 0<t<T, Vo€ H
u(0) = uo, p(0,2) = po(2)

(2.1)

By using spectral semi-Galerkin approximations, Boldrini, Rojas-Medar
[2] proved the following local existence theorem:

Theorem 2.1. Suppose (A.1) and (A.2) are true and that f €
L*(0,T, HY(R)), f: € L*(0,T, L*(2)). Then, thereis 0 < T; < T such that the
problem (2.1) has a unique solution in the interval [0, 7).

Remark. (i) Actually the solution has a little better regularity. For
instance, it is proved that u € L*(0, T}, H3(Q2)).
(i1) From the proof (2), one sees that
T1 = T1(||uo||g:(g), “po”wl.uo(n)) increaaes as ”uo"Hl(Q) decma.ses.

In the next section we will prove that under more stringent conditions,
the above solution is global in time.

3. Global Existence
We have the following result:

Theorem 3.1: Suppose that (A.1) and (A.2) are true and that
f € L},.([0,00); H*(R)) N L=([0, 00); L*(€)) N L*([0, 00), L*(2)),

fi € L}(0,00),L*(R)). Then, if |luollma) and ||f]lz2(ax(0,0)) are small
enough, the solution described in Theorem 2.1 exists globally in time, that
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is, it exists for all £ € IR and for any 0 < T < +o0 it is in the required spaces.

Proof We will combine arguments used by Kim [6] with a variant of
arguments used by Hey wood and Rannacher [4].

We take iy € V N H?(Q2), and will prove that for small enough \ € (0,1],
the solution (u,, py) to (2.1), with initial data (g, po) and external force Af,
exists globally in fime. The crucial estimate will be the one for ||Vu,(t)||z2(q);
and to obtain it, we proceed as follows: from the proof of the local existence
theorem (Theorem 2.1), for any s in the interval of existence, we have the
estimate

(3.1 Sz + [ I1Vux(Exdr <
2 L1l + 8 [ 15 Eaqardr]

(this was obtained by taking u, as a multiplier in (2.1) (ii) with Af in place
off and A, in place of ug).

Also, working as in Kim [6], (Proposition 2.4, p. 93), for ¢ in the interval
of existence of the solution, one obtains

d 2 10 2
(3.2) a“v"t(t)”m(n) < ClIVudt)llz2ay + CX1f(2)llz2 (-

We will show by contradiction that for A small enough, the above two
inequalities imply that ||[Vu,(t)|| is bounded for finite times.

In fact, suppose the opposite, that is, that for any A € (0, 1] the function
¥a(t) = |[Vux(t)||72(q) blows-up in a finite time £*(A) (which, according to the
Remark (ii) above, is necessarely larger than the 7} > 0 given in Theorem 2.1,
corresponding to the initial data (g, po)).

Now, we observe that ey} + ;A% < 2¢y3 for ¥y > (c1/c) /22?5 = I()),
where ¢; = ¢ sup ||f(t)||z2@). Therefore, we have 0 < ,(t) < I()) or d% <

tefo,T1] dt
2c3.

Now we consider the equation 4, = 2c®% and its solution ®,(t) that
blows-up exactly at t*(1). We will prove that the graph of ®,(t) stays bellow
the graph of ¥,() for t € Ay = {t € [0,*())),¥x(f) > I(\)}. In fact, take a
sequence &, > t*(A),n € IN, converging to t*()), and consider the solutions



7. (t) to the problem ¢’ = 2cp® that blows-up exactly at f,. Since 1[),\(t) —
+o00 as t — ¢*(A)” and ¢; (t) are finite for such ¢, we have ¢; (1) < ¥,(t)
for t < t*(A), close enough to t*(A). On the other hand, by using well known
results on differential inequalities, as well as the definitions of ¥x(%) and ¢;,_ (2),
we see that there cannot exist 7 € A, such that (1) = ¢, (7), and, therefore,
#i.(t) < ¥a(t) for t € A,. Since, for 0 < t < ¢*()), we have ¢ (t) — ®)(t) as
n goes to +o0, we finally conclude that ®,(1) < ¥,(t) for t € A,.
Now, ®,(t) = [8¢(t*(\) — t)]"/* and we observe that ®,(t) > I()) for
t > t3(A) = t*(A)—(8cl*(1))~?, and for such that ¢ we necessarely have 1,(t) >
®,(t). Moreover, since I(\) — 0+ as A — 0+, for small enough A we have
[8et*(A)]~? > T, and we also know that ¢*(\) grows as A — 0+. We conclude
that ¥,(t) > @®,(¢t) for ¢ > t*(A) — T}; therefore,

4Ti"/4 t*(2) £(A)
— ®,(r)dr < dr.
3(8c)1/4 ./;-(,\)-T, Ar)dr < t*(A\)-Th ¥alr)dr

Now, if we take ) satisfying

00 1\3“
Gl + 8 1 mer] < 55

estimate (3.1) implies that

[ostrrdr < 2 [Eiolitae + 8 [~ 15 Eaiayir]

/4 t*())
417 _[ 3 Pa(r)dr,

3(8c) /4 = Jeor)-my

for 0 < s < t*(A), which by taking s — ¢*()\)~ is a contradiction. There-
fore, for small enough A, |[Vux(t)||z2(q) does not blow up in finite time and
Vuy, € L2 ([0,00), L3(2)). Now, with this estimate, the proof of the local
existence Theorem will furnish that py € L*([0,00), L=(R)), ure, Auy €

L3 ([0,00), L*(£2)) and Vuy, € L} ([0,00), L*(£2)). These results imply that
pa(ung + uy.Vuy, — Af) € L,oc([() 00), L**¢(Q1)) for some € > 0. Thus, the
equivalent form of (2.1) (ii):

Auy = P(pa(urs + ux.Vuy — Af))



and Cattabriga’s estimate for the Stokes operator, [3], will give that u), €
L2 ,([0,00); W23+¢(Q)).  Therefore, by Sobolev Imbes we have Vu, €
L ([0, 00); L*(R)) which, by Ladyzhenskaya and Solonnikov estimates [8],
imply that V,, and py; € L{2([0,00); L(2)). Finally, from the above ar-
gument, we observe that how small A must be, depends only on ||Vgl||z2(r)
(for fixed po and f), that is, if we have another initial condition %, such that
[|VEo|| = ||V, ]|, the above condition on A will be the same. In other words,
the result depends on the H'-norm of the initial velocity. o
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