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1. INTRODUCTION

The Conjugate Gradient method has been successfully employed to solve
linear systems Az = b where A is symmetric positive definite.

In this paper we present a functional formulation of the method to be applied
to matricial equations of the type

(1) XP:A.-XB‘- =C

when A;isan X n, B;isam X m matrix for every i and C is a n X m matrix.

The method can be applied when solving equation (1) is equivalent to min-
imizing a quadratic functional V : R**™ — R.



In Section 2 we present a functional version of the Conjugate Gradient
method.

In Section 3 we define the functional V, show the equivalence between solv-
ing equation (1) and minimizing V and we set sufficient conditions on A; and B;
under which the method applies.

In Section 4 we give examples of matricial equations of type (1) which can
be solved by our method. We show numerical results obtained from a particular
discretization of the heat equation.

2. A FUNCTIONAL FORM OF THE CONJUGATE GRADIENT
METHOD

Let Z be a Hilbert Space with inner product (, ) and V : Z — R a functional
on it ]
V(z)= EQ(z,z) - P(z)+ k

where Q : Z x Z — IR is a positive-definite, symmetric continuous bi-linear form
and :
P:Z — IR a continuous linear form.

If we know how to compute grad V(z) and grad P(z) the Conjugate Gradient
algorithm to compute
Min V(z) is the following :

'Algorithm 2.3

Let an arbitratry zo € Z and a given ¢ > 0
Let dg = —go = — grad V(zg). If ||do|| < € then zy is an approximate solution.
Otherwise for k£ = 0,1,...

The1 = Tk + apdy

where

= (gk!dk) . -
ap = -—-_—(thb) with G = gx + grad P(zy)

Compute gryy = grad V(zg41). If ||gr41]] £ € then 234, is an approximate
solution. Otherwise dyy; = —gi41 + Bidi Where

- (gk'l'l ’ Gk)
bt



3. THE FUNCTIONAL V AND THE CONJUGATE GRADIENT
METHOD

let Z=R""and A; € B™™ , B;€ R™™™ i=12,...,p
X and CeZ
We define V : Z — IR as

P
(2) V(X) =05 tr(A;XB:X*) - tr(C*X)
=1
Inicially we are going to verify that to solve matricial equation (1) is equiv-
alent to find a critical point of V. Next we will see what are the conditions for
V(X) = 3Q(X,X)— P(X)+ k where Q is a positive definite symmetric bilinear
form, which implies that this critical point is a minimal peint of V.
To find a critical point of V' we compute the derivative of V' in the direction
K
?
Der(V(X)]K = 0.5 tr(A; K B;X") + 0.5 tr(A; X B;K*) — tr(C*K)
=1

Since tr(M N) = tr(NM) as long as MN and NM are well defined we have

Der[V(X))K = 0.5)5 tr(KB;X*A;) + 0.5 itr(A.-XB,-K') ~tr(KC") =
=1

=]
b4 P
=05 tr(A{XB{K')+0.5)  tr(A; X B;K") — tr(CK")
=1 =1
If we suppose that A; and B; are symmetric for every i we have
P P
Der[V(X)|K = [): 1r(A:X B;) — tr(C)] K* wti [(Z(A,-XB; b C)K'].
=1

=]

for every K in Z.
Defining (P, Q)v = tr(PQ")

Der(V(X)]K = (Z:; A;XB; - C,K )V



Then X is a critical point of V if and only if

P
Der[V(X)]K =0 VK € Z ,thatisiff ) A;XB;=C.

yz=l

Furthermore by Riez’s theorem

: : .
(3) grad V(X)= ) A:XB;-C.
i=1
Defining Q : ZXZ — IR by
P

(4) QX,Y)=1tr()_ A XBY")

=1
and

P:Z—- R

by

P(X)=tr(C'X), C€Z

we have 1
V(X)= EQ(X,X) - P(X).

If Q is positive definite, symmetric, bilinear then the critical point of V will
be a minimal point and the conjugate gradient method (Algorithm 2.1) can be
applied. ,

It is not difficult to prove that Q(X,Y) is bilinear and symmetric.

The theorem below set the conditions on A; and B; for the symmetric and
bilinear form @ to be positive-definite.

Theorem: Let X, 1< k < nm be an element of the canonical basis of IR™™,
that is Xj is a n x m matrix with all elements zero except for z,, = 1, where

quotient of the division of k& by m if the rest is zero
r={ or
(quotient of the division of £ by m) + 1 if the rest is not zero

s=k—(r=1)m.

Then the symmetric, bilinear form Q defined by (4) is positive definite if and
only if ;
D = d¢ = Q(X¢, X;) nom X n.m



is positive definite
Proof: dy; =_Q(thYj) =Y t"(AixfB"YJ'i)

Then forevery X € Z , X = Y3X"v,X, and v = (0,)n.mx1 is a vector of
i

Q(X!X) =Q E v, X, , E "txl) o 2 W!”J'Q(xivxj) =v'Dv.
=1 =1 iy=1

To prove that D is positive definite we can use Sylvester’s theorem stated below.

Theorem: A matrix A = a@;; , n X n is positive definite if and only if A, > 0,
£=1,2,...,n where A, is the principal minor of order ¢ of matrix A.

If the dimensions n and m are big this verification is cambersome even if p
is small.

In next Section we will present classes of matrices where it is easy to see that
Q(X,Y) is positive definite and a practical example where we apply our method.

4. EXAMPLES
4.1. THE EQUATION C'CX +CXD'+C'XD+ XDD' = E
If p=4Xand 37_, A;X B; can be grouped as 3")_, P; where

=]

P; = A1;X B1j + A2; X Byj + A3; X Ba; + A4; X By

with
Ay = CjC; Byi=1
Ay =C; By; = Dj
Asj = C} Bs; = D;
Ay =1 By = D_,'D;
then X
Q(X,X) =) tr(S;)
=1
where

S,- = AUXBUX‘ + AszngX‘ + AanBan' + A”'XB”'X'
(CiX + XD;)(C;X + XD;)' = FyF}



and Q(X,X) >0 VX.

An example of equations of this type for which Q(X, X) = 0 if and only if
X = 0 are equations (A = 1,Cy = C,D; = D) with C and D n x n such that
det A # 0 where A is the n? x n? matrix
My Py Pj3--- P,
Pn M,

Pul Mn
with M; = ¢;;1 + D' and Py = ¢l

4.2. THE EQUATION 7 A XA =C
p>n?, n=dimA; for every i
For equations of this type we see that

P
QX,X) =) tr(AX AX") = i[tr(A.-X)]’
=1

i=i

_Then Q(X, X) is positive-definite if rank(M) = n? where M is the matrix p x n?
with the n? elements of line j being the elements of A;, that is, line j of M is

(@185 - @ @)%, - - @ @30haahy -+~ 63, -+ - a,).
4.3. THE EQUATION BXC + DXE =G

Equations of this type arise from the discretization by Finite Elements of
the variational formulation of .

(5) {A"=f in @ = [a,b] x [e,d] C R?

u=0 in 9N
In the variational formulation solving (5) is equivalent to solving
. - ou \? ou\?
(6) Min g(s) = Mm/nﬂﬁ[( 5) ] + (B—y) ~ fuldzdy
Taking
b—a d-c
Az = Ay=——, ¢dz), ¥;(v)

n+1’ m+1
as finite elements basis such that

pi(a) = @i(b) =0, 1<i<nm

¥i(c) = ¢i(d)=0, 1<j<m



then an approximate solution is

(1) w(zi9)% 33 aswile)vily)

=1 3=1
Taking (7) into (6) we have
9(u) = V(X)=05t(BXCX") +05tr(DXEX") —tr(G*'X) with
X being a n X m matrix with elements a;;

B a n X n matrix b;; = f:cpf(z)qo;-(:l:)dz = bji

C a m X m matrix ¢;; = ]:'tp.-(y)tb,-(y}dy = ¢

D a n x m matrix d;; = [* pi(z)p;(z)dz = dj;

E amx m matrix &; = [7 $(y)¥}(s)dy = &

G anxm matrix gi; = [ [ pi(2)¥;(y) f(z, y)dzdy

It is not difficult to see that
Q(X,X)=05tr(BXCX*)+05tr(DXEX") =0 if and only if X = 0.

We can extend the method to equations

) B i '52‘"(“"'53‘5‘) = [ in Q with @ = (ay,,)positive definite

(8)
u=0 in A0
whose variational formnla;ion is
: du 0 ;
Min [o{0.57, 35 ars(z1,22) o 6: — uf}dzidzy = Min g(u)

u=0 in Q.

We have &5
g(u) =05)_ ) tr(B;XCX') - tr(G*X)
=1 3=1

with

B;; = f fd aij(z122)91(21)pj(21)dz1dz2



a n X n matrix and C, X, G as in the previous case.
Since @ is positive definite, Q(X, X) = 0 if and only if X = 0.
4.4. AN APPROXIMATE SOLUTION OF THE HEAT EQUATION.

Lopes and Zago [5], present a numerical method for the approximate solution
of heat equation

(o _ o
ot~ 0z?
(9) Y u(0,t) = u(1,¢) = 0
Lu(:,O):uo(:I:) It €<}

Using the dual extremum principles of Noble and Sewell [6], we can transform
(9) into a pair of restricted minimization and maximization problems.

Approximating these extremum principles by linear finite element basis both
in time and space we got irrestricted maximum and minimum problems. The
.discretized problem consists of finding max V(X)) where

vV : R(n—l)lt(n-!—l) P
V(X) = 0.5tr(CXRX*S) + 0.5 tr(EXFX")

+0.5tr(CXYr X") + 0.5 tr(CXYoX") — tr(DXT)
with

zg=0, z = Asz,...,z, = 5z
=0, h=Al . dnu=mAl=T

X is the matrix of unknowns (coefficients of the linear combination of the basis
functions).

C,R,S,E, F are symmetric matrices whose elements are the integrals of products
of basis functions and derivatives of basis functions.



Disa(n—1)x (n— 1) matrix with the initial condition of the problem

AR Gl B SRR
) B e ang owibil
=11 _ .
00 0 {m+1)x(n-1)
S | T | 0
0 0 0
Yom § . .
0 0 imenximen)
e | e g |
Yr =
1 (m+1)x{m+1)

They proved that the bilinear form associated to V is continuous, symmetric and
positive definite and that

gradV(X) = SCXR + EXF + CX(Yr + Yu) - (1 D)}

The functional formulation of the Conjugate Gradient Method here presented
was used to solve the problem with good numerical results.
We solved problem (9) with -

uo(z) = sin7z.

The exact solution is u(z,t) = sinxze~""*. In Table 4.1 we present our results.

i) ||lerror||o — is the maximun norm computed in the matriz ERT with
ERT.'J; = {5, 15) - ﬁ(z.',tj)

and #%(z,7) is our approximate solution.

iv) Dim — X matrix dimension: (n — 1) X (m + 1).

v) Iter -number of iterations made by Conjugate Gradient untill
llgrad V(X)|lo < 541075,



Az At |lerror]|s Dim | Iter
0.5 0.25 0.1965079 5 5
0.25 0.125 0.0625 27 11
0.125 0.0625 0.01812518 119 | 31
0.0625 | 0.03125 | 0.004675627 | 495 | 63
0.03125 | 0.015625 | 0.001188576 | 2015 | 111

Table 4.1 — Results obtained applying the proposed method to equation (9) with
up(z) = sinxz
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