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Abstract. We consider SOR and JOR type iterative methods
for solving linear complementarity problems. If the solution set
is not discrete, weak convergence proofs are usually obtained for
these methods; i.e., every accumulation point of the generated se-
quence is a solution. We prove that, for the convex case, the whole
sequence converges and, if the limit point is nondegenerate, con-
vergence is linear.

Running title: Iterative Methods for LCP.

1. Introduction

We analyze in this paper the behaviour of the sequence generated by
some well known methods for solving the linear complementarity problem
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** Research of this author was partially supported by CNPq grant N2 30.1280/86.
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(LCP)

Z'(Mz +b) =0,
220, (1)
Mz+b2>0,

where M is an n X n symmetric positive semidefinite matrix with positive
diagonal, z and b are n—vectors (z' denotes the transpose of z). When M
is large and sparse, iterative methods like SOR [4] and JOR [6] are suitable
for solving (1). These methods act on (1) handling one (or a few) row(s)
per iteration in a sequential (SOR) or parallel (JOR) manner. If {z*} is the
sequence generated by one of those methods, standard convergence results
are derived after proving two main properties:

(i) {z*} is bounded,

(i) 24 — 2 4102
k — oo

In order to prove (i) a Slater condition is required for (1); i.e.; Mz+b> 0 or
Mz > 0 for some z € IR" (Theorem 2.2, [4]). Using (i) and (ii) it is possible
to deduce that every limit point is a solution of the LC P and this behaviour
is calle and JOR-type methods when the matrix M is symmetric positive
semidefinite but possibly degenerate without using any other hypothesis on
(1) except for the solution set to be non empty. As far as we know, this is
the first strong convergence result not based on a discrete structure of the
solution set, for this type of methods. In order to achieve this result we show
first in the following section that there is a dual problem associated with
(1). In the same way, associated with each method for solving (1), there is
a dual method for solving the dual problem. Recently [2], we proved that
the corresponding methods for the dual are strongly convergent at a linear
rate. This fact is the key result to deduce strong convergence for the primal
variables in Section 3. Moreover, if there are no degenerate limit points (z;
and (Mz + b); simultaneously zero for some j), we show that the methods
behave like the equivalent methods for solving linear systems of equatlons
and the linear convergence rate follows.
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2. Dual Problems and Algorithms

It is well known from elementary linear algebra that for every sym-
metric positive semidefinite matrix M with positive diagonal there exists
a matrix A with non-zero rows such that M = AA*; A can be taken, for
example, as the n X n matrix arising from the eigenvalue decomposition
of M;ie. if M = QAQ!, where Q is the orthogonal eigenvectors matrix
and A is a diagonal matrix of eigenvalues, then A = Q AY2. Using this
decomposition, problem (1) becomes

2'(AA'z + b) =0,

z20, (2)
AA'z+b>0.
If (2) has a solution z*, z* = —A'2* is the solution of the optimization
problem
2
e .
subject to Az < b. (3")

The converse is also true and this can be easily proven noting that (2) to-
gether with ¢ = —A'z are the Kuhn-Tucker conditions for (3), z being
the multiplier vector corresponding to the constraints (3’). In other words
(3)~(3’) is a dual problem for (1).

The Algorithms

Before presenting the algorithms we introduce some notation and def-
initions.
Definition 2.1. A given sequence {i(k)}x>o is called almost cyclic for the
integer set I = {1, 2,..., n} if there exists an integer C, positive, such that
{i(k), i(k+1),...,4(k+C)} D I. (See [3]).

In the following, m' and a' will denote the i-th row of M and A
respectively, b; the :-th component of vector b, and €' the i-th vector of
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the canonic basis (e} = 6;; the Kronecker’s delta). (-) will denote the
standard inner product and || - || the 2-norm.

The Sequential Algorithm (almost cyclic SOR).
For a given starting point 2° € R (nonnegative orthant), define

PP Bkci(k), (4)
where =
b= nﬁn{zi(k)-r fa migey, ) + bigy }, (5)
Mi(k),i(k)

and ai € [¢, 2 — €], £ a given positive number.
Taking into account (2), we can multiply (4) by —A® and, defining the
new variable z*¥ = — A'z* we obtain

! = 2k -+ ﬁkd“ﬂ, (6)

o — (a@™®)
&= min{zf(,,), i b:(k) ”ai(;)”;f )} (7)

(4)-(5) is the SOR method with an almost cyclic control; for C = n we get
the standard SOR and other choices of the sequence give other well known
methods for the LC'P, for example SSOR. (6)—(7) is the generalization of
Hildreth’s method presented in [3] for the dual problem.

The Parallel Algorithm (Jacobi-type)
For a given starting point z° € R, define
Pl (8)

where c* is a vector with components, for i=1,...,n

2

(m*, 2%) + b;}’

£ =mnft 3 5

A; are real numbers such that Z/\,- =l O i L dona= 10, .o, and

=1
A is the diagonal matrix of the );’s.



A2

As before, taking z*¥ = —A'z* (multiplying (8) by —A*) we obtain the
dual algorithm
=3 A, (10)
=1
where
™ = z* 4 cta’, (10°)

and b — (a4

i —\a,T

el o
Convergence results for the sequential algorithm (6)—(7) can be found

in [3] and in [1] for the parallel version (10)—(11). For the latter, it is proven

in [1] that it converges even if the feasible set defined by (3’) is empty, but

in that case it is easy to verify that (2) has no solution and (8) is divergent.

In [2] we prove that convergence is linear for both algorithms.

o= min{zf‘/)\,-, ai

3. Convergence Results

As mentioned before, we know the following facts about the sequences
{z*} generated by (6)—(7) or (10)—(11):

1) If the system (3’) is consistent, then

(a)2* — z* such that Az* <}
k — oo

(b) there exist p € (0,1), K € Z>o such that for k > K
2" — 27| < plle* — 271,

where r = C (the almost cyclicallity constant) for the sequential algorithm
and r =1 for the parallel algorithm.

2) (a) z¥ > 0 for all k>0,

(b) z* = —A*z* forall £>0.



The proofs of 1(a), 1(b) and 2 for algorithm (6)-(7) can be found in The-
orem 3.1 of [3], Theorem 1 of [2] and Lemma 3.5 of 3] respectively. The
proofs of these statements in the case of algorithm (10)—(11) can be found
in Theorem 4 of [1], Theorem 2 of [2] and Propositions 1 and 4 of [1].

We will prove convergence of the sequence {z*}. Proofs will refer
always to both sequential and parallel methods. To avoid repetitions, algo-
rithm (6)—(7) will be called SA and algorithm (10)-(11) PA.

Let now =

T={i:(aa7) <bi}, (12)

where z* is the unique solution of (3),
L=1{keZ, :ik)el}, | i )

iy
T = O b‘(k) ”a'((k)ug ) (f(ﬂ' SA) (14)
and b — (a, 2%
doc=s e a',z b e

T = O ||d'(*)”2 (fOT PA)! i=1,...,n (15)

ProPosition 3.1. There exists K’ such that for all ¥ > K’ and for all
iel, £ =0.

Proof. Since {z*} converges, Jim ||z**! — z¥|| = 0, which implies

klim Be =0, (16)
for SA and
el =0, i=1....m, (17)
for PA.
Let

Take K’ such that for k > K’

Br<n and vw=1n, for kelL, (SA)
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f<n (i=1,...,n) and 4>y for iel (PA);
since B = min{zj,,,n} and ¢f = min{z*,4}}, conclude that for k > K’
B = zf{,,) = zﬁt)l =0 for kel (SA)

or
a=3=2"=0 for icl . (PA).

and this will remain valid for k > K’, because 5 > 0.

O
Corollary 3.1. For k > K’ it holds that
B=0, keL (SA), (18)
or 2 .
=0 iel (PA). g f !
Proof. Imediate from Proposition 3.1 and (5) or (9).
g

Let
H; =Jze R*: (a‘,x) = &}.

Proposition 3.2. If u € Hyy), then ||z**! — u|| < ||z* — ul| (SA) or, if
u € H;, then ||z — u|| < ||z* — u|| (PA).

Proof. Let y* = z* 4 4,a*® then

" —ull? = llz* —ull? = A2[|a"®|? + 2ya(z* — u,a’®)
= 1illa" @I - 2y ((a'®, 2¥) — by

i 2
= le®Pg(1- =) <o, (20)



using the bounds on a;. From (20) we have that
lly* — ull® < Jl=* — ull. (21)

If % < 0 then z**' = y* because of property 2(a) and the result follows
from (21). If 4% > 0 then z**! is in the segment between z*¥ and y*; so,
using (21)

llz**! — | < max{|ly* - ull, llz* - ull} = ll2* —ull.  (22)

For the PA the same argument hold, substituting 4; by 7i, a’® by
a' and z*! by z'*,
O

Proposition 3.3. For k > K’, the sequence {||z* —z*||} is nonincreasing.

Proof. If k¢ L (SA) then z* € H;; and the result follows from Propo-
sition 3.2; if £k € L then B¢ = 0 by Corollary 3.1, so z**' = z* and
iz — 2*|| = ||l=z* - z*].

For PA,if i & I, by the preceding arguments ||z** — z*|| < |[z* — 27,
if 1€ I, then ¢f =0 and ||z** — z*|| = ||z* — 27||, so

||zl""1 ~2f| = Z,\;a:"k —-z"

=1

n
< 2 Xille™ = 27| = [l=* — 27|l
=1

Let 7 = min{jja’l]}
i€l

Proposition 3.4. For k > K', |8 < %Hz" —z"|| (SA) and |&| <

2
?Hz"‘ — 2P A(PA), =108



Proof. If k € L (SA) then B, = 0 by Corollary 3.1. If k£ & L, then
i(k) € 1, so that (a'® z*) = bik)- In view of 2(a), if v < 0 then B = v
and otherwise 0 < B, < 4. Therefore

1Bkl < vels : (23)
and
bigy — (a*®, 2¥)| [{a*®,z* — z¥)] lJz* — z*||
< i _ < 24
N s W Rl D Tttt )

using Schwarz inequality. From (23), (24) and the fact that o, € (0,2),

agllz* — z* 2. =
1Bl < iﬂ-_ﬂ <l - =

For PA, the same argument holds.

Define

K = max{K, K'},

Ly ={k>K :i(k) =i}.

Theorem 3.1. The sequence {z*} generated by algorithms (4)-(5) (SA)
and (8)~(9) converges to a solution of problem (1).

Proof. Consider first SA. If i € I, kljmzf = 0 (in fact z¥ eventually
reachs zero and remains zero thereafter) by Proposition 3.1.
Take i ¢ I, k> K then:

z::___z.iK_ Z Bis , (24)

JEL;
K<i<k—1



k-1

3 Bl < Zlﬂ,|< Zlﬂ,l<"2llr’—z |
- s’:e;; 2 :._K j=K ;—1\
= S R ——):nx"*"’ =
1=0s=1
2, X _ oy, _ UK — =

using Proposition 3.4 in the third inequality, Proposition 3.3 in the fourth
one and 1(b) in the fifth one. It follows that, when k goes to infinity, the
summation in the right hand side of (24) becomes an absolutely convergent
series, hence convergent.

For PA we consider the inequalities

Tkl < );Id'lsz,fl I — =
K<j<k =K =K
e B - A
< P e S

z* > 0 and AA'z" +b > 0 are imediate consequences of 1(a), 2(a), and
2(b).
O

From the strong convergence of the sequence z* and Proposition 3.1
we deduce linear convergence for nondegenerate points. Recall the following

Definition 3.1. z is a nondegenerate solution of (1) iff 2+ Mz 45> 0.

Theorem 3.2. If the sequence {z*} generated by (4)—(5) or (8)—(9) con-
verges to a nondegenerate point z*, convergence is linear.

Proof. By Proposition 3.1 for k largeenoughand ied, d=0=2q.
Therefore we need only to consider zj), k ¢ L. figl (a',z%) —b. or
(m',z*) +b; = 0 and z! > 0 (nondegeneracy assumption). But khmﬂ:, =
~—+00
implies that for k large enough the method (4)—(5) will be defined for
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k€ L, by

By o (mi(k)a zk) + b‘(") 5 (26)
Mi(k),i(k) :

Let M be the matrix extracted from M with elements m;;, 1, 7 € i
where I’ denotes the complement index set of T and b the vector extracted
from b with elements b;, i € I'. Then (26) means that for zjj,) such that
k € L, the method becomes SOR (with an almost cyclic controlg applied to
the linear system

Mz+b=0. (27)

For the P A, replace (26) by

& = ay -——(mi’Zk_)_ .

(28)

and the method (8)-(9) becomes JOR applied to a linear system like (27).
SOR and JOR, applied to linear systems, converge with a linear rate [7]
O
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