ON CYCLIC QUARTIC EXTENSIONS WITH NORMAL BASIS

Miguel Ferrero
Antonio Paques
and
Andrzej Solocki

RELATÓRIO TÉCNICO Nº 15/90

Abstract. Let R be a commutative ring with 2 being a unit in R. We give a complete description of all cyclic quartic extensions of R having a normal basis. We also give a description of the group $NB(\mathbb{Z}/4\mathbb{Z},R)$ of all the $R[\mathbb{Z}/4\mathbb{Z}]$ -isomorphism classes of these cyclic quartic extensions of R.

Instituto de Matemática. Estatística e Ciência da Computação Universidade Estadual de Campinas 13.081, Campinas, S.P. BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade dos autores.

On Cyclic Quartic Extensions With Normal Basis

Miguel Ferrero
Instituto de Matemática - UFRGS
90.049 - Porto Alegre, RS - Brazil
Antonio Paques
IMECC - UNICAMP
13.081 - Campinas, SP - Brazil
Andrzej Solecki
Departamento de Matemática - UFSC
88.049 - Florianópolis, SC - Brazil

Abstract. Let R be a commutative ring with 2 being a unit in R. We give a complete description of all cyclic quartic extensions of R having a normal basis. We also give a description of the group $NB(\mathbb{Z}/4\mathbb{Z},R)$ of all the $R[\mathbb{Z}/4\mathbb{Z}]$ -isomorphism classes of these cyclic quartic extensions of R.

Introduction

Throughout this paper R is a commutative ring with 2 being a unit in R. By a cyclic quartic extension A of R we mean a commutative Galois extension of R in the sense of [1] with a cyclic Galois group $\langle \sigma \rangle$ generated by an R-automorphism σ of A whose order is 4. Such an A is an $R[\langle \sigma \rangle]$ -module in a natural way and we say that A has a normal basis over R if A is a free $R[\langle \sigma \rangle]$ -module of rank 1. The purpose of this paper is to study cyclic quartic extensions of R which have normal basis.

For any commutative ring T we will denote by T^* the multiplicative group of all the units of T and by T^{*2} the subgroup of the squares of the elements of T^* .

Let $S=R[X]/(X^2+1)=R[i]$, where i denotes the coset of X modulo (X^2+1) . In §1 we construct for every pair $(u,v)\in R^*\times S^*$ a cyclic quartic extension $A_{u,v}$ of R which has a normal basis and, conversely, we show that any cyclic quartic extension of R which has a normal basis is isomorphic to one extension of this type. We also prove that under certain conditions $A_{u,v}$ is isomorphic to the R-algebra $R[Z]/(Z^4+bZ^2+c)$ for some $b,c\in R^*$ with $c(b^2-4c)\in R^{*2}$. In particular, all cyclic quartic extensions of R can be described by this way when R is an LG-ring [2] such that |R/P|>5

This research was partially supported by CNPq, FAPERGS, FAPESP and FINEP (Brazil).

for every maximal ideal \mathcal{P} of R. We also establish conditions for $A_{u,v}$ to be either a field, a connected ring, a local ring or an integral domain,

In §2, as an application of the main results of §1, we prove that the group $NB(\mathbb{Z}/4\mathbb{Z},R)$ of all the $R[\mathbb{Z}/4\mathbb{Z}]$ -isomorphism classes of cyclic quartic extensions of R having a normal basis is isomorphic to a quotient of the group $R^* \times S^*$.

Throughout this paper a cyclic quartic extension A of R with Galois group $\{\sigma\}$ will be denoted by (A, σ) . Unadorned \otimes will mean \otimes_R .

The structure of a cyclic quartic extension with normal basis

The R-algebra $S = R[X]/(X^2+1) = R[i]$, where $i = X + (X^2+1)$, is a (Galois) quadratic extension of R with Galois group generated by the obvious R-automorphism. We will denote by N the norm mapping from S to R, i.e., $N(r_0 + r_1i) = r_0^2 + r_1^2$.

Let $(u,v) \in R^* \times S^*$, where $v=r_0+r_1i$. We put $a=N(v) \in R^*$ and $D_a=R[X]/(X^2-a)=R[x]$, where $x=X+(X^2-a)$. Denote by $M=Re_0\oplus Re_1$ a free R-module of rank 2 with a basis $\{e_0,e_1\}$ over R and set $A_{u,v}=D_a\oplus M$ as R-module. Hence, $A_{u,v}$ is a free R-module of rank 4 with a basis $\{1,x,e_0,e_1\}$ over R. It is easy to check that the following relations define on $A_{u,v}$ an structure of commutative R-algebra:

$$x^2 = a$$
, $e_0^2 = u(1 + a^{-1}r_0x)$, $e_1^2 = u(1 - a^{-1}r_0x)$, $e_0 e_1 = a^{-1}ur_1x$,
 $xe_0 = r_0e_0 + r_1e_1$ and $xe_1 = r_1e_0 - r_0e_1$.

Also, the mapping $\rho: A_{u,v} \to A_{u,v}$ defined by $\rho|_R = id$, $\rho(x) = -x$, $\rho(e_0) = e_1$ and $\rho(e_1) = -e_0$ is a (well-defined) R-algebra automorphism of $A_{u,v}$ whose order is 4.

Lemma 1.1. $(A_{u,v}, \rho)$ is a cyclic quartic extension of R which has a normal basis.

Proof. From the above definitions it trivially follows that the fixed subring $A_{u,v}^{\rho} = \{t \in A_{u,v} : \rho(t) = t\}$ equals R. Now, let $\alpha = 4^{-1}(1 + x + e_0 - e_1)$ and $\alpha_i = \rho^i(\alpha)$, $0 \le i \le 3$. Clearly $\{\alpha_i : 0 \le i \le 3\}$ is a normal basis of $A_{u,v}$ over R and the following relations hold:

$$\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 = 1$$
, $(\alpha_0 + \alpha_2) - (\alpha_1 + \alpha_3) = x$ and $(\alpha_0 - \alpha_2)^2 + (\alpha_1 - \alpha_3)^2 = 2^{-1}(\epsilon_0^2 + \epsilon_1^2) = u$

The determinant of the circulant matrix $m(\alpha)=(\rho^{j-i}(\alpha)),\ 0\leq i,\ j\leq 3,$ is $\det(m(\alpha))=[(\alpha_0+\alpha_2)^2-(\alpha_1+\alpha_3)^2][(\alpha_0-\alpha_2)^2+(\alpha_1-\alpha_3)^2]=xu\in A_{u,v}^*.$ Hence, $m(\alpha)$ is invertible and $[m(\alpha)]^{-1}$ is also circulant, say $[m(\alpha)]^{-1}=(\beta_{i-j\pmod{4}}),\ 0\leq i,\ j\leq 3.$ Thus, we get $\sum_{i=0}^3 \rho^j(\alpha_i)\beta_i=\delta_{0,j}$. The proof is complete by ([1], Theorem 1.3.b)).

Before proving the next theorem we recall that two commutative ring extensions (A, σ) and (B, τ) of R with fixed R-automorphisms σ and τ , respectively, are isomorphic if there exists an R-algebra isomorphism $\varphi: A \longrightarrow B$ such that $\varphi \circ \sigma = \tau \circ \varphi$.

Now we have the main result of this section.

Theorem 1.2. Let (A, σ) be a commutative ring extension of R with an R-automorphism σ of A. Then, (A, σ) is a cyclic quartic extension of R having a normal basis if and only if (A, σ) is isomorphic to $(A_{u,v}, \rho)$ for some $(u, v) \in R^* \times S^*$.

Proof. Let (A,σ) be a cyclic quartic extension of R and let D be the fixed subring A^{σ^2} of A. Then, by the results in [1] it follows that A is a quadratic extension of D with Galois group $\langle \sigma^2 \rangle$, D is a quadratic extension of R with Galois group $\langle \sigma|_D \rangle$, $D = R \oplus X(D)$ as R-modules and $A = D \oplus X(A)$ as D-modules. where $X(D) = \{t \in D : \sigma(t) = -t\}$ and $X(A) = \{t \in A : \sigma^2(t) = -t\}$.

Now, suppose that $\{\alpha_i = \sigma^i(\alpha) : 0 \le i \le 3\}$ is a normal basis of A over R. Then, by Proposition 3.1 of [4], $\det(\sigma^{i+j}(\alpha)) = -[(\alpha_0 + \alpha_2)^2 - (\alpha_1 + \alpha_3)^2][(\alpha_0 - \alpha_2)^2 + (\alpha_1 - \alpha_3)^2] \in A^*$. We also may assume that $\sum_{i=0}^3 \alpha_i = 1$. By setting $x = (\alpha_0 + \alpha_2) - (\alpha_1 + \alpha_3)$, $x^2 = a$, $e_0 = (\alpha_0 - \alpha_2) + (\alpha_1 - \alpha_3)$ and

By setting $x=(\alpha_0+\alpha_2)-(\alpha_1+\alpha_3)$, $x^2=a$, $e_0=(\alpha_0-\alpha_2)+(\alpha_1-\alpha_3)$ and $e_1=\sigma(e_0)$ we easily get $a\in R^*$, X(D)=Rx, $D=R[x]\simeq R[X]/(X^2-a)$ and $X(A)=Re_0\oplus Re_1$. Also, since $\sigma(x)=-x$, $\sigma^2(xe_0)=-xe_0$, $\sigma^2(e_0^2)=e_0^2$, $\sigma^2(e_0e_1)=e_0e_1$ and $\sigma(e_0e_1)=-e_0e_1$, it follows that $xe_0\in X(A)$, $e_0^2\in D$ and $e_0e_1\in X(D)$. From these conditions, by using the relations $ae_0=x(xe_0)$, $xe_0^2=(xe_0)e_0$ and $x(e_0e_1)=(xe_0)e_1$, we get unique elements r_0 , $r_1\in R$ and $u\in R^*$ such that

$$\begin{array}{llll} xe_0 & = & r_0e_0 + r_1e_1, & xe_1 = -\sigma(xe_0) = r_1e_0 - r_0e_1, \\ a & = & r_0^2 + r_1^2 = N(v), & \text{for} & v = r_0 + r_1i \in S^*, \\ e_0^2 & = & u(1 + a^{-1}r_0x), & e_1^2 = \sigma(e_0^2) = u(1 - a^{-1}r_0x) & \text{and} \\ e_0e_1 & = & a^{-1}ur_1x. & \end{array}$$

Therefore, (A, σ) is clearly isomorphic to the cyclic quartic extension $(A_{u,v}, \rho)$ of R.

The converse holds by Lemma 1.1.

Remark 1.3. It is clear that the pair $(u,v) \in R^* \times S^*$ constructed in the above theorem depends on the choice of the normal basis. Also, the pair which corresponds to $(A_{u,v},\rho)$ defined in Lemma 1.1 with respect to the basis given in the lemma is clearly (u,v).

From now on we will keep the above notations. If (A, σ) and a normal basis $\{\alpha_i = \sigma^i(\alpha) : 0 \le i \le 3\}$ of A over R with $\sum_{i=0}^3 \alpha_i = 1$ are given, the basis $\{1, x, e_0, e_1\}$ as constructed in the above theorem will be called the canonical basis

associated with (A, σ, α) .

Now we have

Proposition 1.4. $A_{\mathbf{u},v}=R[\epsilon_0]$ if and only if $r_0r_1\in R^*$. Moreover, in this case $\epsilon_0^4=2\mathbf{u}\epsilon_0^2-a^{-1}(r_1\mathbf{u})^2$ and $\rho(\epsilon_0)=\varepsilon(r_0r_1)^{-1}(r_0^2+a)\epsilon_0-\varepsilon a(r_0r_1\mathbf{u})^{-1}\epsilon_0^3$, where $\varepsilon\in R^*$ is some solution of the equation $\varepsilon^2=1$.

Proof. From the equations stated in the beginning of this section it trivially follows that

$$\begin{aligned} e_0^4 &= 2ue_0^2 - a^{-1}(r_1u)^2 \\ 2a^{-1}r_0ux &= e_0^2 - e_1^2 = (e_0 - \rho(e_0))(e_0 - \rho^3(e_0)) \\ 4a^{-1}r_1ux &= 4e_0e_1 = (e_0 - \rho^2(e_0))(\rho(e_0 - \rho^2(e_0))). \end{aligned}$$
 and

On the other hand, by ([4], Corollary 2.2) $A_{u,v} = R[e_0]$ if and only if $(e_0 - \rho^i(e_0)) \in A_{u,v}^n$, for $1 \le i \le 3$. Then the first part follows since 2, u, a and x are units in $A_{u,v}$.

Also, since $A_{u,v}$ is a quadratic extension of $D_u = A_{u,v}^{\rho^2}$ with Galois group (ρ^2) , if $r_1 \in R^*$ we similarly get $A_{u,v} = D_a[e_0] = D_a \oplus D_a e_0$.

Now, assume $r_0r_1 \in R^*$. Since $\rho(e_0) = e_1 \in X(A_{u,v}) = D_ue_0$, there exists $d \in D_a$ such that $\rho(e_0) = de_0$. Moreover, from $e_0^2 = u(1+a^{-1}r_0x)$ and $\rho^2(e_0) = -e_0$ we easily get $d\rho(d) = -1$ and $d^2(1+a^{-1}r_0x) = 1-a^{-1}r_0x$. Put $d = d_0 + d_1x$, with $d_0, d_1 \in R$. Then, we have $d_0^2 - d_1^2a = -1$, $d_0^2 + d_0d_1r_0 = 0$ and $d_1^2r_0 + d_0d_1 = 0$. If $\mathcal P$ is a maximal ideal of R and $d_0 \in \mathcal P$, then $d_1 \in \mathcal P$ and so $-1 \in \mathcal P$. Consequently, d_0 is a unit in R and it follows $d_1 = -d_0r_0^{-1}$ and $d_0 = \varepsilon r_0r_1^{-1}$ where $\varepsilon \in R^*$ satisfies $\varepsilon^2 = 1$. Thus $\rho(e_0) = r_1^{-1}\varepsilon(r_0 - x)e_0$. From $e_0^2 = u(1+a^{-1}r_0x)$ we get $x = a(r_0u)^{-1}(e_0^2 - u)$ and hence $\rho(e_0) = \varepsilon(r_0r_1)^{-1}(r_0^2 + a)e_0 - \varepsilon a(r_0r_1u)^{-1}e_0^3$, which completes the proof.

A slight reformulation of the above proposition gives the following interesting

Corollary 1.5. If $r_0r_1 \in R^*$ then there exist $b, c \in R^*$ such that $c(b^2-4c) \in R^{*2}$ and $A_{u,v} \simeq R[Z]/(Z^4+bZ^2+c) = R[z]$, where $z = Z + (Z^4+bZ^2+c)$. Moreover, under this isomorphism the R-automorphism ρ of $A_{u,v}$ corresponds to the R-automorphism σ of R[z] given by $\sigma(z) = \lambda^{-1}(b^2-2c)z + \lambda^{-1}bz^3$, where $\lambda \in R^*$ is some solution of the equation $\lambda^2 = c(b^2-4c)$.

Proof. It is enough to write (in Proposition 1.4) -2u = b and $a^{-1}(r_1u)^2 = c$ and to consider the mapping $e_0 \mapsto z$ from $A_{u,v}$ to R[z].

The following proposition gives the converse of Corollary 1.5.

Proposition 1.6. Suppose that $b, c \in R$ and $A = R[Z]/(Z^4 + bZ^2 + c) = R[z]$, where $z = Z + (Z^4 + bZ^2 + c)$. If $b, c \in R^*$ and $c(b^2 - 4c) \in R^{*2}$, then A is a cyclic quartic extension of R with Galois group generated by $\sigma: z \mapsto \lambda^{-1}(b^2 - 2c)z + \lambda^{-1}bz^3$, where $\lambda \in R^*$ is a solution of the equation $\lambda^2 = c(b^2 - 4c)$. Furthermore, A has a normal basis over R and (A, σ) is isomorphic to $(A_{u,v}, \rho)$ with $u = -2^{-1}b$ and $v = (2c)^{-1}\lambda - i$.

Proof. Let $\lambda \in R^*$ a solution of the equation $\lambda^2 = c(b^2 - 4c)$ and put $t = \lambda^{-1}(b^2 - 2c)z + \lambda^{-1}bz^3 \in A$. We can easily check that $t^2 = -(b + z^2)$ and $t^4 + bt^2 + c = 0$. From this it follows that σ defined by $\sigma|_R = id$ and $\sigma(z) = t$ is a (well-defined) R-algebra homomorphism of A. Then, $\sigma^2(z) = \lambda^{-1}(b^2 - 2c + b\sigma(z^2))\sigma(z) = -\lambda^{-2}(2c + bz^2)(b^2 - 2c + bz^2)z = -\lambda^{-2}(b^2 - 4c)cz = -z$. Therefore, $\sigma^4 = id$ and so σ is an R-automorphism of order 4. Also, by using $\sigma^2(z) = -z$ and $\sigma(z^2) = -(b + z^2)$ we easily see that the fixed subring A^σ equals R.

Put $y = -\lambda^{-1}b(z^2 + 2^{-1}b)$, $f_0 = z$ and $f_1 = \sigma(z)$. It follows that $f_0^2 - f_1^2 = -2\lambda b^{-1}y$, $y^2 = (4c)^{-1}b^2$ and $f_0^2f_1^2 = c$. Hence, $(f_0 - \sigma(f_0))(f_0 - \sigma^2(f_0))(f_0 - \sigma^3(f_0)) \in A^*$. Then, (A, σ) is a cyclic quartic extension of R by ([1], Theorem 1.3 (f)).

Finally, since $\{1, y, f_0, f_1\}$ is a basis of A over R we get a normal basis by writing $\alpha = 4^{-1}(1 + y + f_0 - f_1)$ and considering $\{\sigma^i(\alpha): 0 \le i \le 3\}$. The last claim is immediate.

In general, there exist cyclic quartic extensions (A, σ) of R having normal basis such that for any representation $(A, \sigma) \simeq (A_{u,v}, \rho)$ the corresponding $v = r_0 + r_1 i$ satisfies $r_0 r_1 \notin R^*$. Take, for example, $R = F_3$ or F_5 , $A = R \times R \times R \times R$ and σ the cyclic shift, where F_p denotes the finite field with p elements.

Nevertheless, there is an interesting case in which we can always get a representation of the type given in Proposition 1.6. Following [2] R is called an LG-ring if whenever a polynomial $f \in R[X_1, \ldots, X_n]$ represents a unit over $R_{\mathcal{P}}$, for every maximal ideal \mathcal{P} of R, then f represents a unit over R. LG-rings include semilocal rings or, more generally, rings which are von Neumann regular modulo their Jacobson radical.

Corollary 1.7. Assume that R is an LG-ring such that $|R/\mathcal{P}| > 5$, for every maximal ideal \mathcal{P} of R. Then every cyclic quartic extension of R is of the type described in Proposition 1.6.

Proof. Since R is an LG-ring, every cyclic quartic extension (A, σ) of R has a normal basis ([4], Theorem 3.2). Thus, given a normal basis $\{\alpha_i = \sigma^i(\alpha) : 0 \le i \le 3\}$ of A over R, with $\sum_{i=0}^3 \alpha_i = 1$, let $\{1, x, e_0, e_1\}$ be the canonical basis associated with (A, σ, α) and $(u, v) \in R^* \times S^*$ the corresponding pair, $v = r_0 + r_1i$.

Assume $r_0r_1 \notin R^*$. We show is always possible to obtain another canonical basis $\{1, y, f_0, f_1\}$ of A over R for which $yf_0 = s_0f_0 + s_1f_1$, with $s_0s_1 \in R^*$. This fact completes the proof.

For, take y=x, $f_0=\lambda_0e_0+\lambda_1e_1$, and $f_1=\sigma(f_0)=-\lambda_0e_0+\lambda_0e_1$, where $\lambda_0,\lambda_1\in R$. The set $\{1,y,f_0,f_1\}$ is a basis of A over R if and only if $\lambda=\lambda_0^2+\lambda_1^2=\det\left(\begin{array}{cc}\lambda_0&-\lambda_1\\\lambda_1&\lambda_0\end{array}\right)\in R^*$. Moreover, in this case $\{1,y,f_0,f_1\}$ is the canonical basis associated with (A,σ,β) , where $\beta={}^*4^{-1}(1+y+f_0-f_1)$. Also, we can check that $yf_0=s_0f_0+s_1f_1$ with $s_0=\lambda^{-1}[r_0(\lambda_0^2-\lambda_1^2)+2r_1\lambda_0\lambda_1]$ and $s_1=\lambda^{-1}[r_1(\lambda_0^2-\lambda_1^2)-2r_0\lambda_0\lambda_1]$. So, in order to get our aim it suffices to verify that the polynomial $f=(X_0^2+X_1^2)[r_0(X_0^2-X_1^2)+2r_1X_0X_1][r_1(X_0^2-X_1^2)-2r_0X_0X_1]\in R[X_0,X_1]$ represents a unit over $R_{\mathcal{P}}$, for every maximal ideal \mathcal{P} of R. Since $r=r_0+r_1i\in S^*$ and $|R/\mathcal{P}|>5$, we have $f\not\equiv 0\pmod{\mathcal{P}R[X_0,X_1]}$ for such a \mathcal{P} and the result easily follows.

In the rest of this section we will deal with the conditions for a cyclic quartic extension of R having a normal basis to be a field (resp. a connected ring, a local ring, an integral domain). Firstly, we need the following

Lemma 1.8. Assume that R is a connected ring and let (A, σ) be a cyclic quartic extension of R. Then, $A^{\sigma^2} \simeq R \times R$ if and only if there exists a (Galois) quadratic extension D of R such that $A \simeq D \times D$.

Proof. Suppose that $A^{\sigma^2} \cong R \times R$. We may assume $A^{\sigma^2} = R \times R = R\varepsilon_1 \oplus R\varepsilon_2$, with $\varepsilon_1 = (1,0)$ and $\varepsilon_2 = (0,1)$, and $\sigma(\varepsilon_1) = \varepsilon_2$. Then, $A = A\varepsilon_1 \oplus A\varepsilon_2$, $\sigma|_{A\varepsilon_1} : A\varepsilon_1 \xrightarrow{\sim} A\varepsilon_2$ and $\sigma^2|_{A\varepsilon_1} : A\varepsilon_1 \xrightarrow{\sim} A\varepsilon_1$. It is not difficult to see that $D = A\varepsilon_1$ is a quadratic extension of $R\varepsilon_1 \cong R$, with the Galois group (σ^2) .

For the converse we may also assume $A = D \times D$. Since D is a (Galois) quadratic extension of R let τ denotes the generator of the corresponding Galois group of D.

Firstly, we show that D is either a connected ring or $D \simeq R \times R$. Suppose that D is not connected. Thus, $D = D\varepsilon_1 \oplus D\varepsilon_2$ where ε_1 and ε_2 are non-zero idempotents of D such that $\varepsilon_1 + \varepsilon_2 = 1$. Since R is connected it easily follows that $\tau(\varepsilon_1) = \varepsilon_2$ and consequently $R \simeq R\varepsilon_1 \simeq R\varepsilon_2$. Furthermore, $D\varepsilon_i$ is a Galois extension of $R\varepsilon_i$ i = 1, 2, by ([5], Proposition 1.3). Also, D is a projective R-module of rank 2, so each $D\varepsilon_i$ is a projective $R\varepsilon_i$ -module of rank 1. Consequently, it follows from ([1], Lemma 1.6) that $D\varepsilon_i = R\varepsilon_i$, i = 1, 2. Then, $D = D\varepsilon_1 \oplus D\varepsilon_2 = R\varepsilon_1 \oplus R\varepsilon_2 \simeq R \times R$.

Now, if $D\simeq R\times R$ then $A=R\varepsilon_1\oplus R\varepsilon_2\oplus R\varepsilon_3\oplus R\varepsilon_4$, where $\varepsilon_1,\,\varepsilon_2,\,\varepsilon_3$ and ε_4 are minimal idempotents of A, and σ is a cyclic permutation (of order 4) of them. In this case we have $A^{\sigma^2}\simeq R\times R$. If D is connected, the unique idempotents of A are $0=(0,0),\ 1=(1,1),\ \varepsilon_1=(1,0)$ and $\varepsilon_2=(0,1).$ So, $A=D\varepsilon_1\oplus D\varepsilon_2$ and σ is determined by $\sigma|_D$, $\sigma(\varepsilon_1)$ and $\sigma(\varepsilon_2).$ Since $\sigma|_D:D\to A$ is an R-algebra homomorphism, there exists an idempotent $\varepsilon\in A$ such that $\sigma|_D=\varepsilon_1id+(1-\varepsilon)\tau$ ([1], Theorem 3.1). We have $\sigma(\varepsilon_1)=\varepsilon_2,\ \sigma(\varepsilon_2)=\varepsilon_1$ and either $\sigma|_D=\varepsilon_1id+\varepsilon_2\tau$ or $\sigma|_D=\varepsilon_2id+\varepsilon_1\tau$, because in the other cases we get $\sigma^2=id$, a contradiction. Now, it easily follows that

 $A^{\sigma^2} \simeq R \times R$, which completes the proof.

Corollary 1.9. Let (A, σ) be a cyclic quartic extension of R. Then, A is a connected ring (resp. a field, a local ring) if and only if A^{σ^2} is a connected ring (resp. a field, a local ring).

Proof. Assume that A is not connected and $D=A^{\sigma^2}$ is connected. Since A is a (Galois) quadratic extension of D, by similar arguments to those used in the proof of the preceding lemma we get $A\simeq D\times D$. Thus, $D=A^{\sigma^2}\simeq R\times R$ which is a contradiction.

If A^{σ^2} is a field, then A is a connected quadratic extension of a field and so A is a field.

Finally, if A^{σ^2} is a local ring, then R is also a local ring. If \mathcal{P} is the maximal ideal of R, a straightforward argument (reduction module \mathcal{P}) assures us that A is a local ring with maximal ideal $\mathcal{P}A$.

The converses are obvious.

The proof of the following corollary is easy and it will be omitted here.

Corollary 1.18. Let $(u, v) \in R^* \times S^*$, with N(v) = a. Then,

- (i) $A_{u,v}$ is a connected ring if and only if R is a connected ring and $a \notin R^{*2}$.
- (ii) $A_{u,v}$ is a field if and only if R is a field and $a \notin R^{-2}$.
- (iii) $A_{u,v}$ is a local ring if and only if R is a local ring with maximal ideal \mathcal{P} and $a + \mathcal{P} \notin (R/\mathcal{P})^{*2}$.
- (iv) $A_{u,v}$ is an integral domain if and only if R is an integral domain and $a \notin F^{-2}$, where F is the field of fractions of R.

2. The group $NB(\mathbb{Z}/4\mathbb{Z}, R)$

We denote by $NB(\mathbb{Z}/4\mathbb{Z}, R)$ the set of all $R[\mathbb{Z}/4\mathbb{Z}]$ -isomorphism classes $[A, \sigma]$ of cyclic quartic extensions of R having normal basis. On $NB(\mathbb{Z}/4\mathbb{Z}, R)$ we define the usual operation *:

$$[A, \sigma] * [B, \tau] = [(A \otimes B)^{\sigma^{-1} \otimes \tau}, \sigma \otimes id].$$

Clearly, $((A \otimes B)^{\sigma^{-1} \otimes \tau}, \ \sigma \otimes id)$ is a cyclic quartic extension of R. Also, if $\{\alpha_i = \sigma^i(\alpha) : 0 \le i \le 3\}$ and $\{\beta_i = \tau^i(\beta) : 0 \le i \le 3\}$ are normal bases of A and B over R, respectively, then $\{\gamma_i = (\sigma^i \otimes id)(\gamma) : 0 \le i \le 3\}$ is a normal basis of $(A \otimes B)^{\sigma^{-1} \otimes \tau}$ over R, for $\gamma = \sum_{i=0}^3 \sigma^{-i}(\alpha) \otimes \tau^i(\beta)$. It is known that * endows $NB(\mathbb{Z}/4\mathbb{Z}, R)$ with an abelian group structure. Actually, $NB(\mathbb{Z}/4\mathbb{Z}, R)$ is a subgroup of the Harrison group

 $T(\mathbb{Z}/4\mathbb{Z},R)$ [3] of the $R[\mathbb{Z}/4\mathbb{Z}]$ -isomorphism classes of cyclic quartic extensions of

The purpose of this section is to give a description of $NB(\mathbb{Z}/4\mathbb{Z}, R)$ by using the results obtained in the former section.

We begin this section with the following

Lemma 2.1. Let (A, σ) and (B, τ) be isomorphic cyclic quartic extensions of R. Let $\{\alpha_i = \sigma^i(\alpha) : 0 \le i \le 3\}$ and $\{\beta_i = \tau^i(\beta) : 0 \le i \le 3\}$ be normal bases of A and B over R, respectively, and assume that $\sum_{i=0}^3 \alpha_i = \sum_{i=0}^3 \beta_i = 1$. If (u, v) and (u_1, v_1) are the corresponding pairs in $R^* \times S^*$ obtained as in Theorem 1.2 for (A, σ, α) and (B, τ, β) , respectively, then there exist $\lambda \in R^*$ and $w \in S^*$ such that $(u_1, v_1) = (N(w), \lambda w^2)(u, v)$.

Proof.

We may assume $(B,\tau)=(A,\sigma)$. Then there exist $\lambda_i\in R,\ 0\leq i\leq 3$, such that $\beta_j=\sum_{i=0}^3\lambda_{i-j\{\text{mod}4\}}\alpha_i$, for $0\leq j\leq 3$. So, $\det(\lambda_{j-i\{\text{mod}4\}})=[(\lambda_0+\lambda_2)^2-(\lambda_1+\lambda_3)^2]$ $[(\lambda_0-\lambda_2)^2+(\lambda_1-\lambda_3)^2]\in R^*$. Also, from $\sum_{i=0}^3\alpha_i=\sum_{i=0}^3\beta_i=1$ we get $\sum_{i=0}^3\lambda_i=1$. Hence, $\mu=(\lambda_0+\lambda_2)-(\lambda_1+\lambda_3)=(\lambda_0+\lambda_2)^2-(\lambda_1+\lambda_3)^2\in R^*$ and $w=(\lambda_0-\lambda_2)-(\lambda_1-\lambda_3)i\in S^*$. Put $\lambda=\mu N(w)^{-1}$.

Suppose that $\{1, x, e_0, e_1\}$ and $\{1, y, f_0, f_1\}$ are the canonical bases associated with (A, σ, α) and (A, σ, β) , respectively. Then we have the following equations:

$$\begin{split} x &= (\alpha_0 + \alpha_2) - (\alpha_1 + \alpha_3), \quad y = (\beta_0 + \beta_2) - (\beta_1 - \beta_3) \\ e_0 &= (\alpha_0 - \alpha_2) + (\alpha_1 - \alpha_3), \quad f_0 = (\beta_0 - \beta_2) + (\beta_1 - \beta_3) \\ xe_0 &= r_0e_0 + r_1e_1, \quad yf_0 = s_0f_0 + s_1f_1, \\ e_0^2 &= u(1 + a^{-1}r_0x) \quad \text{and} \quad f_0^2 = u_1(1 + b^{-1}s_0y) \end{split}$$

where $v = r_0 + r_1 i$, $v_1 = s_0 + s_1 i$, N(v) = a and $N(v_1) = b$. By replacing here $\beta_j = \sum_{i=0}^3 \lambda_{i-j \text{(mod4)}} \alpha_i$, $0 \le j \le 3$, we easily get

$$\begin{split} s_0 &= \mu N(w)^{-1} [((\lambda_0 - \lambda_2)^2 - (\lambda_1 - \lambda_3)^2) r_0 + 2(\lambda_0 - \lambda_2)(\lambda_1 - \lambda_3) r_1], \\ s_1 &= \mu N(w)^{-1} [((\lambda_0 - \lambda_2)^2 - (\lambda_1 - \lambda_3)^2) r_1 - 2(\lambda_0 - \lambda_2)(\lambda_1 - \lambda_3) r_0] \quad \text{and} \\ u_1 &= N(w) u. \end{split}$$

Therefore, $(u_1, v_1) = (N(w)u, \mu N(w)^{-1}w^2v) = (N(w), \lambda w^2)(u, v)$. The proof is complete.

Let $W(R^*, S^*) = \{(N(w), \lambda w^2) : \lambda \in R^*, \ w \in S^*\}$. Clearly, $W(R^*, S^*)$ is a subgroup of $R^* \times S^*$ and we denote by W(R, S) the quotient group $R^* \times S^*/W(R^*, S^*)$. An element of W(R, S) will be denoted by [u, v], for $(u, v) \in R^* \times S^*$. The following lemma gives some elementary properties of W(R, S).

Lemma 2.2.

- (i) [u. v = [1.1], for any [u. v] ∈ W(R,S).
- (ii) If -1 ∈ R-? then W(R, S) = Rº/R-4.
- (iii) W(R,S) is trivial if and only if $R^n = R^{nk}$
- (iv) W(R, S) has exponent 2 if and only if R-2 = N(S-) & R.
- (v) W(R.S) has exponent 4 if and only if R-2 & N(S").

Proof. (i) For $(u, r) \in \mathbb{R}^n \times S^n$ take $w = N(v)u^{-2}v^{-2} \in S^n$ and $\lambda = N(v)^{-2}u^4 \in \mathbb{R}^n$. Then, we have $[u, r]^4 = [u^4, v^4] = [N(w)u^4, \lambda w^2v^4] = [1, 1]$.

(ii) Assume that $-1 = \zeta^2 \in R^{-2}$ and let $\varphi : R^* \longrightarrow W(R, S)$ be the mapping defined by $\varphi(\lambda) = [1, \sigma_{\lambda}]$, where $\sigma_{\lambda} = 2^{-1}(1 + \lambda) + 2^{-1}\zeta(1 - \lambda)i$, for $\lambda \in R^*$. Clearly φ is a group homomorphism.

We show that $\ker \varphi = R^{-4}$. In fact, if $\lambda \in \ker \varphi$ then $[1, w_{\lambda}] = [1, 1]$ and there exist $\mu \in R^{-}$ and $w \in S^{-}$ such that $v_{\lambda} = \mu w^{2}$ and N(w) = 1. Consequently, we have $\lambda = N(v_{\lambda}) = \mu^{2}N(w)^{2} = \mu^{2}$ and $v_{\lambda} = v_{\lambda}^{2} = \mu^{2}w^{4} = \lambda w^{4}$. Consider the R-algebra homomorphism $\theta : S - R$ given by $\theta(i) = \zeta$. Thus we have $\lambda^{2} = 2^{-1}(1 + \lambda^{2}) + 2^{-1}((1 - \lambda^{2})\zeta = \theta(v_{\lambda}^{2}) = \theta(\lambda w^{4}) = \lambda \theta(w)^{4}$, which implies $\lambda = \theta(w)^{4} \in R^{-4}$. Conversely, if $\lambda = \mu^{4} \in R^{-4}$, then $[1, v_{\lambda}] = [1, \mu^{-2}v_{\lambda}] = [1, \mu^{-1}v_{\mu^{4}}] = [1, (\mu^{-1}v_{\mu^{2}})^{2}] = [1, 1]$, since $N(\mu^{-1}v_{\mu^{2}}) = 1$. So, $\lambda \in \ker \varphi$.

Finally, given $[u,v] \in \mathcal{W}(R,S)$, put $\lambda = u^2\theta(v^2)N(v)^{-1} \in R^*$, $\mu = u^2\theta(v)N(v)^{-1} \in R^*$ and $u = \overline{v}_{u^{-1}} = 2^{-1}(1+u^{-1}) - 2^{-1}\zeta(1-u^{-1})i \in S^*$. Then we have $N(w) = u^{-1}$, $u_{\lambda} = u^2\theta(v)N(v)^{-1}(\overline{v}_{u^{-1}})^2v = \mu w^2v$ and $\varphi(\lambda) = [1,v_{\lambda}] = [N(w)u, \mu w^2v] = [u,v]$. Thus φ is surjective and induces a group isomorphism $R^*/R^{-4} = \mathcal{W}(R,S)$.

(iii) Assume that $\mathcal{W}(R,S)=\{[1,1]\}$. Then, for any $u\in R^*$, $(2u,v)\in \mathcal{W}(R,S)$ and so there exist $\lambda\in R^*$ and $u\in S^*$ such that N(w)=2u and $\lambda w^2=i$. If $w=\mu_0+\mu_1i$ we easily get $\mu_0^2=\mu_1^2$ and hence $2u=2\mu_0^2$. Thus $u=\mu_0^2\in R^{-2}$ and so $R^*=R^{-2}$. The converse follows trivially from (ii).

(iv) Assume that $R^{-2} = N(S^n) \subsetneq R^n$. Let $[u, v] \in \mathcal{W}(R, S)$ with $r = r_0 + r_1 i$ and $a = N(v) = \mu^2 \in R^{-2}$. Take $\lambda = u^2 a^{-1} \in R^n$ and $w = (u\mu)^{-1}(r_0 - r_1 i) \in S^n$. Then $N(w) = u^{-2}$ and we easily get $[u, v]^2 = [u^2, v^2] = [N(w)u^2, \lambda w^2 v^2] = [1, 1]$. The assertion follows from (iii).

Conversely, suppose that $\mathcal{W}(R,S)$ has exponent 2. Let $r=r_0+r_1i\in S^*$ with N(v)=a and take $\lambda=2^{-1}s^{-2}\in R^*$ and $w=(r_0+r_1)+(r_0-r_1)i\in S$. Thus $N(w)=2a\in R^*$ (so $w\in S^*$) and $[1,1]=[1,v]^2=[1,v^2]=[N(w),\lambda w^2e^2]=[2a,i]$. Following the same way as in (iii) we get $a\in R^{-2}$. This obviously gives $N(S^*)=R^{-2}\subseteq R^*$.

(v) It is a trivial consequence of (i), (iii) and (iv).

For any cyclic quartic extension (A, σ) of R, which has a normal basis, choose one of such bases $\{\alpha_i = \sigma^*(\alpha) : 0 \le i \le 3\}$ of A over R with $\sum_{i=0}^3 \alpha_i = 1$. Denote by (u_A, v_A) the corresponding pair in $R^* \times S^*$ obtained from (A, σ, α) as usually. We

define $\psi: NB(\mathbb{Z}/4\mathbb{Z}, \mathbb{R}) \longrightarrow VV(\mathbb{R}, S)$ by $\psi([A, \sigma]) = [a_A, ir_A]$. This is a well-defined mapping by Lemma 2.1. Now we have the main result of this section.

Theorem 2.3. The mapping $\phi: NB(\mathbb{Z}/4\mathbb{Z}, \mathbb{R}) \to W(\mathbb{R}.S)$ is an isomorphism of abelian groups.

Proof. We firstly show that ψ in a group homomorphism. Given $[A,\sigma]$, $[B,\tau] \in NB(\mathbb{Z}/4\mathbb{Z},R)$, let $\{\alpha_i = \sigma^i(\alpha): 0 \le i \le 3\}$ and $\{\beta_i = \tau^i(\beta): 0 \le i \le 3\}$ be normal bases of A and B over R, respectively, with $\sum_{i=0}^3 \alpha_i = \sum_{i=0}^{23} \beta_i = 1$. So, $\{\gamma_i = (\sigma^i \otimes id)(\gamma): 0 \le i \le 3\}$ with $\gamma = \sum_{i=0}^3 \sigma^{-i}(\alpha) \otimes \tau^i(\beta)$ is a normal basis of $C = (A \otimes B)^{\sigma^{-1} \otimes \tau}$ over R and $\sum_{i=0}^3 \gamma_i = 1$. Consider $\{1, x, e_0, e_1\}$, $\{1, y, f_0, f_1\}$ and $\{1, x, g_0, g_1\}$ the canonical bases associated with (A, σ, α) , (B, τ, β) and $(C, \sigma \otimes id, \gamma)$, respectively. Let (u_A, v_A) , (u_B, v_B) and (u_C, v_C) the corresponding pairs in $R^* \times S^*$. By a direct computation we easily see that $z = z \otimes y$, $g_0 = 2^{-1}[e_0 \otimes (f_0 - f_1) - e_1 \otimes (f_0 + f_1)]$, $u_C = u_A u_B$ and $u_C = i v_A v_B$. Thus, $u_A \in [A, \sigma] = [B, \tau] = u_A (C, \sigma \otimes id] = [u_C, i u_C] = [u_A u_B, -v_A v_B] = [u_A, i v_A][u_B, i v_B] = u_A (A, \sigma) \otimes (B, \tau]$.

Clearly, ϕ is surjective since $\psi([A_{n-2\pi}, \rho]) = [u, v]$ for any $[u, v] \in \mathcal{W}(R, S)$ (Remark 1.3).

Finally, we show that ϕ is injective. Suppose that $[A, \sigma] \in \ker \psi$. Thus $[w_A, iv_A] = [1, 1]$ and there exist $\lambda \in R^n$ and $w \in S^n$ such that $N(w)w_A = 1$ and $\lambda w^2v_A = -i$. Put $w = \mu_0 + \mu_1 i$ and define $\lambda_0 = 4^{-1}(1 + \lambda N(w) + 2\mu_0)$, $\lambda_1 = 4^{-1}(1 - \lambda N(w) - 2\mu_1)$, $\lambda_2 = 4^{-1}(1 + \lambda N(w) - 2\mu_0)$ and $\lambda_3 = 4^{-1}(1 - \lambda N(w) + 2\mu_1)$. Then $\sum_{i=0}^3 \lambda_i = 1$, $w = (\lambda_0 - \lambda_1) - (\lambda_1 - \lambda_3)i$ and $\lambda N(w) = (\lambda_0 + \lambda_2) - (\lambda_1 + \lambda_3) \in R^n$. If follows that the circulant matrix $(\lambda_{j-i(w)}d_j)$, $0 \le i, j \le 3$, is invertible and it allows us to define another normal basis $\{\beta_i = \sigma^*(\beta) : 0 \le i \le 3\}$ of A over R with $\sum_{i=0}^3 \beta_i = 1$, where $\beta = \sum_{i=0}^3 \lambda_i \alpha_i$. Consequently, a pair (w_1, w_1) is obtained in $R^n \times S^n$ from (A, σ, β) . Now, the proof of Lemma 2.1 given as $(w_1, w_1) = (N(w), \lambda w^2)(w_A, w_A) = (1, -i)$. Therefore, the corresponding canonical basis $\{1, y, f_0, f_1\}$ associated with (A, σ, β) satisfies $y^2 = N(-i) = 1$, $f_0^2 = f_1^2 = 1$, $y_0 = -f_1$, $y_1 = -f_0$ and $f_0 f_1 = -y$. Since $\beta = 4^{-1}(1 + y + f_0 - f_1)$ it is now easy to verify that $\{\beta_0, \beta_1, \beta_2, \beta_3\}$ is a set of pairwise orthogonal identity of A whose sum equals 1. Hence, (A, σ) is naturally isomorphic to $(R \times R \times R \times R, c)$ excite shift) and the proof is complete.

As a consequence of Lemma 2.2 and Theorem 2.3 we have the following corollary, whose part (i) is well-known.

Corollary 2.4.

- (i) H -1 ∈ R-2 :hen NB(Z/4Z,R) = R-/R-4.
- (ii) $NB(\mathbb{Z}/4\mathbb{Z}, R)$ is trivial if and only if $R^{\circ} = R^{-2}$.
- (iii) $NB(\mathbb{Z}/4\mathbb{Z}, R)$ has exponent 2 if and only if $R^{-2} = N(S^{-}) \subseteq R^{-}$.
- (iv) $NB(\mathbb{Z}/4\mathbb{Z}, R)$ has exponent 4 if and only if $R^{-2} \subseteq N(S^{-})$.

References

- S. U. CHASE, D. K. HARRISON and A. ROSENBERG; Galois theory and Galois cohomology of commutative rings, Mem. AMS 52 (1968), 1-19.
- [2] D. R. ESTES and R. M. GURALNICK; Module equivalences: local to global when primitive polynomials represent units, J. of Algebra 77 (1982), 138-157.
- [3] D. K. HARRISON; Abelian extensions of commutative ring, Mem. AMS 52 (1968), 66-79.
- [4] A. PAQUES: On the Primitive Element and Normal Basis Theorems, Comm. in Algebra, 16 (1988), 443-455.
- [5] O. VILLAMAYOR and D. ZELINSKY; Galois theory for rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721-731.

RELATÓRIOS TÉCNICOS — 1990

- 01/90 Harmonic Maps Into Periodic Flag Manifolds and Into Loop Groups — Caio J. C. Negreiros.
- 02/90 On Jacobi Expansions E. Capelas de Oliveira.
- 03/90 On a Superlinear Sturm-Liouville Equation and a Related Bouncing Problem D. G. Figueiredo and B. Ruf.
- 04/90 F- Quotients and Envelope of F-Holomorphy Luiza A. Moraes, Otilia W. Paques and M. Carmelina F. Zaine.
- 05/90 S-Rationally Convex Domains and The Approximation of Silva-Holomorphic Functions by S-Rational Functions — Otilia W. Paques and M. Carmelina F. Zaine.
- 96/90 Linearization of Holomorphic Mappings On Locally Convex Spaces Jorge Mujica and Leopoldo Nachbin.
- 07/90 On Kummer Expansions E. Capelas de Oliveira.
- 08/90 On the Convergence of SOR and JOR Type Methods for Convex Linear Complementarity Problems Alvaro R. De Pierro and Alfredo N. Iusem.
- 09/90 A Curvilinear Search Using Tridiagonal Secant Updates for Unconstrained Optimization J. E. Dennis Jr., N. Echebest, M. T. Guardarucci, J. M. Martínez, H. D. Scolnik and C. Vacchino.
- 10/90 The Hypebolic Model of the Mean × Standard Deviation "Plane" Sueli I. R. Costa and Sandra A. Santos.
- 11/90 A Condition for Positivity of Curvature A. Derdzinski and A. Rigas.
- 12/90 On Generating Functions E. Capelas de Oliveira.
- 13/90 An Introduction to the Conceptual Difficulties in the Foundations of Quantum Mechanics a Personal View V. Buonomano.
- 14/90 Quasi-Invariance of product measures Under Lie Group Perturbations: Fisher Information And L^2 -Differentiability Mauro S. de F. Marques and Luiz San Martin.