ON OPEN ARRAYS AND VARIABLE
NUMBER OF PARAMETERS

Claudio Sergio Da Rés de Carvalho
and
Tomasz Kowaltowsks

RELATORIO TECNICO N? 25/90

Abstract. Two facilities for programming languages are described: open arrays
(an extension of Pascal conformant arrays) and aulomatic parametler conversion.
As a result of combining these two mechanisms, it is possible to give compile-time
verifiable specification of procedures with a variable number. of parameters and
varying types. This ability is very useful in many applications, and in particular
in specifing I/O procedures within a programming language itself.

Instituto de Matematica, Estatistica e Ciéncia da Computacao
Universidade Estadual de Campinas

IMECC - UNICAMP

Caixa Postal 6065

13.081, Campinas, S.P.

BRASIL

O conteiido do presente Relatério Técnico é de unica responsabilidade dos autores.

Julho — 1990

On Open Arrays and Variable Number of Parameters

Claudio Sergio Da Ros de Carvalho

Tomasz Kowaltowski

Departamento de Ciéncia da Computacao
Universidade Estadual de Campinas
Caixa Postal 6065
13081 Campinas, SP, Brazil

April 4, 1990

Keywords: programming language design, open arrays, automatic parameter
conversion, variable number of parameters

Abstract

Two facilities for programming languages are described: open arrays (an
extension of Pascal conformani arrays) and automatic parameter conver-
sion. As a result of combining these two mechanisms, it is possible to give
compile-time verifiable specification of procedures with a variable number of
parameters and varying types. This ability is very useful in many applica-
tions, and in particular in specifing I/O procedures within a programming
language itself.

The results described in this paper are part of the first author’s M. Sc. dissertation, developed
under the supervision of the second author.

1 Introduction

Programming language design seems to be quite a lively activity and “new”
languages pop up continuously. Most of these languages tend to have a very re-
stricted usage, but the design activity itself contributes with new ideas which
eventually find their way into widely used languages. This work focuses on
the area of system programming langunages, where two important trends appear.
An increasingly large number of systems are being developed using the C lan-
guage [KernRit 78], and its descendants and dialects. This trend is due to several
factors, among them are the connection between C and the UNIX' operating sys-
tem, low-level facilities available in C, and the possibility of writing very efficient
code. On the other hand, mainly within the academic and research community, a
large number of followers of the Pascal-like tradition exist, whose main represen-
tatives are Modula-2 [Wirth 85] and some of its descendants: Oberon [Wirth 88],
Modula-3 [Cardelli et al. 88], and so on. This preference is due usunally to the
clean syntax, strong type checking, clear separate compilation and modular com-
position facility.

The authors decided to study the feasibility of designing a language which
would incorporate the advantages of C and Modula-2. The result is quite satis-
factory and described in [Carvalho 89] and [Carvalho 89a]. One of the goals of
this design was to allow for the specification of procedures with a variable number
of parameters and varying types, through a clean syntax which would make easy
compile-time checking. As a consequence, typical 1/O routines could be specified
within the language itself.

The paper describes the two mechanisms used to achieve this goal: open arrays
and automatic parameter conversion. None of these mechanisms is completely
new. Open arrays, with diverse meanings appear in Algol 60 [Naur 63], PL/I
[IBM PL/I1 88], Algol 68 [Wijngaarden et al. 69], ISO Pascal [JensenWirth 85],
Modula-2, C and Ada [DraftAda 83]. Several kinds of automatic conversions ap-
pear in PL/1, Algol 68 and C, and even Pascal and Modula-2 allow them under
certain circumstances. However, the combination of these facilities in the way
proposed in this paper allows simple solutions for some problems found in tra-
ditional programming language design. It may be said that this work followed
Hoare’s advice [Hoare 73] to whom language designer’s task is mainly consolida-
tion and not so much innovation.

It is assumed throughout the paper that Pascal-like type compatibility rules
are used whenever applicable.

lUNIX is a trademark of AT&T.

2 Open Arrays

The open array concept is similar to the idea of conformant arrays of Pas-
cal [JensenWirth 85], but extended to allow dynamic variables and procedures
with a variable number of parameters.

An open array value will behave basically like a record which contains the
actual bounds and the array components (or a pointer). The values of these
bounds are established when the array value is created (or passed as a parameter)
and from then on behave like constants.

Dynamic Variables

One of the contexts in which open arrays can be used are the dynamic (heap)
variables. In this case, a type declaration of the form:

array [L1..U1: T1;...; Ln.Un: Tnl of T

is functionally but not syntactically equivalent to:

record
LUz L

ILn,Un: Tn;
?Components™ array T1[L1..U1], ..., TnlLn..Un] of T
end

The notation T; [L;..U;] means that the elements of the range L;.. [/; are of type
1.

It is assumed that the allocation of a dynamic variable of this type can be
done by the pseudo-procedure New with additional arguments which give the
values of array bounds.

Example:

type
V1 = array [LVI1..UVI: integer] of integer;
V2 = array [L1V2..U1V2: char; L2V2..U2VZ2: integer] of char;
PtrV1 = pointer to V1;
PtrV2 = pointer to V2;
var

p,q: PtrVi,;
o "

begin

New (p,1,10);

/* p: pointer to array [1..10] of integer */
New (Q!—lal);

/* q: pointer to array [—1..1] of integer */
New (r,’A’,’Z’1,26);

[+ r: pointer to array [’A’.’Z’1..26] of char /

end

Onte such an array is allocated, its bounds are constant, and accessible
through the usual syntax for record components. In this example pl.LVI = 1
and r1.U1V2 ="Z'. The selector “Components” is not used and accessing array
components is done through an abbreviated notation like p{(i] or rl[e,7] in-
-stead of p1.“Components” [i] or r].“Components” [¢,7]. The compatibility rules
of the language would be defined in a way to disallow assignments like pf:= ¢
(see [Carvalho 89]), but p := ¢ would be allowed, and p could be passed as an
actual parameter, if the corresponding formal parameter is a compatible open
array, as explained below. :

Formal Parameters

A formal parameter can be declared as an open array. The corresponding ac-
tual parameter can be either a regular array or an open array, but compatible
(conformant) with the formal parameter in a way similar to Pascal.

If the parameter is being passed by value, the formal parameter declaration
of the form:

p.array [L1..01: Tt: .. ; En.Unm Tnl of T

is functionally but not syntactically equivalent to the declarations:

type Tpval =
record
£l 1. T1:

Ln,Un: Thn;
?Components”: array T1[L1..U1], ..., Tnlln..Un] of T
end;

p: Tpval [+ formal parameter p */

The bounds Ly, Uh,...,Ln, U, are established at the time of call and the ele-
ments of the array “Components” are copied at that time. The access is as before
through the usual record syntax, except for the abbreviated form for the array
components.

Example:

type

V8 = array [1..5] of real;

V4 = array [LV4..UV}: integer] of real;
var

pi: V8

p2: pointer to V{;

procedure ArraySum (p: array [low..high: integer] of real): real;
var
i: integer; s: real;
begin
=00
for i := p.low to p.high do s := s + p[i];
return s
end ArraySum;

begin
New (p2,0,99);

Write (OutFile, ArraySum(p1));
Write (OutFile, ArraySum(p21));

end

The case of var (reference) parameters is similar:

var pp: array [(L1.U1: T1; ... ; Ln..Un: Tn] of-T

is functionally but not syntactically equivalent to the declarations:

type Tpvar =
record
L1, U8 T1;

Ln,Un: Tn;
"ComponentsPir™: pointer to array 71 [L1..U1] =
TnlLn..Un] of T
end:

var pp: Tpvar /* formal parameter pp x/

As before the bounds L,,U,,...,L,, U, are established at the time of call, and
a pointer to the first element of the actnal parameter is created or copied at that
- time. The bounds are referred to as pp.L; or pp.U;, and the components through
the abbreviated syntax o & DR s (8

Procedures with Variable Number of Parameters

In this proposal procedures (or functions) can handle a variable number of pa-
rameters through a special syntax mechanism which allows static type checking,
and can be combined with antomatic conversion to be described shortly. Pro-
cedure headers include the usual fixed formal parameters, followed by variable
formal parameters declaration which is marked by the special symbol pararray,
and treated like an open array.

The general form of a procedure header might look like:

procedure (X1: T1;...; Xn: Tn; v: pararray [l..u: T] of Tpval)

where X;’s are the fixed formal parameters, and v is the array of variable pa-
rameters. The parameter v could also be qualified by the symbol var to denote
a reference parameter: in this case, the actual variable parameters must be all
assignable variables. The value of the bound ! will be the minimum value within
the range type 7.

Example:

procedure MazReal (r: pararray [l..u: cardinall of real): real;
var
i: cardinal; maz: real;
begin
maz = r[r.0];
fori:=r.l+1tor.udo
if maz < r[i] then maz := r[i] end
end;
return maz

end MazReal;

8 := MazReal (1.2, z, y, 3.0, 5.0 * 2);
/* within this call: r.l = 0, r.u = 4 %/

3 Automatic Conversion of Parameters

There are many situations where it is desirable to have automatic actual param-
eter conversion, specified by a procedure. Examples of such conversions might be
integer to cardinal, integer to string (printable representation for I/O routines)
and so on. In order to include such a facility this proposal introduces addi-
tional parameter passing mechanisms: in, out and inout. These are similar to
the mechanisms existing in Ada [DraftAda 83], but it is assumed that the basic
implementation is the call-by-copy rule.

These mechanisms are extended in this design by allowing the specification
of conversion functions to be used at the time of call (for in parameters), of
return (for out parameters) or both (for inout parameters). Let us consider, for
example, a formal parameter specification of the form:

in(f1f2..Mm)z: T

It is assumed in this case that f;’s are one argument functions accepting values
of type T; and returning results of type 7. When the procedure is called with
an actual parameter e, its type must be compatible with one (and only one) of
the types T; (or T), and the corresponding function f; is applied to the value of
e before it is copied as the formal parameter z; if the type of eis T and no f; is
applicable, then no conversion is used. The type compatibility of the language

is defined in such a way that the decision about the choice of the conversion
function is taken at compile-time.

A similar rule applies in the case of an out parameter which could be specified
as:

out (f1,f2,...fn) z: T

In this case, f;'s are one argument functions accepting values of type T and
returning results of type T;. The corresponding actual parameter must be an
assignable variable of one of the types T; (or T), and an automatic conversion is
applied, if necessary, to the final value of z at the time of return.

_ Finally, a specification of the form:

in (fI,...fn) out (g1.....gm) z: T
combines both mechanisms.

Example:

procedure MazNum (in (IntegerToReal) z,y: real): real;
begin
ifz >y
then return z
else return y
end MazNum;

s := MazNum (2,s); /* s: real x/

4 Combining a Variable Number of Parameters with
Automatic Conversion

The mechanisms introduced in the previous two sections can be combined to
specify variable number of parameters of varying types, but still maintaining
the property of compile-time type checking. A particularly useful example of an
application of this idea are the I/O routines. The problem is solved in Pascal
by introducing pseudo-procedures read and write which do not follow the normal
rules of the language. Functions in C allow variable number of parameters, but

the problem of type compatibility is left to the programmer.

Example 1:

procedure Read (f: File:
out (String Tolnt StringToCard ,StringToReal)
rv: pararray [l..u: cardinal] of String);

var
i: cardinal;
begin
for i := rv.l to rv.u do

SkipSeparators (f);
ReadString (f,rv(i])
end
end Read;

It is assumed in this example that the type Siring, the conversion functions
and the obvious file handling procedures are conveniently defined. Possible calls
of the procedure Read could be:

var
t,j: integer;
d: cardinal;
r: real;
f: File;
Read (f,ij,r);

;"?,.ead (f,i,d);

Example 2:

Let’s assume that RealSort is a procedure which sorts arrays of real numbers; its
header might be for instance:

procedure RealSort (var a: array [l..u: integer] of real);

RealSort can be used to write another procedure which sorts a sequence of
numerical variables:

procedure SortVariables (in (CardToReal ,Int ToReal)
out (RealToCard,RealTolnt)
a: pararray [[..u: integer] of real);
begin
RealSort (a)
end Sort Variables;

Possible calls of the procedure Sort Variables:

var
i,j: integer;
d: cardinal;
r: real;
v: array [—5..5) of cardinal,

Sort Variables (i,7);
Sort Variables (i,d,r);
Sort Variables (v[—1],v[i],0[1]);

5 Conclusions

Two language mechanisms were described and combined in this proposal. In the
first place, open arrays (also known as semi-dynamic arrays, cf. [Sebesta 89]) are
used as values of dynamic (heap) variables and formal parameters. This kind of
facility is basically an extension of the [SO Pascal concept of conformant arrays.
In the second place, a controlled automatic parameter conversion is introduced, by
including the specification of conversion functions in the procedure declarations.

It was shown that with this combination it is possible to solve some of the
design problems in programming languages (typically 1/0), without resorting
to pseudo-procedures as in Pascal. This should be contrasted with C which
allows for variable number of parameters which cannot be type checked. Ada
has mechanisms for omission of some parameters, but their number and types
are fixed; usual I/O operations require cumbersome multiple procedure calls, the
same way as in Modula-2.

10

Finally, the new mechanisms can be implemented very efficiently, and their
introduction does not affect the efficiency of other facilities already existing in
programming languages like Pascal, Modula-2 or C.

References

[Cardelli et al. 88] L. Cardelli, J. Donahue, L. Glassman, M. Jordan,
B. Kalsow, G. Nelson. Modula-3 Report. Digital
Research Center. August 1988.

[Carvalho 89] C. S. R. Carvalho. Projeto de uma Linguagem
de Programacdo. Tese de Mestrado. bcc—IMECC
UNICAMP. Agosto 1989 (in Portuguese: Design of
a Programming Language. Master Thesis).

[Carvalho 89a C. S. R. Carvalho. Linguagem MC — Manual
de Referéncia. DCC—IMECC—UNICAMP: Agosto 1989
(in Portuguese: MC Language Reference Manual).

[DraftAda 83] United States Department of Defense. Ada Pro-
gramming Language. Draft ANSI/MIL-STD 1815A.
January 1983.

[Hoare 73] C. A. R. Hoare. Hints on Programming Language
Destgn. Sigact/Sigplan Symposium on Principles
of Programming Languages. October 1973,

[(IBM PL/I 88] IBM. OS PL/I Version 2. Programming Language
Reference, Release 2. SC 26-4308-1. October 1988,

[JensenWirth 85] K. Jensen, N. Wirth. Pascal User Manual and Re-
pori. Third Edition, revised by A. B. Mickel, J. F.
Miner. Springer-Verlag, 1985.

[KernRit 78] B. W. Kernighan, D. M. Ritchie. The C' Program-
ming Language. Prentice-Hall, 1978.

[Naur 63] P. Naur. Repori on the Algorithmic Language Al-
gol 60. Communications of ACM, vol. 6 #1, 1963.
Pg. 1-17.

11

[Sebesta 89] R. W. Sebesta. Concepts of Programming Lan-
guages. Benjamin/Cummings Pablishing Com-
pany, 1989.

[Wijngaarden et al. 69] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck,
C. H. A. Koster. R-eport on the Algorithmic Lan-
guage Algol 68. Numerische Mathematic, vol. 14
#2, 1969. Pg. 79-218.

[Wirth 85] N. Wirth. Programming in Modula-2. Third, Cor-
rected Fdition. Springer-Verlag, 1985.

[Wirth 88] N. Wirth. The Programming Language Oberon.
Software-Practice and Ezperience, vol. 18 (7),
1988. Pg. 671-690.

12

01/90

02/90
03/90

04/90

05/90

06/90

07/90
08/90

09/90

10/90

11/90
12/90
13/90

14/90 '

15/90

16/90

17/90
18/90

RELATORIOS TECNICOS — 1990

Harmonic Maps Into Periodic Flag Manifolds and Into Loop Groups —
Caio J. C. Negreiros.

On Jacobi Expansions — E. Capelas de Oliveira,

On a Superlinear Sturm-Liouville Equation and a Related Bouncing
Problem — D. G. Figueiredo and B. Ruf.

F- Quotients and Envelope of F-Holomorphy — Luiza A. Moraes, Otilia
W. Paques and M. Carmelina F. Zaine.

S-Rationally Convex Domains and The Approximation of Silva-
Holomorphic Functions by S5-Rational Functions — Otilia W. Paques and
M. Carmelina F. Zaine.

Linearization of Holomorphic Mappings On Locally Convex Spaces —
Jorge Mujica and Leopoldo Nachbin.

On Kummer Expansions — E. Capelas de Oliveira.

On the Convergence of SOR and JOR Type Methods for Convex Linear
Complementarity Problems — Alvaro R. De Pierro and Alfredo N. Iusem.

A Curvilinear Search Using Tridiagonal Secant Updates for Uncon-
strained Optimization — J. E. Dennis Jr., N. Echebest, M. T. Guardaruccs,
J. M. Martinez, H. D. Scolnik and C. Vacchino.

The Hypebolic Model of the Mean x Standard Deviation “Plane” —
Sueli I. R. Costa and Sandm A. Santos.

A Condition for Positivity of Curvature — A. Derdzinsk and A. Rigas.

On Génerating Functions — F. Capelas de Oliveira.

An Introduction to the Conceptual Difficulties in the Foundations of
Quantum Mechanics a Personal View — V. Buonomano.

Quasi-Invariance of product measures Under Lie Group Perturbations:
Fisher Information And L[?-Differentiability — Mauro S. de F. Marques and
Luiz San Martin.

On Cyclic Quartic Extensions with Normal Basie — Miguel Ferrero,
Antonio Paques and Andrzej Solecki.

Semilinear Elliptic Equations with the Primitive of the Nonlinearity
Away from the Spectrum — Djairo G. de Figueiredo and Obimpio H. Miya-
gaki.

On a Conjugate Orbit of Gg — Lucas M. Chaves and A. Rigas.
Convergence Properties of Iterative Methods for §ymmetric Positive
Semidefinite Linear Complementarity Problems — Alvaro R. de Pierro and
Alfredo N. Iusem.

19/90
20/90
21/90
22/90
23/90

24/90

The Status of the Principle of Relativity — W. A. Rodrigues Jr. and Q. A.
Gomes de Souza.

Geragio de Gerenciadores de Sistemas Reativos — Antonio G. Figueiredo
Filho e Hans K. E. Liesenbery.

Um Modelo Linear Geral Multivariade Nao-Paramétrico — Belmer Garcia
Negrillo.

A Method to Solve Matricial Equations of the Type):f_l A; XB; =C—
Vera Licia Rocha Lopes and José Vitorio Zago. -

Xo-Fixed Sets of Stationary Point Free X4 -Actions — Cloudina Jzepe
Rodrigues.

The m—Ordered Real Free Pro-2-Group Cohomological Characteriza-
tions — Antonio José Engler.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

