A CONDITION FOR POSITIVITY OF CURVATURE

A. Derdzinski and A. Rigas

RELATÓRIO TÉCNICO Nº 11/90

Abstract. In this note we describe a condition, necessary and sufficient, in order that a procedure of the type described in [D-R] yields metrics of positive sectional curvature in the total space of a principal fiber bundle.

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Ciência da Computação IMECC – UNICAMP Caixa Postal 6065 13.081 – Campinas – SP BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade dos autores.

Fevereiro - 1990

A condition for positivity of curvature

A. Derdzinski and A. Rigas"

In this note we describe a condition, necessary and sufficient, in order that a procedure of the type described in [D-R] yields metrics of positive sectional curvature in the total space of a principal fiber bundle.

Alan Weinstein has replaced the term "Unflat" used here by the term "Fat"

 $(see[W_2]).$

The note was written in 1979 as an addendum to [D-R] and was never submitted for publication. Due to some revival of interest in the existence of metrics of nonnegative sectional curvature on vector bundles in recent years ($[G], [S-W], [W_1]$), we thought its publication might be of some help.

Let $\pi: P \to M$ be a principlal G - bundle (G a compact Lie group) over a compact manifold M of dimension $n \geq 2$. Given a connection form ω in P and a metric h on M, and a bi-invariant metric Q in G, one can define a family of metrics g_t in P, t > 0, by

$$g_t(X,Y) = h(d\pi(X), d\pi(Y)) + tQ(\omega(X), \omega(Y)).$$

One can ask when there are metrics of positive sectional curvature among the g_t . By obvious reasons (c.f. [D-R]), it is necessary that the curvature form is unflat, (M,h) is positively curved and so is (G,Q) unless $G=S^4$. Thus, we have $G=S^1$ or $G=S^3$ or G=S0(3), Q being in the latter two cases a multiple of the Killing form.

Given a connection in a principal G - bundle P over a Riemannian manifold M and a bi - invariant metric in G, the curvature form Ω can be viewed as a 2-form on M valued in the adjoint bundle $AdP = P \times_{Ad} \hat{G}$, where \hat{G} is the Lie algebra of G, the latter having a natural fiber metric compatible with a natural connection. Therefore expressions like $\langle (\nabla_X \Omega)(Y, Z), u \rangle$ make sense for X, Y, Z tangent to M and $u \in AdP$.

^{*} Ohio State University, Columbus, OH.

^{**} IMECC - UNICAMP, Campinas, Brazil.

We can now formulate the condition for positivity of sectional curvatures of g_t , t close to zero. For the case of S^1 -bundles, this condition was communicated to us by L. Bérard Bergery.

Theorem: Let $P \to M$ be a principal G-bundle with a connection ω over a compact manifold M, $dim M = n \ge 2$, where $G = S^3$ or G = S0(3). Fix a Riemmanian metric h in M and a bi-invariant metric Q in G. Then the following conditions are equivalent: (i) g_t has positive sectional curvature for all sufficiently small t > 0. (ii) The connection ω is $\{1\}$ -unflat and for any point $x \in M$, mutually orthogonal unit vectors $X, Y \in T_xM$ and any non-zero element u of AdP over x, we have

(1)
$$R(X, Y, X, Y) \sum_{k=1}^{n} \{u, \Omega(X, X_k)\}^2 \ge \{u, (\nabla_X \Omega)(X, Y)\}^2$$
,

 X_1, \ldots, X_n being an arbitrary orthonormal basis of T_xM , while R denotes the curvature tensor of (M, h).

Proof. First, we need

LEMMA. Given real parameters $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \lambda$, with $\beta > 0$, define the family of functions $\varphi_t : \mathbb{R}^4 \to \mathbb{R}(t > 0)$ by

$$\varphi_t(A, B, C, D) = \alpha A^2 C^2 + t(\beta A^2 C^2 + \gamma A^2 CD + \delta AC^2 B + \varepsilon ABCD + \lambda B^2 D^2) + t^2(\theta D^2 A^2 + \eta B^2 C^2 + \zeta ABCD).$$

Then the following conditions are equivalent:

(i) There exists a positive real anumber t_0 , depending continuously on $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \lambda$ and such that

(2)
$$\varphi_{\mathbf{r}}(A,B,C,D) > 0$$

whenever $0 < t \le t_0$ and

(3)
$$A^2 + B^2 = 1 = C^2 + D^2.$$

(ii) The parameters satisfy

$$\left\{\begin{array}{l} \alpha\geq0,\;\lambda>0,\;\theta>0,\;\eta>0,\\ 4\alpha\theta\geq\gamma^2,\;4\alpha\eta\geq\delta^2. \end{array}\right.$$

Proof of Lemma. Assume (i). Then (ii) follows immediately by setting in (2) first B = D = 1, A = C = 0, next A = 1, B = 0 and, finally, C = 1, D = 0. Assume now (ii). Since (4) and (3) together with BD = 0 imply (2) for every small

t > 0, we may consider only the case $BD \neq 0$. Dividing $\varphi_t(A, B, C, D)$ by B^2D^2 and then setting x = A/B, y = C/D, we see that our assertion is equivalent to

$$(5) \qquad x^{2}[(\alpha+t\beta)y^{2}+t\gamma y+t^{2}\theta]+x(t\delta y^{2}+t\varepsilon y+t^{2}\zeta y)+t\lambda+t^{2}\eta y^{2}>0$$

for all real x, y, provided that t > 0 is small enough. The expression $(\alpha + t\beta)y^2 + t\gamma y + t^2\theta$ is positive for small t > 0 and all real y, since $\alpha + t\beta > 0$ and the discriminant (with respect to y), $t^2(\gamma^2 - 4\alpha\theta - 4t\beta\theta) < 0$ for t close to zero. Therefore, for t > 0 small enough the left hand side of (5) can be viewed as a binomial in the variable x with positive leading coefficient. Condition (5) is then equivalent to the negativity of the corresponding discriminant, i. e., to

(6)
$$y^{2}[y^{2}(\delta^{2}-4\alpha\eta-4t\beta\eta)+y(2\delta\varepsilon+2\delta\zeta t-4t\gamma\eta)+(\varepsilon+\zeta t)^{2}-4t^{2}\theta\eta]$$
$$<\lambda[(\frac{4\alpha}{t}+4\beta)y^{2}+4\gamma y+4t\theta].$$

The left-hand side of (6) is a family of functions $F_t(y)$ of the variable y, depending on the small parameter t > 0, satisfying $F_t(0) = 0$, $\frac{d}{dy}F_t(y)|_{y=0} = 0$, $\lim_{|y| \to \infty} F_t(y) = -\infty$ and uniformly bounded in a fixed neighborhood of y = 0 (Fig. 1). For t small enough, F_t is almost independent of t. On the other hand, the right-hand side of (6) is equal to

$$\lambda(\frac{4\alpha}{t}+4\beta)[(y+\frac{t\gamma}{2(\alpha+t\beta)})^2+(\frac{t}{2\alpha+2t\beta})^2(4\alpha\theta-\gamma^2+4t\beta\theta)]$$

which is a family $G_t(y)$ of binomials satisfying $\lim_{t\to 0}G_t''=\infty$. The minimum of G_t taken at $m_t=-\frac{t\gamma}{2(\alpha+t\beta)}$ is equal to $\frac{\lambda t}{\alpha+t\beta}(4\alpha\theta-\gamma^2+4t\beta\theta)$. The graphs of G_t form a 1-parameter family of parabolas, for which the curve of vertices $t\mapsto L(t)=(m_t,\ G_t(m_t))$ satisfies L(0)=(0,0) and $L'(0)=(-\frac{\gamma}{2\alpha},\ \frac{\lambda}{\alpha}(4\alpha\theta-\gamma^2))$ with second component >0 in view of (4). Therefore, L is not tangent to the horizontal axis at (0,0). The parabolas G_t behave now as in Fig. 1, which completes the proof.

Fig. 1

Proof of Theorem. Fix an open subset $U \subset M$ with a field e_1, \ldots, e_n of h- orthonormal frames in U and choose a Q-orthonormal basis u_1, u_2, u_3 of the lie algebra \widehat{G} of G. From now on we assume that $i, j, k, l \in \{1, \ldots, n\}, \ \alpha, \beta, \gamma \in \{1, 2, 3\}$. Moreover, for a vector field X on M and $u \in \widehat{G}$ we denote by \overline{X} the horizontal lift of X and by u* the fundamental vector field in P corresponding to u. Finally, $\widehat{\nabla}$ and \widehat{R} (resp. $\widehat{\nabla}$ and \widehat{R} or $\widehat{\nabla}$ and \widehat{R} stand for the covariant derivative and the curvature tensor of (P, g_t) (resp. of (M, h) or (G, Q)). The frame field $\overline{e_1}, \ldots, \overline{e_n}, u_1^*, u_2^*, u_3^*$ satisfies now the relations $g_t(\overline{e_i}, \overline{e_j}) = \delta_{ij}, g_t(\overline{e_i}, u_{\alpha}^*) = 0, g_t(u_{\alpha}^*, u_{\beta}^*) = t\delta_{\alpha\beta}, \widehat{\nabla}_{\overline{e_i}} \overline{e_j} = (\widehat{\nabla}_{e_i} e_j) - \frac{1}{2}(\Omega(e_i, e_j))^*, \widehat{\nabla}_{\overline{e_i}} u_{\alpha}^* = \widehat{\nabla}_{u_{\alpha}^*} \overline{e_i} = \frac{1}{2}t \sum_k \Omega_{ik}^{\alpha} \overline{e_k}, \widehat{\nabla}_{u_{\alpha}^*} u_{\beta}^* = (\widehat{\nabla}_{u_{\alpha}} u_{\beta})^*,$ where $\Omega = d\omega + [\omega, \omega]$ is the curvature form and Ω ($\overline{e_i}, \overline{e_j}$) = $\sum_{\alpha} \Omega_{ij}^{\alpha} u_{\alpha}$. Using now the notations $\widehat{R}_{ijko} = \widehat{R}$ ($\overline{e_i}, \overline{e_j}, \overline{e_k}, u_{\alpha}^*$), $\widehat{R}_{ijkl} = \widehat{R}$ (e_i, e_j, e_k, e_l) etc., we have $\widehat{R}_{ijkl} = \widehat{R}_{ijkl} + tA_{ijkl}$, $\widehat{R}_{ijko} = tB_{ijk\alpha}$, $\widehat{R}_{i\alpha j\beta} = tC_{i\alpha j\beta} + \frac{1}{4}t^2\sum_{\alpha} \Omega_{jk}^{\alpha} \Omega_{ik}^{\beta}, \widehat{R}_{ij\alpha\beta} = tC_{i\alpha j\beta} + \frac{1}{4}t^2\sum_{\alpha} \Omega_{jk}^{\alpha} \Omega_{ik}^{\beta}, \widehat{R}_{ij\alpha\beta} = tC_{i\alpha j\beta}$

 $2tC_{i\alpha j\beta} \ + \ \frac{1}{4} \ t^2 \sum_k \left(\Omega^{\alpha}_{jk} \ \Omega^{\beta}_{ik} \ - \ \Omega^{\alpha}_{ik} \ \Omega^{\beta}_{jk}\right), \ \ \frac{t}{R_{i\alpha\beta\gamma}} = \ 0, \ R^{t}_{\alpha\beta\gamma\delta} = t \ R_{\alpha\beta\gamma\delta},$ where $A_{ijkl}, \ B_{ijk\alpha}, \ C_{i\alpha j\beta}$ are certain expressions, independent of t. It is important to observe that $C_{i\alpha j\beta} \ + \ C_{j\alpha i\beta} = 0$ and $B_{ijk\alpha} = \frac{1}{2} \{(\nabla_{e_i}\Omega)(e_j, e_k), u_{\alpha}\} - \frac{1}{2} \{(\nabla_{e_j}\Omega)(e_i, e_k), u_{\alpha}\}, u_{\alpha} \ \text{being viewed (in a non-canonical way) as an element of } AdP$. Consider now a 2-plane tangent to P. It is easy to verify that it always has a g_1 -orthonormal basis of the form $X = A\overline{e_i} \ + \ Bu^{\alpha}_{\alpha}, \ Y = C\overline{e_j} \ + \ Du^{\alpha}_{\beta}$ with $i \neq j, \ \alpha \neq \beta$ and $A^2 \ + \ B^2 = C^2 \ + \ D^2 = 1$. From the above formulas, we have $R(X,Y,X,Y) = \varphi_t(A,B,C,D), \ \varphi_t$ being defined as in the Lemma with $\alpha = R_{ijij}, \ \beta = A_{ijij}, \ \gamma = 2B_{iji\delta}, \ \delta = -2B_{ijj\alpha}, \ \varepsilon = 6C_{i\alpha j\beta}, \ \zeta = \sum_k \left(\frac{1}{2}\Omega^{\alpha}_{jk}\Omega^{\alpha}_{ik} - \Omega^{\alpha}_{ik}\Omega^{\beta}_{jk}\right), \ \eta = \frac{1}{4}\sum_k \left(\Omega^{\alpha}_{jk}\right)^2, \ \theta = \frac{1}{4}\sum_k \left(\Omega^{\beta}_{ik}\right)^2, \ \lambda = R_{\alpha\beta\alpha\beta}.$ Our assertion follows now immediately from the Lemma.

References

- [D-R] A. Derdzinski and A. Rigas "Unflat connections on 3-sphere bundles over S⁴" Tras AMS v. 265 n^o 2, 1981, 485-493.
- [G] M-A. Bozola Grou "Curvature of fibre bundles" (in Portuguese) Ph.D. Thesis, Unicamp, 1987.
- [S-W] M. Strake and G. Walschap "Connection metrics of non negative curvature on vector bundles", preprint, UCLA, 1989.
- [W₁] G. Walschap "Nonnegatively curved manifolds with souls of codimension 2" Jour. Diff. Geom. 27 n^Q 3, 1988, 525 - 537.
- [W₂] A. Weinstein "Fat bundles and symplectic manifolds" Adv. in Math. v. 37, n ^Q 3, 1980, 239-250.

RELATÓRIOS TÉCNICOS — 1990

- 01/90 Harmonic Maps Into Periodic Flag Manifolds and Into Loop Groups Caio J. C. Negreiros.
- 02/90 On Jacobi Expansions E. Capelas de Oliveira.
- 03/90 On a Superlinear Sturm-Liouville Equation and a Related Bouncing Problem D. G. Figueiredo and B. Ruf.
- 04/90 F- Quotients and Envelope of F-Holomorphy Luiza A. Moraes, Otilia W. Paques and M. Carmelina F. Zaine.
- 05/90 S-Rationally Convex Domains and The Approximation of Silva-Holomorphic Functions by S-Rational Functions — Otilia W. Paques and M. Carmelina F. Zaine.
- 06/90 Linearization Of Holomorphic Mappings On Locally Convex Spaces Jorge Mujica and Leopoldo Nachbia.
- 97/90 On Kummer Expansions E. Capelas de Oliveira.
- 08/90 On the Convergence of SOR and JOR Type Methods for Convex Linear Complementarity Problems Alvaro R. De Pierro and Alfredo N. Iusem.
- 09/90 A Curvilinear Search Using Tridiagonal Secant Updates for Unconstrained Optimization J. E. Dennis Jr., N. Echebest, M. T. Guardarucci, J. M. Martínez, H. D. Scolnik and C. Vacchino.
- 10/96 The Hypebolic Model of the Mean × Standard Deviation "Plane" Sueli I. R. Costa and Sandra A. Santos.