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Simultaneous Approximation and Interpolation
for Vector-Valued Continuous Functions

Joao B. Prolla

Abstract. The purpose of this paper is to determine conditions on subsets
of continuous vector-valued functions under which (a) interpolation; (b)
approximation; (c) simultaneous interpolation and approximation; are all
equivalent properties.

§1. Introduction

Throughout this paper S is a non-empty compact Hausdorff space, £
is a non-trivial real or complex normed space and E* is its topological dual.
C(S; E) is the linear space of all continuous functions from S into E,
equipped with the supremum norm

71l = sup{lIf(=)l}; = € §}.

Let W C C(S; E) be a non-empty subset. A function ¢ € C(S; R) is
called a multiplier of W if 0 < ¢ <1 and ¢f + (1 — ¢)g belongs to W, for
every pair, f and g, of elements of W.

The notion of a multiplier is due to Feyel and de La Pradelle [3], in case
W is a convex cone, and was extended to arbitrary subsets by Chao-Lin [1].

In our paper [4] we proved the following Weierstrass-Stone theorem for
arbitrary non-empty subsets.

Theorem 1. Let W be a non-empty subset of C(S; E) such that the set of
all multipliers of W separates the points of S. Let f € C(S; E) and e > 0
be given. The following statements are equivalent:

(1) there is some g € W such that ||f — g|| < €;

(2) for each z € S, there is some g, € W such that ||f(z) —g<(z)|| < €.



§2. Interpolating families

We can apply our Theorem 1 to get results on simultaneous approxima-
tion and interpolation of vector-valued functions. A subset A C C(S; E)
is an interpolating family for C(S; E) if, given any finite subset FF C §
and any f € C(S; E), there exists g € A such that f(t) = g(t) forallt € F.

Theorem 2. Let A C C(S; E) be an interpolating family such that the set
of multipliers of A separates the points of S. Then, for every f € C(S; E),
every € > 0 and every finite subset F C S, there exists g € A such that
|f — gl| < e and f(z) = g(z) for all z € F. In particular, A is uniformly
dense in C(S; E).

Proof. Define W = {g € A; f(t) = g(t) for all t € F'}. Since A is an
interpolating family, W # #. Now it is easy to verify that each multiplier of
A is also a multiplier of W. Hence, by Theorem 1, it suffices to show that,
for each z € S, there exists g, € W such that ||f(z) — g-(z)|| < €. Consider
the finite set U {z}. Since A is an interpolating family for C(S; E), there
exists g € A such that f(t) = g.(¢) for all t € F U {z}. In particular,
f(t) = g-(t) for all t € F. Hence g, € W. On the other hand f(z) = g.(z)
implies ||f(z) — 9z(z)]l = 0 < &. By Theorem 1, there exists g € W such
that ||f — g|| <€, and g € W implies g € A and g(t) = f(t) for all t € F.
(]

§3. Linear subspaces

When E = K, (K = IR or @) then the conclusion of Theorem 2 is true
under the hypothesis that A C C(S; IK) is a dense linear subspace. (See
Deutsch [2].) This poses the question of finding dense linear subspaces of
C(S; E) for which the conclusion of Theorem 2 is valid, i. e., for which
simultaneous approximation and interpolation is possible.

Theorem 3. Let W be a linear subspace of C(S; E) such that AQE C W,
where A = {pog; ¢ € E*, g € W}. The following statements are equiva-
lent: ;

(1) W is a dense linear subspace;

(2) simultaneous approzimation and interpolation from W is possible.



Proof. Obviously, we have only to prove (1) = (2). Let f € C(S; E), € >
0 and F = {z,,...,2,} C S be given. We first show that A is dense in
C(S; K). Let h € C(S; IK) and € > 0 be given. Choose v € E and
¢ € E* such that ||¢|| < 1 and ¢(v) = 1. Let g(z) = h(z)v, for all z € S.
Then, by density of W, there is some w € W such that ||lw — g|| < e.
Let a = pow. Then a € A and |a(z) — h(z)| = |p(w(z)) — h(z)p(v)| =
lp(w(z)) — p(h(@))] = p(w(z) — 9(2))] < llell - llw(z) — g(z)I[ < e, for
allz € S. ‘

It follows that A is an interpolating family for C(S; K). Indeed, if
we define T : C(S; K) — K™ by Tg = (g(z1),...,9(zn)) for each g €
C(S; IK), then by density of A and continuity of T', we have

T(C(S; K)) = T(A) C T(A) = T(A),

where the last equality is a consequence of the fact that T(A) is a linear
subspace 'Of K"™. Let a,,...a, € A be such that a;(zj) = 5,',-(1 <1, 2R

Choose & > 0 so that §(1 + Y _|la:||]) < &. Since W is dense, there is some

2. ,
g1 € W such that ||f — g1l < &. Let v; = f(2:) — ga(2:), 1 S i < n. Since
A® E C W, it follows that

92(z) = Y ai(z)vi, z€ S,
i=1
belongs to W. Notice that g;(z;) = v; for all 1 < j < n. Hence g(z;) =
f(z;), for all 1 < 5 < n, if g € W is defined to be gy + g2. On the other
hand,

Wf—gll <8+ llgall <648 llaill <e. O

i=1

Corollary. Let W be as in Theorem 3 and assume that the set of multipli-
ers of W separates the points of S. The following statements are equivalent:
(1) W is an interpolating family for C(S; E);
(2) W is a dense linear subspace;
(8) simultaneous approzimation and interpolation from W is possible.

Proof. (1) = (2) follows from Theorem 2, even without the hypothe-
sis AQ E C W. (2) = (3) follows from Theorem 3, while (3) = (1) is
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obvious. O

§4. Polynomial algebras

When E = IR, it follows from the classical Weierstrass-Stone theo-
rem that any interpolating subalgebra A C C(S; IR) is a dense linear
subspace. Hence, for subalgebras of C(S; IR) the following are equiva-
lent: (1) A is dense; (2) A is interpolating; (3) simultaneous approxima-
tion and interpolation from A is possible. Our next result shows that this
remains true for the so-called polynomial algebras. Recall that a vec-
tor subspace W C C(S; FE) is called a polynomial algebra if for every
n 2 1 and every continuous n-linear operator T : E™ — E, the composition
T(fh“-sfn) € W for all fl'l"'!fll eW.

Theorem 4. Let E be a real normed space and let W C C(S; E) be a
polynomial algebra. The following statements are equivalent:

(1) W is an interpolating family for C(S; E)

(2) W is a dense linear subspace;

(8) simultaneous approzimation and mterpalat:on from W is possible.

Proof. Let A = {pog; ¢ € E*, g € W}. Since W is a polynomial algebra,
A is a subalgebra of C(S; IR) and A® E C W. Hence (2) = (3) follows
from Theorem 3. Since (3) = (1) is obvious, it remains to prove (1) = (2).
Now, by the Hahn-Banach theorem, (1) implies that A is interpolating in
C(S; R). Therefore, by the classical Weierstrass-Stone theorem, A is dense
in C(S; R). Since C(S; IR)® E is dense in C(S; E), it follows that AQ F
is dense in C(S; E). It remains to notice that AQ EC W. D
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