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Abstract. Let X be a compact Hausdorfl space and let D(X) be the set of all
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§1. Introduction

Throughout this paper X is a compact Hausdorff space, and D(X)
is the set of all continuous function from the space X into the closed unit
interval / = {t € R; 0 <t < 1}, equipped with the topology of uniform
convergence on X, determined by the metric d defined by

d(f,9) = sup{|f(z) - 9(z)| ; = € X},
for every pair, f and g, of elements of D(X).

We shall say that a non-empty subset A of D(X) has property VN,
if A contains the function % + (1 — ¢)n, whenever it contains ¢,% and
.

The reading of von Neumann’s paper [4] suggests that the following
result should be true.

Theorem 1. Consider a subset A of D(I™) which has property VN, con-
tains the n projections, the constant functions 0 and 1 and at least one

constant function with value 0 < ¢ < 1. Then A is uniformly dense in
D(1™).

Clearly, Theorem 1 is an easy consequence of the following description
of the uniform closure of a subset A C D(X) having property VN.

Theorem 2. Let A C D(X) be a non-empty subset with property VN
and containing 0 and 1. Let f € D(X). Then f belongs to the uniform
closure of A if, and only if, the following conditions hold:

(1) for each pair of points, = and y, of X such that f(z) # f(y), there
is some @ € A such that o(z) # ¢(y);

(2) for each point z € X such that 0 < f(z) < 1, there is some ¢ € A
such that 0 < p(z) < 1.

Now if a subset A C D(X) contains 0 and 1 and has property VN
and if ¢ and ¢ belong to A, then clearly 1—¢ and t¢ both belong to A.
Hence A has property V' of Jewett [1] and so Theorem 2 above is an easy
corollary of Theorem 2, Prolla [2]. However, the proof of [2, Theorem 2]
rests on a very hard result due to R. I. Jewett that says that a closed subset
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of D(X) which has property V is a lattice. (See Theorem 1, Jewett [1].)
In 1984, T. J. Ransford published a remarkably simple proof of Bishop’s
generalization of the Weiersirass-Stone Theovem. {See Ransford [3].) It is
natural then o try to use Ransford’s technique to simplify the proof of (2,
Theorem 2]. However the difficulty is not overcome: one now meets the
problem of proving that a closed subset A of D(X) which has property V
then has property VN. This is the contents of Lemma 6, Prolla [2]. But
we could prove it only as a corollary of [2, Theorem ¥ md so it could not
be used in the proof of {2, Theorem 2] itsell.

Our strategy to prove Theorem 2 above will be the following. Using
Ransford’s technique we first prove Theorem 3 below and then we show
that Theorem 3 implies Theorem 2. This shows that in the case of property
VN the use Zorn’s Lemma removes the need of using the hard result that
the closure of A is a lattice.

In order to state our Theorem 3 we introduce some notations. First of
all, the follewing equivalence relation is introduced: z = y (mod. A) if,
and only if, ¢(x) = ¢(y) for all p € A. Now, if z € X, then [z] denotes
its equivalence class (mod A). For any non-empty subset S C X, and any
f € D(X), we denote by fs the restriction of the function f to the subset
S, and correspondingly, As = {gs; g € A}. Notice that fs € D(S) and
As C D(S). Whea S = [z], we write fs = f[z] and As = Alz].

Theorem 8. Let A be a non-empty subset of D(X) which has property
VN and contains 0 and 1. Then, for each f € D(X), there is a point
z € X such that

dist(f; A) = dist(f[z); Alz]).

§2. Proof of Theorem 8

First of all notice that, for any z € X, dist(f]=]; A[z]) < dist(f; A). Se,
if dist(f;A) =0, then dist(f;A) = dmt(f[z], Alz]) for all points z € X.
Assume now d = dist(f; A) > 0. By Zorn’s Lemama there exists a minimal
closed non-empty subset S C X such that

dist(fs; As) = d.

We claim that S C [z], for some point z € X. H this is false, there is a
pair of points y,z € S such that ¢(y) # ¢¥(z), for some ¥ € A, and we
may assume that ¢¥(y) < ¥(2).



.« 'Ghoose a < b such that ¥(y) < a < b < (z). We may assume 2a < b.

'aéed, if k€.41,2,3,...} is such that (a/b)* < 1/2, then ¥*(y) < a <
B < ¢*(2), where a =.¢*wand-f = .. Notice that 2a < . Og the other
hand, since A has property VN and contains 0 and 1, it follows that A
has property V. Hence %* € A. Define

Y =5ny7([0,8)),
Z=5n¢7"([a,1]).

Then Y and Z are proper closed non-empty subsets of S, such that S =
Y U Z. By the minimality of S, there exist v and w in A such that
d(fy,vy) < d and d(fz,wz) < d. Choose 0 < ¢ < 1 so that d(fy,vy)+e <
d and d(fz,wz) + € < d, and then choose 0 < § < 1/2 so small that
§<ef2.
Since 1 — 3> 1 > 1>1 we can choose a positive integer k so that
1 1

z<k<:.

Let m be a positive in-tqer'-o large that
()™ <6 and (ka)" < 6.

Let n = k™. Now if 0 <t < a, then (kt)™ < § and from Bernoulli’s
inequality we get
(1=t")"21-(kt)">1-6.

On the other hand, if b < t < 1, then (k)™ < § and once again by
Bernoulli’s inequality we get

(1=t"" < (A +t™)™ < [14+ (k)] < (kt)™ < 6.

Let p be the polynomial p(t) = (1 — t™)*,t € R. Define p(z) =
p(¥(z)), = € X. Then ¢ € A. Let n = pv + (1 — ¢)w. By property
VN, we get n € A. We claim that |f(z) — n(z)| < d, for all z € S. To
prove our claim, we consider three cases:

Case: z€eYNZ.

Case II: z€Y\Z.

Case IIIl: z € Z\Y .




Case I: Let us write f = ¢f + (1 — ¢)f. Then
|f(=) —9(@)| < ¢(2)|f(2) = v(@)| + (1 — ¢(2)If(2) = w(z)
< p(z)d+(I-p(z))d=d. , .

Case II: In this case, z € Z and therefore ¥(z) < @, and so ¢(z) > 1 6.
Let us write v ="pv + (1 — ¢)v. Then

Cn(z) —u(z)]l = (1-¢(2))w(z) - v(z)|
< (1-¢())2<2 <¢,

and, since z € Y,

If(z) = n(z)] < |f(z) = v(z)| + |v(z) - 2(2)|
< d(fy,vy)+e<d.

Case III: In this case, z ¢ Y and therefore ¢(z)>bmdso ¢(z) < b. Let
us write w = pw + (1 — ¢)w. Then

In(z) — w(z)| = ¢(z)|v(z) - w(z)|

< p(z)2<2<e,
and, since z € Z,

|f(z) = n(z)l < |f(z) - w(z)] + Jw(z) - ()|
< d(fz.,mz) +e<d.

Hence |f(z) — n(z)| < d, for all z € S and therefore d(fs,ns) < d. But
this contradicts the fact that dist(fs; As) = d. This contradiction shows
that S must be contained in some equivalence class [z]. But then

d = dist(fs; As) < dist(flz]; Ala]) < d.
This completes the proof of Theorem 3. g

§3. Proof of Theorem 2

Conditions (1) and (2) are easily seen to be necessary for f to belong
to the uniform closure of A. Conversely,. let us assume that f € D(X)
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satisfies conditions (1) and (2). To prove that f belongs to the uniform
closure of A it is equivalent to show that dist(f; A) = 0, where dist(f; A) =
inf{d{f;g); g € A}. Let £ € X be given by Theorem 3. Now condition (1)
implies that the restriction of f to [z] is a constant function. Let ¢ be
its value. Let 0 < & <1 be given. If ¢ =0 (resp. ¢ = 1), there is some
¢ € A such that ¢(z) < ¢ (resp. p(z) > 1 — ). It suffices to take ¢ =0
(resp. @ = 1). Bence |pft) — f(¢)] < ¢ for all ¢ € [z] and consequently
dist(f]z}); A{e]) < ¢. Assume now that 0 < ¢ < 1. By condition (2), there
is some ¢ € A such that 0 < ¢(z) < 1. Choose k € {1,2,3,...} such
that ¢*(z) < ¢ and let d = 1 — p*(z). For some non-negative integer
m € {0,1,2,3,...} we have d™*' < ¢ < d™. We claim that c—& < d™*'.
Indeed,
™ -t =d"(1 -d)=d"¢*(z) S p*(z) <.

Hence ,
eSS =" (™ -d™*") <d™ te.

Therefore 0 < c—d™*' <ée. Let $ = (1 — ¢*)™*'. Then ¥ € A and its
_constant value on [z] is d™*!. Hence |§(t) — f()| < & for all £ € [z], and
consequently dist(f[z}; Afz]) < ¢. Since £ > 0 was arbitrary, we see that
in any case dist(f; A) = dist(f[z]; Alz]) =0. o

§4. Some Corollaries

Corollary 1. Let A C D(X) be a non-empty subset with property VN
and containing 0 and 1. Assume that A separates the poinis of X and,
for each z € X, there is some ¢ € A such 0 < ¢(z) < 1. Then A is
uniformly dense in D(X).

Proof. Immediate from Theorem 2. o

Corollary 2. Let A be a closed non-empty subset of D(X) with property
VN and containing 0 and 1. Then A is a latiice.

Proof. Let ¢ and ¢ belong to A. Let f = max(p,¥). Let z and y
be a pair of points of X such that f(z) # f(y). Then at least one of the
equalities ¢(z) = ¢(y) and ¢(z) = ¢(y) must be false. On the other hand,
let t € X be such that 0 < f(t) < 1. If () 2 ¥(t), then f(t) = ()




and therefore 0 < ¢(t) < 1. If (t) < (t), then f(f) = ¥(t). and so
0 < #(t) < 1. Hence (1) and (2) of Theorem 2 are satisfied, and f belongs
to the uniform closure of A, i.e., A itself, since A is uniformly closed.
Analogously, one shows that ¢ = min(¢p,) belongs to A. Hence A is a
lattice. o 3
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