SIMULTANEOUS APPROXIMATION AND INTERPOLATION FOR VECTOR-VALUED CONTINUOUS FUNCTIONS

João B. Prolla

RELATÓRIO TÉCNICO Nº 43/91

Abstract. The purpose of this paper is to determine conditions on subsets of continuous, vector-valued functions under which (a) interpolation; (b) approximation; (c) simultaneous interpolation and approximation; are all equivalent properties.

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Ciência da Computação IMECC - UNICAMP Caixa Postal 6065 13.081 - Campinas - SP BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade do autor.

Simultaneous Approximation and Interpolation for Vector-Valued Continuous Functions

João B. Prolla

Abstract. The purpose of this paper is to determine conditions on subsets of continuous vector-valued functions under which (a) interpolation; (b) approximation; (c) simultaneous interpolation and approximation; are all equivalent properties.

§1. Introduction

Throughout this paper S is a non-empty compact Hausdorff space, E is a non-trivial real or complex normed space and E^* is its topological dual. C(S; E) is the linear space of all continuous functions from S into E, equipped with the supremum norm

$$||f|| = \sup\{||f(x)||; \ x \in S\}.$$

Let $W \subset C(S; E)$ be a non-empty subset. A function $\varphi \in C(S; \mathbb{R})$ is called a multiplier of W if $0 \le \varphi \le 1$ and $\varphi f + (1 - \varphi)g$ belongs to W, for every pair, f and g, of elements of W.

The notion of a multiplier is due to Feyel and de La Pradelle [3], in case W is a convex cone, and was extended to arbitrary subsets by Chao-Lin [1].

In our paper [4] we proved the following Weierstrass-Stone theorem for arbitrary non-empty subsets.

Theorem 1. Let W be a non-empty subset of C(S; E) such that the set of all multipliers of W separates the points of S. Let $f \in C(S; E)$ and $\varepsilon > 0$ be given. The following statements are equivalent:

(1) there is some $g \in W$ such that $||f - g|| < \varepsilon$;

(2) for each $x \in S$, there is some $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$.

§2. Interpolating families

We can apply our Theorem 1 to get results on simultaneous approximation and interpolation of vector-valued functions. A subset $A \subset C(S; E)$ is an interpolating family for C(S; E) if, given any finite subset $F \subset S$ and any $f \in C(S; E)$, there exists $g \in A$ such that f(t) = g(t) for all $t \in F$.

Theorem 2. Let $A \subset C(S; E)$ be an interpolating family such that the set of multipliers of A separates the points of S. Then, for every $f \in C(S; E)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$. In particular, A is uniformly dense in C(S; E).

Proof. Define $W = \{g \in A; \ f(t) = g(t) \text{ for all } t \in F\}$. Since A is an interpolating family, $W \neq \emptyset$. Now it is easy to verify that each multiplier of A is also a multiplier of W. Hence, by Theorem 1, it suffices to show that, for each $x \in S$, there exists $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$. Consider the finite set $F \cup \{x\}$. Since A is an interpolating family for C(S; E), there exists $g_x \in A$ such that $f(t) = g_x(t)$ for all $t \in F \cup \{x\}$. In particular, $f(t) = g_x(t)$ for all $t \in F$. Hence $g_x \in W$. On the other hand $f(x) = g_x(x)$ implies $||f(x) - g_x(x)|| = 0 < \varepsilon$. By Theorem 1, there exists $g \in W$ such that $||f - g|| < \varepsilon$, and $g \in W$ implies $g \in A$ and g(t) = f(t) for all $t \in F$.

§3. Linear subspaces

When $E = \mathbb{K}$, $(\mathbb{K} = \mathbb{R} \text{ or } \mathcal{C})$ then the conclusion of Theorem 2 is true under the hypothesis that $A \subset C(S; \mathbb{K})$ is a dense linear subspace. (See Deutsch [2].) This poses the question of finding dense linear subspaces of C(S; E) for which the conclusion of Theorem 2 is valid, i. e., for which simultaneous approximation and interpolation is possible.

Theorem 3. Let W be a linear subspace of C(S; E) such that $A \otimes E \subset W$, where $A = \{ \varphi \circ g; \varphi \in E^*, g \in W \}$. The following statements are equivalent:

- (1) W is a dense linear subspace;
- (2) simultaneous approximation and interpolation from W is possible.

Proof. Obviously, we have only to prove $(1) \Rightarrow (2)$. Let $f \in C(S; E)$, $\varepsilon > 0$ and $F = \{x_1, \ldots, x_n\} \subset S$ be given. We first show that A is dense in $C(S; \mathbb{K})$. Let $h \in C(S; \mathbb{K})$ and $\varepsilon > 0$ be given. Choose $v \in E$ and $\varphi \in E^*$ such that $||\varphi|| \leq 1$ and $\varphi(v) = 1$. Let g(x) = h(x)v, for all $x \in S$. Then, by density of W, there is some $w \in W$ such that $||w - g|| < \varepsilon$. Let $a = \varphi \circ w$. Then $a \in A$ and $|a(x) - h(x)| = |\varphi(w(x)) - h(x)\varphi(v)| = |\varphi(w(x)) - \varphi(h(x)v)| = |\varphi(w(x) - g(x))| \leq ||\varphi|| \cdot ||w(x) - g(x)|| < \varepsilon$, for all $x \in S$.

It follows that A is an interpolating family for $C(S; \mathbb{K})$. Indeed, if we define $T: C(S; \mathbb{K}) \to \mathbb{K}^n$ by $Tg = (g(x_1), \ldots, g(x_n))$ for each $g \in C(S; \mathbb{K})$, then by density of A and continuity of T, we have

$$T(C(S; \mathbb{K})) = T(\overline{A}) \subset \overline{T(A)} = T(A),$$

where the last equality is a consequence of the fact that T(A) is a linear subspace of \mathbb{K}^n . Let $a_1, \ldots a_n \in A$ be such that $a_i(x_j) = \delta_{ij} (1 \le i, j \le n)$. Choose $\delta > 0$ so that $\delta(1 + \sum_{i=1}^n ||a_i||) < \varepsilon$. Since W is dense, there is some $g_1 \in W$ such that $||f - g_1|| < \delta$. Let $v_i = f(x_i) - g_1(x_i)$, $1 \le i \le n$. Since $A \otimes E \subset W$, it follows that

$$g_2(x) = \sum_{i=1}^n a_i(x)v_i, \quad x \in S,$$

belongs to W. Notice that $g_2(x_j) = v_j$ for all $1 \le j \le n$. Hence $g(x_j) = f(x_j)$, for all $1 \le j \le n$, if $g \in W$ is defined to be $g_1 + g_2$. On the other hand,

$$||f-g|| < \delta + ||g_2|| < \delta + \delta \sum_{i=1}^n ||a_i|| < \varepsilon.$$

Corollary. Let W be as in Theorem 3 and assume that the set of multipliers of W separates the points of S. The following statements are equivalent:

- (1) W is an interpolating family for C(S; E);
- (2) W is a dense linear subspace;
- (3) simultaneous approximation and interpolation from W is possible.

Proof. (1) \Rightarrow (2) follows from Theorem 2, even without the hypothesis $A \otimes E \subset W$. (2) \Rightarrow (3) follows from Theorem 3, while (3) \Rightarrow (1) is

§4. Polynomial algebras

When $E = \mathbb{R}$, it follows from the classical Weierstrass-Stone theorem that any interpolating subalgebra $A \subset C(S; \mathbb{R})$ is a dense linear subspace. Hence, for subalgebras of $C(S; \mathbb{R})$ the following are equivalent: (1) A is dense; (2) A is interpolating; (3) simultaneous approximation and interpolation from A is possible. Our next result shows that this remains true for the so-called polynomial algebras. Recall that a vector subspace $W \subset C(S; E)$ is called a polynomial algebra if for every $n \geq 1$ and every continuous n-linear operator $T: E^n \to E$, the composition $T(f_1, \ldots, f_n) \in W$ for all $f_1, \ldots, f_n \in W$.

Theorem 4. Let E be a real normed space and let $W \subset C(S; E)$ be a polynomial algebra. The following statements are equivalent:

(1) W is an interpolating family for C(S; E);

(2) W is a dense linear subspace;

(3) simultaneous approximation and interpolation from W is possible.

Proof. Let $A = \{ \varphi \circ g; \ \varphi \in E^*, \ g \in W \}$. Since W is a polynomial algebra, A is a subalgebra of $C(S; \mathbb{R})$ and $A \otimes E \subset W$. Hence $(2) \Rightarrow (3)$ follows from Theorem 3. Since $(3) \Rightarrow (1)$ is obvious, it remains to prove $(1) \Rightarrow (2)$. Now, by the Hahn-Banach theorem, (1) implies that A is interpolating in $C(S; \mathbb{R})$. Therefore, by the classical Weierstrass-Stone theorem, A is dense in $C(S; \mathbb{R})$. Since $C(S; \mathbb{R}) \otimes E$ is dense in C(S; E), it follows that $A \otimes E$ is dense in C(S; E). It remains to notice that $A \otimes E \subset W$. \square

References

- M. Chao-Lin, Sur l'approximation uniforme des functions continues, C. R. Acad. Sc. Paris, t. 301, Série I, Nº 7 (1985), 349-350.
- 2. F. Deutsch, Simultaneous interpolation and approximation in linear topological spaces. SIAM J. Appl. Math. 14 (1966), 1180-1190.
- 3. D. Feyel and A. De La Pradelle, Sur certaines extensions du Théorème d'Approximation de Bernstein, Pacific J. Math. 115 (1984), 81-89.

A tall blood - (ala)

4. J. B. Prolla, On the Weierstrass-Stone Theorem, to appear.

RELATÓRIOS TÉCNICOS — 1991

- 01/91 Um Método Numérico para Resolver Equações de Silvester e de Ricatti Vera Lucia da Rocha Lopes and José Vitório Zago.
- 02/91 "Regge-Like" Relations for (Non-Evaporating) Black Holes and Cosmological Models Vilson Tonin-Zanchin and Erasmo Recami.
- 03/91 The Exponential of the Generators of the Lorentz Group and the Solution of the Lorentz Force Equation J. R. Zeni and Waldyr A. Rodrigues Jr.
- 04/91 Tensornorm Techniques for the (DF)-Space Problem Andreas Defant and Klaus Floret.
- 05/91 Nonreversibility of Subsemigroups of Semi-Simple Lie Groups Luiz San Martin.
- 06/91 Towards a General Theory of Convolutive Sets (With Applications to Fractals) Jayme Vaz Jr.
- 07/91 Linearization of Holomorphic Mappings of Bounded Type Jorge Mujica.
- 08/91 Topological Equivalence of Diffeomorphisms and Curves M. A. Teixeira.
- 09/91 Applications of Finite Automata Representing Large Vocabularies Cláudio L. Lucchesi and Tomasz Kowaltowski.
- 10/91 Torsion, Superconductivity and Massive Electrodinamics
 Cartan's Torsion Vector and Spin-0 Fields L. C. Garcia de Andrade.
- 11/91 On The Continuity of Fuzzy Integrals G. H. Greco and R. C. Bassanezi.
- 12/91 Optimal Chemical Control of Populations Developing Drug Resistance M. I. S. Costa, J. L. Boldrini and R. C. Bassanezi.
- 13/91 Strict Monotonicity of Eigenvalues and Unique Continuation Djairo G. de Figueiredo and Jean-Pierre Gossez.
- 14/91 Continuity of Tensor Product Operators Between Spaces of Bochner Integrable Functions Andreas Defant and Klaus Floret.
- 15/91 Some Remarks on the Join of Spheres and their Particular Triangulations — Davide C. Demaria and J. Carlos S. Kiihl.
- 16/91 Sobre a Equação do Telégrafo e o Método de Riemann L. Prado Jr. and E. Capelas de Oliveira.
- 17/91 Positive Solutions of Semilinear Elliptic Systems Ph. Clément, D. G. de Figueiredo and E. Mitidiere.
- 18/91 The Strong Coupling Constant: Its Theoretical Derivation from a Geometric Approach to Hadron Structure Erasmo Recami and Vilson Tonin-Zanchin.

- 19/91 Time Analysis of Tunnelling Processes, and Possible Applications in Nuclear Physics Vladislavi S. Olkhovsiky and Erasmo Recami.
- 20/91 Procedimento, Função, Objeto ou Lógica? M. Cecília Calani Baranauskas.
- 21/91 The Relation Between 2-Spinors and Rotations W. A. Rodrighes Jr. and J. R. Zeni.
- 22/91 Boundaries for Algebras of Analytic Functions on Infinite Dimensional Banach Spaces R. M. Aron, Y. S. Choi, M. L. Lourenço and O. W. Paques.
- 23/91 Factorization of Uniformly Holomorphic Functions Luiza A. Moraes, Otilia W. Paques and M. Carmelina F. Zaine.
- 24/91 Métrica de Prohorov e Robustez Mario Antonio Gneri.
- 25/91 Cálculo de Funções de Green para a Equação de Schrödinger pelo Método de Expansão Tipo Sturm-Liouville L. Prado Jr. and E. Capelas de Oliveira.
- 26/91 On the Weierstrass-Stone Theorem João B. Prolla.
- 27/91 Sull'Equazione di Laplace nell'Universo di De Sitter E. Capelas de Oliveira and G. Arcidiacono.
- 28/91 The Generalized Laplace Equation in Special Projective Relativity

 E. Capelas de Oliveira and G. Arcidiacono.
- 29/91 The Projective D'Alembert Equation E. Capelas de Oliveira and G. Arcidiacono.
- 30/91 The Generalized D'Alembert Equation in Special Projective Relativity

 E. Capelas de Oliveira and G. Arcidiacono.
- 31/91 A General Algorithm for Finding the Minimal Angle between Subspaces Alvaro R. De Pierro and Alfredo N. Iusem.
- 32/91 Scalar Curvature on Fibre Bundles Maria Alice B. Grou.
- 33/91 Sur la Dimension des Algèbres Symétriques Rachid Chibloun, Artibano Micali et Jean Pierre Olivier.
- 34/91 An Inverse Column-Updating Method for Solving Large-Scale Nonlinear Systems of Equations José M. Martínez em Mário C. Zambaldi.
- 35/91 Parallel Implementations of Broyden's Method Francisco A. M. Gomes and José M. Martínez.
- 36/91 Equivalência Elementar entre Feixes A. M. Sette and X. Caicedo.
- 37/91 Unique Ergodicity for Degenerate Diffusions and the Accessibility Property of Control Systems — Luiz San Martin.
- 38/91 Unobservability of the Sign Change of Spinors Under a 2π Rotation in Neutron Interferometric Experiments — J. E. Maiorino, J. R. R. Zeni and W. A. Rodrigues Jr.
- 39/91 Disappearance of the Numerically irrelevant Solutions (NIS) in Non-Linear Elliptic Eigenvalue problems Pedro C. Espinoza.
- 40/91 Positive Ordered Solutions of a Analogue of Non-Linear Elliptic Eigenvalue Problems Pedro C. Espinoza.
- 41/91 On von Neumann's Variation of the Weierstrass-Stone Theorem João B. Prolla.
- 42/91 Representable Operators and the Dunford-Pettis Theorem Klaus Floret.