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Abstract. We correct some misconceptions in the literature regarding
Weber’s law and show: (A) with it Ampére’s law of force between current
elements can be derived with the modern current element, (B) what are the
correct expressions for the relative velocity and acceleration between point
charges, (C) why the acceleration terms in Weber’s law are essential and so
we have arguments to show that Ritz’s law is untenable, and (D) how to
develop the energy of interaction between two modern current elements.
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INTRODUCTION

In the last 10 years there has been a revival of interest in Ampere’s
law of force between current elements [1-6] and in Weber’s law of force
between point charges [7-9]. The main reason for this fact is that some re-
cent experiments with a single circuit can only be explained by Ampere’s
law and not by Grassmann’s law of force (sometimes known as Biot-
Savart’s law) [1-9]. Ampere’s law states that the force which a usual
current element I,dl, exerts in another current element I dl, is given
by [10] =
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Historically Weber’s law appeared twenty years after this law. We-
ber’s goal was to derive this law based in a law of force between point
charges like Coulomb’s, but modified when the charges have a relative
velocity and acceleration . In this respect he was following the suggestion
that Gauss gave in a letter to him [11]. Following also Fechner’s hypoth-
esis on the nature of the electric current, according to which it consists of
a current of positive electricity in one direction combined with an exactly
equal current of negative electricity in the opposite direction (equal as
respects the quantity of electricity in motion and the velocity with which
it is moving), Weber arrived at the formula [12]:
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In this formula 7 = dr/dt, 7 = d*r/dt®, F is the force that ¢, exertson
q1, and ¢ is a constant with the same magnitude as the velocity of light,
as Weber determined experimentally. With this equation and Fechner
hypothesis Weber derived Eq. (1).

Nowadays one knows that Fechner’s assumption regarding the na-
ture of electric currents is wrong. In fact we have positive ions fixed in
the lattice of a metal and only electrons are responsible for the current.
Our aim is to show that even with this present model for the current we
can derive Eq. (1) with Weber’s force, Eq. (2). In this way we want



to clear up some misunderstandings regarding Weber’s law as this one
expressed by P. Graneau in an excellent review article [13]: “Weber ar-
gued the forces on the charges were passed on to the metal but failed to
explain how, at the same time, the charges could move freely through
the conductor. This inconsistency and the subsequent discovery of the
immobility of the lattice ion made Weber’s current element untenable”.
As we will see, what is untenable is Fechner’s current element, but not
Weber’s law.

In order to do so we first of all write each neutral current element
in the form

hdl; = 14014 + @1-71- = Q14 ("H = 91-) ’
(3)
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In these expressions we assumed ¢, = —¢;; because we are considering
only neutral current elements. Since v,, and v,, are arbitrary, Fechner
hypothesis corresponds to a special case (v;; = —v;_), and now it can
also be shown that Ampere’s law can be applied to plasma physics where
usually one has a neutral fluid with electrons and ions moving relative to
the laboratory. Anyway, if we wish to particularize to metallic currents,
we only need to put v,;, = vy, =0.

According to Weber the net force of Idl, on Idl, will be given
by a sum of four terms: the force of ¢g;— on ¢, and ¢,_, plus the force
of g2 on ¢4 and ¢;_. Since
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we have that the force of one of the charges ¢, on one of the charges ¢,
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(according to Eq. (2)), will be given by,
R . ik i e b, B TS
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When we add F of ¢,y on ¢4 with F of ¢go4 on ¢,_ we get:
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Adding F of g, on g4 with F of go_ on ¢,_ yields:
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Adding Eqgs. (7) and (8) yields
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Using (3) we can see straight away that Eq.(9) reduces to Eq. (1). As
we let vy, and v,, completely arbitrary this completes the proof that
Weber’s law yields Ampere’s law even without Fechner assumptions.

Some remarks must be made at this point. When deducing We-
ber’s law from Ampére’s law (the opposite path we followed in this paper)
Maxwell supposed constant in magnitude velocities (that is |v;| = con-
stant), [14]. As we showed here, this restriction is not necessary.

Another aspect worth to note is that in the final expression, Eq.
(9), the accelerations of the charges don’t appear. Although each charge
can have arbitrary acceleration, at the end this won’t matter, in so far
as Ampere’s law is concerned. This is the reason why Gauss’ law [14]
can also vields Ampere's law, as it only differs from Weber’s law in the
acceleration terms:

Foum = 22 f—[1+ (nomltan ey 3 ’;—2]. (10)
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Using Eqgs. (4) and (5) in Eq. (2) we can show that Weber’s law is
equivalent to Gauss’ law with (7, — 73) - (a@; — a;)/c? inside the square
brackets of Eq. (10). As is well known, [14], despite this success Gauss
law is untenable because it is not consistent with the principle of con-
servation of energy and also because we can’t derive Faraday's law of
induction with it. To derive this induction law and to conserve energy
the acceleration terms of Weber’s law are essential.

With this in mind we can understand why Ritz’s law [15, 16] is
also untenable. The main reason is that Ritz’s law for the force that ¢
exerts on ¢; depends only on the acceleration of ¢;, but not at all on the
acceleration of g,. As we showed in another paper, [8], the acceleration
of q; or m; in Weber’s law is essential in order to derive an equation of
motion similar to Newton’s second law and the proportionality between
inertial and gravitational masses, so that we need it in order to imple-
ment Mach’s principle.

We should mention here another misconception regarding Weber’s
law, this time related to the relative velocity and acceleration between
two charges. The correct expressions are those given by Weber, Egs. (4)
and (5). These are truly relational quantities as they have the same value
for any observer, even for moninertial observers. On the other hand some
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authors, for instance see [17, 18], when discussing Weber’s law and some
modifications of it talk of the relative velocity between two charges as

= l‘lh s vgl = J("] e '1) 2 ('1 s '3). (11)

But this is not the correct expression for the relative velocity in
Weber’s sense because the value of u depends on the observer. To see
it, consider two charges at rest in the laboratory separated by a distance
r, one of them being at the origin and the other on the z axis. To an
observer at the origin spinning with a constant angular velocity wz, the
values he will find are: # = 15+ 912 = 0 as in the laboratory frame, but
u = |vy2| = wr while in the laboratory frame u = 0. This simple exam-
ple illustrates the relational character of r while it shows that |v; — v,]
has not always the same value for any observer. Concerning the relative
acceleration, the correct expression is that given by Eq. (5), which, in
general, is different from 7 - (a; — @;) and also from |a, — a,|.

Another aspect to be touched upon refers to Ampere’s law, Eq.
(1). It is often claimed that Ampére’s law has a weakness because it
doesn’t predict a torque between two current elements (as it is a cen-
tral force). For instance, in Whittaker’s classical book one reads [19], p.
86: The weakness of Ampére’s work evidently lies in the assumption that
the force is directed along the line joining the twe elements; for in the
analogous case of the action between two magnetic molecules, we know
that the force is not directed along the line joining the molecules”. And
in the next page (p. 87): “Helmholtz assumes that the interaction be-
tween two current elements is derivable from a potential, and this entails
the existence of a couple in addition to a force along the line joining
the elements”. In our opinion, this is not a fair statement relative to
Ampere’s law. Each current element /dl has, besides its location in
space, a special direction, namely, that of the electric current. As such
it has a vectorial character and is not a scalar quantity. So, even when
a force between two current elements is directed along the line joining
them we can have a torque between the current elements. This can be
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seen from Eq.(1) which involves the angle between the current elements
and also the angle between each current element and the line joining
them. This torque has received a special name by P. Graneau, namely:
Alpha-torque forces, [20]. Its action has been seen in many experiments
performed by Graneau. He states the origin of these torques in this way:
“If the stored energy changes when one of the circuits is rotating with
respect to the other, then there must exist a mutual torque between the
circuits”. Another way of understanding the origin of these torques is to
remember that each current element cannot be a material point since it
has a direction in space. So, we can imagine each one of them with a
linear dimension dl (small but not negligible). In this view the torque
arises because the force on the tip of the current element will be different
from the force on the tail of it and so a torque can be produced.

It is also of interest here to generalize, without making resort to
Fechner’s assumptions, the energy of interation between two current el-
ements according to Weber’s law. The mutual energy of two moving
charges is, according to Weber:

e e o)
e dreqr (1 2c2)' .

Weber showed that his force law, Eq. (2), could be derived from this
velocity - dependent potential energy and that it was consistent with the
principle of conservation of energy. As in the derivation of Ampere’s law
we must add four terms to get the mutual energy between I,dl; and
Irdly, namely Usy a4, Uzga-, Uz—n4 and U,_,-. Neglecting the energy
of formation of each current element (the self-energy) we get for this
mutual energy:

% RSN g '
dU = ﬁ- 22 (7 dh)(F - dby), (13)

where I dl; and Idl, are given by (3). If we put vy4 = vay = 0 this
result will remain valid. It must be emphasized that this is not the same



energy as that given by F. Neumann (19}, which is

dvy = £ 3Ry, (14)
T :

But it has been proved elsewhere that these two expressions give the same
result when integrated round either closed circuit [19], p. 233. The same
considerations are valid for the vector potential which in Neummann’s
and Weber’s theories are given by, respectively , [19]:

AN - ﬁl! BN
47 r

(15)

A, = &Iﬁ [(r - dla)?:
4dr r
where I,dl; in Weber’s case is given by (3).

This completes the revision of Weber’s law and its correct inter-
pretation and use.

In conclusion, we can say that even with the modern current el-
ement (fixed positive ions and free electrons being the responsible for
the current), we can derive Ampere’s law from Weber's law. Also the
mutual energy between two current elements, Eq. (13), can be obtained
with this modern current element, expression (3). To do so we only need

to use the correct relative velocity and acceleration between two point
charges, Egs. (4) and (5).

The author wishes to thank Dr. Peter Graneau for important dis-
cussions and for the suggestion for the theme of this work. He thanks
also Dr. R. A. Clemente for relevant ideas.

This work has been partially financed by CNPq (Brazil).



References

[1] P. Graneau, Nature 295, 311 (1982).
[2] P. Graneau, J. Appl. Phys. 53, 6648 (1982).
[3] P. T. Pappas, Nuovo Cimento B 76, 189 (1983).

(4] P. Graneau, Ampére-Neumann Electrodynamics of Metals
(Hadronic Press, Nonantum, 1985).

[5] P. Graneau and P. N. Graneau, Nuovo Cimento D 7, 31 (1986).
(6] P. T. Pappas, Phys. Lett. 111 A, 193 (1985).

[7] J. P. Wesley, Spec. Sci. Technol. 10, 47 (1987).

8] A. K. T. Assis, Found. Phys. Lett. 2, 301 (1989).

9] A. K. T. Assis, Phys. Lett. A 136, 277 (1989).

[10] A. M. Ampere, Theorie Mathematique des Phenomenes Electro—
Dynamiques (Albert Blanchard, Paris, 1958).

[11] C. F. Gauss’ Werke, 5, p. 629 (Gottingen edition, 1867). Letter from
March 19, 1845.

[12] Wilhelm Weber’s Werke, Vols. 1-6 (Springer, Berlin, 1893).
[13] P. Graneau, Fortschr. Phys. 34, 457 (1986).

[14] J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol.2, Ch.
XXIII (Dover, New York, 1954).

[15] W. Ritz, Ann. Chim. Phys. 13, 145 (1908), W. Ritz, Oeuvres
(Gauthier-Villars, Paris, 1911).

[16] A. O’Rahilly, Electromagnetic Theory (Dover, New York, 1965), 2
volumes, pp. 504 and 520.

[17] V. Bush, J. Math. Phys. 5, 129 (1926).

9



[18] R. A. Waldron, The Radio and Electronic Engineer 51, 553 (1981).

[19] E. T. Whittaker, A History of the Theories of Aether and Electricity
~ The Classical Theories (Humanities Press, New York, 1973).

[20] P. Graneau, Electronics & Wireless World 95, 556 (1989).

10



01/90

02/90
03/90

04/90

05/90

06,90

a7/90
08/90

09/90

10/90

11/90
12/90
13/90

14/90

15/90

16/90

17/90
18/90

RELATORIOS TECNICOS — 1990

Harmonic Maps Into Periodic Flag Manifolds and Into Loop Groups —
Caio J. C. Negreiros.

On Jacobi Expansions — E. Capelas de Oliveira.

On a Superlinear Sturm-Liouville Equation and a Related Bouncing
Problem — D. G. Figueiredo and B. Ruf.

F- Quotients and Envelope of F-Holomorphy — Luiza A. Moraes, Otilia
W. Paques and M. Carmelina F. Zaine.

S-Rationally Convex Domains and The Approximation of Silva-
Holomorphic Functions by S-Rational Functions — Otilia W. Pagues and
M. Carmelina F. Zaine.

Linearization of Holomorphic Mappings On Locally Convex Spaces —
Jorge Mugica and Leopoldo Nachbin.

On Kummer Expansions — E. Capelas de Oliveira.

On the Convergence of SOR and JOR Type Methods for Convex Linear
Complementarity Problems — Alvaro R. De Pierro and Alfredo N. Tusem.

A Curvilinear Search Using Tridiagonal Secant Updates for Uncon-
strained Optimization — J. E. Dennis Jr., N. Echebest, M. T. Guardarucei,
J. M. Martinez, H. D. Scoinik and C. Vacchine.

The Hypebolic Model of the Mean x Standard Deviation “Plane” —
Sueli I. R. Costa and Sandra A. Santos.

A Condition for Positivity of Curvature — A. Derdzinski and A. Rigas.
On Generating Functions — E. Capelas de Oliveira.

An Introduction to the Conceptual Difficulties in the Foundations of
Quantum Mechanics a Personal View — V. Buonomano.

Quasi-Invariance of product measures Under Lie Group Perturbations:
Fisher Information And L?-Differentiability — Mauro S. de F. Marques and
Luiz San Martin.

On Cyclic Quartic Extensions with Normal Basis — Miguel Ferrero,
Antonio Pagques and Andrzej Solecki.

Semilinear Elliptic Equations with the Primitive of the Nonlinearity
Away from the Spectrum — Djairo G. de Figueiredo and Olimpio H. Miya-
gaki.

On a Conjugate Orbit of Gy — Lucas M. Chaves and A. Rigas.
Convergence Properties of Iterative Methods for Symmetric Positive

Semidefinite Linear Complementarity Problems — Alvaro R. de Pierro and
Alfredo N. fusem.

AS

A®



roupe —

ses, Otilia

f  Silva-
agques and

y)paces —

x Linear

Tusem.

- Uncon-
ardaruces,

ations of

rbations:
irques and

il Fervero,
linearity

H. Miya-

Positive
Pierro and

19/90
20/90
21/90
22/90
23/90
24/90
25/90

26/90
27/90

28/90

The Status of the Principle of Relativity — W. A. Rodrigues Jr. and Q. A.
Gomes de Souza.

Geragiio de Gerenciadores de Sistemas Reativos — Antonio G. Figueiredo
Filho e Hans K. E. Liesenberyg.

Um Modelo Linear Geral Multivariade Nao—Paramétrico — Belmer Garcia
Negrillo.

A Method to Solve Matricial Equations of the Type 1  A;XBj=C —
Vera Licia Rochd Lopes and José Vitdrio Zago.

Z,-Fixed Sets of Stationary Point Free Zy—Actions — Clauding Izepe
Rodrigues.

The m—Ordered Real Free Pro-2-Group Cochomological Characteriza-
tions — Antonio José Engler.

On Open Arrays and Variable Number of Parameters — Claudio Sergio
Da Rés de Carvalho and Tomasz Kowaltowsks.

Bordism Ring of Complex Involutions — J. Carles S. Kishl.

Approximation of Continuous Convex-Cone-Valued Punctions by
Monotone Operators — Jodo B. Prolla.

On Complete Digraphs Which Are Associated to Spheres — Davide C.
Demaria and J. Carlos S. Kishl.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

