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Abstract.

Let —Au = Af(u) be a nonlinear elliptic eigenvalue problem, where f change
its sign. By using variational methods we show that its discrete analogue has or-
dered positive solutions.

0. Introduction

Let us consider the following elliptic eigenvalue problem
(0.1) —Au=Af(u) in Q,u=0 on 9N

where ) is a positive real parameter, 1 a smooth bounded domain in RN, f :
[0,00) — IR a function that satisfies the following conditions

a)[ is locally Lipschitz continuous

b) There exists real numbers sg = 0 < 81 < 82 < - < 82m-1 such that
(0.2) f(s0) > 0and f(s;))=0Vi= 1,2,...2m — 1 Furthermore f changes

its sign i.e.(—1) f(s) > 0 for s € (8i,8i41),i=0,1,...,2(m — 1)

¢)F(s2i41) > F(82i-1) Vi =1,2,...,m — 1, where F(t) = I8 f(s)ds

The expression below o
(0.3) Az = MR f(z), z € R"

is the discrete analogue of (0.1) obtained by finite difference method (we restrict
ourselves here, for purpose of simplicity, to N = 1,2). Ais a M-matrix ([9], [10])
obtained in the discretization of the differential operator —A , h is the mesh size
and f(z) = (f(21),.--,f(2s)) is the Nemitskii operator associated with the scalar
function f.

The solutions of (0.3) are the critical points of the function



1 2%
(0.4) e(\z) = 3 <Az,2> -k gr(z.-)
where <, > is the usual scalar product of IR* and F is the primitive of the functions
f described in (0.2)
® is the discrete analogue of

(0.5) T0suye % /9 IVuf? - /n F(u)

the functional whose Euler equation is (0.1). ¢ and J are neither convex nor mono-
tone operators. Concerning the study of (0.3), there exists an abundant literature
applying techniques based on topological degree and global bifurcation theories. We
mention the papers of Peitgen, Saupe and Schmitt ([6], [7]) where independent of
condition (0.2) (c), they obtain continuum of montrivial solutions of (0.3). In spite of
its power, this method does not avoid the occurrence of numerically irrelevant solu-
tions “NIS”, which do not approximate the solution of the corresponding continuous
problem.

In this note, we will make use the variational method used in a paper of De
Figueiredo ([2]) and also by Brown and Budin ([4]), in order to show the existence
of 2m — 1 ordered positive solutions of (0.3) in the cone R} = {z € R" : z; > 0V i}
for large A.

Our approach is based strongly on the condition (0.2) (c) i.e. “the area condi-
tion posed in the nonlinearlity f” (apparently in this way it is possible to avoid the
NIS).

Section 1 is devoted to the study of M-matrices and some properties of the
solutions of (0.3).

Section 2 is devoted to see briefly the Palais-Smale condition and one Montain
Pass Theorem, as well as the proof of the existence of 2m — 1 ordered positive solu-
tions of (0.3).
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- Some remarks on M-matrices

Notations 1.1

(1.1) t={zeR":2;>20Vi=1,...n} °:.. interior (IR})

(1.2) gt =(zf,...,2%); =z~ =(21,...,25). Hence £ =2% — 2~
and z*,2” € R}.

(1.3) Let z,y € IR"; then we definez < yifz; <y Vi=1,...,n
andz < ywhenz < yandz # y.

(1.4) < z,y > is the usual scalar product of R";||z|| = (< z,¥y >)ll2

and ||z]les = max{|z;i = 1,...8}

Definition 1.2
Let A = [a;j] be a real n x n matrix. We will say that 4 is a M-matrix if

a) aii > 0,a;; <0fori#j
b) aii > 3 %=1 |ai;|, with strict inequality for at least one
I

(1.5)

(hence Y7L, a;; > 0, with strict inequality for some i )
¢) A is irreducible.

Lemma 1.3

Let A be a M-matrix. Then

a) A is non singular

b) A='(R%) C IR%} and A™'(IRY —O)CIR"

c) A has a unique positive eigenvalue A; of multiplicity one with associated
o

eigenvector w € RY.
(see the proof in [10])

Lemma 1.4
The matrix A in (3.0), arising by discretization of the differential operator —A
is a M-matrix which is symmetric, positive-definite. Moreover.

(1.6) (< Az,z >)'/? = ||z||4 is a norm in R"
(1.7) < Azt,z7 >=< Az~ ,2% >< 0forall z in R".



Proof
For the proof of all statements except (1.6) and (1.7) see [10). Now (1.6) is
trivial, because A is a real symmetric positive definite matrix. Next (1.7) follows
from g
< Azt 2" >= Za,-,-z?z‘-‘ 4 Za.,z;"z;
i=1 i#j

using the fact that a;; < 0 for i # j and z}z] 2 0. o
We now give some properties concerning the solutions of (0.3).

Lemma 1.5
Let f: IR — IR be a continuous function, with f(0) > 0 and define
f(8) = f(0) for s < 0.
Let
(1.8) Az = A\ f(z), z€ R*,A>0

Then: N

a) If z is solution of (1.8) for some A > 0, then z € IR}

b) If, in addition, f is locally lipschitz and f(#) < 0 for some real 8 > 0.

Then (1.8) has no solutions z such that ||z||e = 8

c) Let us suppose that there exists a A > 0 such that (1.8) has a solution z with
llzalloo < comstant for all A > X. Then each i-incomponent zy — & € f~(0),
as A — 400

Proof
a) Let z = (z;,...,2,) be a solution of (1.8) and z; = min{z;:j = 1,...,n}.
Suppose that z; < 0. Since a;; < 0for i # j

(z»: aij)Ti 2 zn:aijxj = AMf(z:) = Af(0) > 0.

=1 =1

Since A is a M-matrix the first term is non-positive. Thus we come to a con-
tradiction.

b) Suppose that (1.8) has a solution z with |[|z]|e = 6.

If & = 0, the contradictions is immediately.

If 8 > 0, since f is locally lipschitz continuous there exists ¢ > @ such that
J(8) + os is strictily increasing on [0,6]. Hence if w = (6,4,...,8), we have

(A + MoD)(w — z) > A[f(w) + ow - (F(z) + 02)] € K™



By Lemma 1.3 @ > z; Vi = 1,...,n contradicting the assumption. (This idea is
similar to the one in lema 6.2 [1]).

c) {z,} is bounded ¥ A > X and A(%) = f(z).

Since every subset of {z,} has a convergent subsequence converging to some
w > 0, we have f(w) = 0. Therefore w; € f~!(0) and z; — w; when
A . +OO o

Remark 1.6

In case one replaces the condition f(0) > 0 by f(0) = 0 and f}(0) > 0 (see
(f-1) [2]). The solutions of (0.3) will be in IR7, provided we define f(s) = —pus for
s < 0, where g > 0 and satisfies f(s) > —us for s > 0

2 - The variational methods used to obtain ordered positive solutions
of (0.3)
As observed before the critical points of the function

(2.1) o(z) = = < Az,z > - EF(::.), where F(t) = f t(s)
i=1
with f as in (0.2), are the solutions of (0.3). Hence in order to using variational
methods, we shall need to establish some properties of ¢.
The next proposition give a situation when ¢ is not bounded below.

Proposition 2.1
Suppose that

(2.2) lim inf —= f( ) > A1,

8—+4-00
where A, is the (unique) positive eigenvalue of A. Then the functional ¢ described
in (2.1) is unbounded below.

Proof
since | = hmmf f( > A, Y u € (A1), there exists ¢; > 0 such that

f(8) > pus - c1 for >0 Hence Yo € (A1, p), there exists ¢; > 0 such that
(2.3) F(8) > 10s% — ¢3 for s > 0. Therefore if w is the eigenvector associated to A,
2

p(tw) = ‘*"A:IIWII’ ZF (w) < 320\ - o)||wlf?
i=1
+nec3 — —o0o0 when |t| — +00. o



In order to study the critical points of functions of the type described in (2.1),
we have to prove the Palais-Smale condition. It will be useful to have a direct cri-
terion for it.

Definition 2.2 (Palais-Smale condition)
Let ¢ : E — E be a C? functional, E a Banach space. We will say that ¢
satisfies the Palais-Smale condition, if every sequence {z,} in E which satisfies

(2.4) |le(za)lle £ constant and ¢'(z,) — 0in E*

prossesses a convergent (in norm) subsequence.

The next proposition is a adaptation of Lemma 6.3 [3], to the finite dimensional
case and provides a direct criterion in order to know if (2.1) satisfies the Palais-Smale
condition.

Let f: IR — IR be a continuous function. We assume that

(2.5) lim O] =a, lim 1(s) = f. Hence there exists

s—~+00 § ’——00 8

¢; 2 0 and ¢g > 0 such that

(2.6) () <ers+c2 Vs€ R

Proposition 2.3
Let ¢ be as in (2.1). We suppose that (2.5) hold and that

(2.7) Az = azt - Bz~

has only the trivial solution. Then every sequence {z;} in IR™, such that

(2.8) lle(zx)|| < constant and ¢'(zx) — 0 when k — oo
is bounded. [Hence ¢ satisfies the Palais-Smale condition].

Proof
Suppose by contradiction that there exists a subsequence of {z;} (to be denoted
in the same way) such that

(2.9) P, = ||1zkllcc — 00, when k — oo.

The new sequence y, = f: belongs to unit sphere centered at 0. Then it has a

subsequence (also denoted in the same way) such that y, — y. For this last
sequence

(2.10) %’:’k) T fg:;.y,)



For each i-component
Py Uui — (400)sgn(y;) if yi # 0, hence

f(pyvs) ay; if 3 >0
o By if yi<0

when y; = 0, using (2.6), the convergence is to zero. Thus taking limits in (2.10) we
have Ay — (ayt — By~ ) = 0 with y # 0, a contradiction to the hypothesis. o

Remark 2.4

The functions of the form (2.1) with f bounded, satisfies the Palais-Smale con-
dition, because in this case a = # = 0 and A is a nonsingular matrix. We now give
one version of Mountain Pass Theorem, that will be essential for the proof of our
main result.

Theorem 2.5 (Mountain Pass Theorem)

Let z be a Banach space and ¢ : z — IR a C! function that satisfies Palais-
Smale condition. Suppose that ¢ has two local minima. Then ¢ has at least one
more critical point. (see the proof in [3], [8])

Proposition 2.6
Let f :— [0,00) — IR be a bounded continuous function such that f(0) > 0
and define f(s) = f(0) for s < 0. We assume that ¢, defined in (2.1), attains local
o

minima at u and v in IR}, where u < v. Then there exists a third critical point w
of ¢ and u < w < v (see notations 1.1)

Proof

By hypothesis Au = f(u) and Av = f(v), hence Ay = f(y + u) — f(u) with
y=v—u>0.

The least equation suggests a modification of the function by cutting and trans-
lation i.e. to consider functions of the form

(2.11) 9(s) = f(s* + wi) - f(w), s€ R, i=1,2,...n.
which are continuous.
Let ’
(2.12) ¥(z) = % < Az,z>-) G(z),z € R"
f=1

where A is a M-matrix and G(z;) = F(z} + w) - F(w) - f(ui)z}. Hence ¢ is a
C? function.



We will prove that the critical points of ¥ belong to IR}, that ¢ attains its
local minimum at z = 0,8 = v — u and for any critical point z; of ¥, u + 2 is also
critical point of 9.

Let z be a critical point of . Then

< Az,y>= Y [f(z} +w)- f(w)li VyeR"

i=1

If y = 2~ the right side is zero, thus < Az~ ,2~ >=< Az*,z~ >< 0 consequently
z~ =0and z = 2% € IR}.
A straightforward computation gives

(2.13) ¥(z +2) - ¥(2) = plv+ 2+ (2 +2)7) - p(v)= < A(z +2)*, (2 +2)" >

1
+§ <A(z+z) 0,(z+2)” >
where the two last terms are non-negative (Lemma 1.4). Taking into account that
v is a local minimum of ¢ and as

(2-14) llz + (2 + 2)7]| < ll=]|

it follows that z = v — u is a local minimum of %. In order to prove that ¢ attains
its local minimum at z = 0 it is sufficient to make z =0 i.e. v = u in (2.13) and
(2.14).

It is easy to see that u + 2z, is a critical point of ¢ if z; is any other critical
point of %.

Following the same reasoning, we can proof that function

(2.15) 0(z) = % < Az,z > - iﬂ(x.-)

i=1

where H(z;) = G(z — z}) — G(z) + g(z)z}, with z = v — u, has its critical points
in IR%, attains its local minimum at z and z = 0, moreover if y is any of its critical
points then z — y is a critical point of 4. Hence 2 — y + u will be a critical point of
@.

Finally, since H'(s) = g(z — s*) — g(zi) is a continwous bounded function,
0 satisfies the Palais-Smale condition (remark (2.4)). According to Mountain Pass
theorem 2.5, # has a third critical point y # 0,2. Consequentely w = z—y+u=v—y
is another critical point of ¢ and one can verify that u < w < v. g



Proposition 2.7
Let f be as in (0.2). Then (0.3) has 2m — 1 ordered positive solutions

z} < 2} <--- < z}™! in IR} such that ||z}||ec < 83ic1 fori=1,...,m.

Proof
Let fu(s) = f(s) for o < sapy and fu(s) = 01 6 2 sp0y
F(t) = f: fi(8)ds, k =1,2,...,m and

n
(2.16) eu(A2z) = % < Az,z > —\h? EF;(:.—) , z€R".

i=1

°
First we proof that ¢, has a global minimum u) € R} with [Juy||c < 1.
Besides u) is a local minimum of ¢,.
As < Az,z >= ||z|| is a norm (Lemma 1.4)

1 n 1 n
p (A z) = 5””“34 - MY Fi(z) 2 5“3“?4 =Xy Y |zl

i=1 =1

1
> Sllallh - Aeallzlla.

It follows then that there exists a constant R = R(A) such that ¢1(A,z) > 1 for
|lz]|a > R. Thus ¢y(A,z) is bounded below and since it is C?, it attains its global

minimum at a point u) with ||uy||4 < R. Since u) is a critical point of ¢; by

]
Lemma 1.5 uy € IR}, |||l < 81. Hence 0 < uy; < 8y Vi=1,...n then taking
§ = 3(s1 = |lualloo)

‘P?(’\s ua\) = ‘Pl()‘s uk) = ‘Pl(Aax) = (Pg(A,:B) when ”3 = ux“ﬂ <é.

Second We show that the following function attains its global minimum at a
point 2z > 0 for A large.

— l — 2 - = n
(2.17) $(M2) = 5 < Az,z > -\ l=)jla(z,), z€eR

where G(z;) = Fa(z} +u;) — Fa(u;) — fa(u;)z} (here by brevity we denote u; = uy;).

It is easy to see that (), z) is C' and bounded below. Hence it has a global
minimum at a point 2, and following the same argument done for the function in
(2.12) we have that 2 € IRY.



(1]

(2]

(3]

In order to prove that z, # 0, we observe that there exists § € (0, s;) such that
f(8)s3 < 3[F(s3) — F(s1)] for s € [sy — 8, 1] (here we are using the condition (0.2)
(©).

By Lemma 14, ||uy|]ec = p2 € [81 — 6,81] YA > a > 0 hence taking y) =
(0,...0,33,0...0) (with s3 at i-component of u), corresponding ||u||co)

W) = 3e3(T0y aij) — AR [F(s3) — F(pa) — f(pa)sal then $(A 1) <
s3max{a;:i=1,...n} - -"—%‘-’-[F(sa) — F(8)] <0for A > A; > a hence 2z > 0.

Third

Now taking into account that z) > 0 is a critical point of (A, z), we will show
that uy 4+ 2) is a local minimum of ¢ and by proposition 2.6 follows the rest.

Is easy to see that uy+z) is a critical point of ¢ and by Lemma 1.5 ||uy+2)]|c0 <

o
s2. Since uy € IRY there exists ¢ > 0 such that the ball B:(uy + 2)) of center uy + z)
and readius ¢, is contained in JR".. Taking into acount (2.17)

P(A, 20) = @a(A, up + 22) = wa(A, uy) and
YAz +2)) = pa(Auy+ 23 +2) — @a(A,up) Vz€EBe(uy+ 22).

Hence ¢2 attains its local minimum at u) + 2). o

Remark

a) This work is an attempt to find alternative numerical procedures that will
avoid the NIS in the resolution of (0.3).

b) Is still pending to study the convergence problems. When the solutions of
(0.3) are been obtained by Variational Methods.

¢) Another interesting problem is to study the analogue discrete of (0.1) by
Finete Elements Methods, in the context of topological degree and global bifurcation
theories.
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