A MULTIPLIER THEOREM ON WEIGHTED ORLICZ SPACES

B. Bordin and J. B. Garcia

RELATÓRIO TÉCNICO Nº 12/89

Abstract. In this note we establish a theorem for multipliers of Mihlin-Hörmander type in weighted Orlicz spaces.

Universidade Estadual de Campinas Instituto de Matemática, Estatística e Ciência da Computação Caixa Postal 6065 13.081 - Campinas - SP BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade dos autores.

A Multiplier Theorem on Weighted Orlicz Spaces

B. Bordin¹
IMECC — UNICAMP
Caixa Postal 6065
13.081 - Campinas - SP - Brasil
and
J. B. Garcia
Universidade Federal de Mato Grosso do Sul
Departamento de Matemática
79.100 - Campo Grande - MS - Brasil

Abstract

In this note we establish a theorem for multipliers of Mihlin-Hörmander type in weighted Orlicz spaces.

1. Introduction

Let m(x) be a bounded function on \mathbb{R}^n and consider, for f in the Schwartz class $S(\mathbb{R}^n)$, the multiplier operator T_m defined by $(T_m f)(x) = (\widetilde{m} \star f)(x)$, where $\widetilde{m}(t) = \widehat{m}(-t)$ and \widehat{m} is the Fourier transform of m. We say that the multiplier m satisfies the Mihlin–Hörmander condition if, for a real number s greater than or equal to 1, a positive integer k and a multi-index $\gamma = (\gamma_1, \cdots, \gamma_n)$ of non negative integers γ_j with $|\gamma| = \sum \gamma_j$, we have

$$\sup_{R>0}(R^{\mathfrak{s}|\gamma|-n}\int_{R<|x|<2R}|D^{\gamma}m(x)|^{\mathfrak{s}}dx)^{1/\mathfrak{s}}<+\infty$$

¹Supported in part by CNPq - Proc. No 301170/79.

for all $|\gamma| \le k$.

In 1960 L. Hörmander [6], proved that T_m is (after extension) bounded from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ for all 1 with <math>s = 2 and k > n/2.

Afterwards, Hörmander's theorem has been generalized by several authors. For instance in [5], H. Triebel gives a vectorial version for these operators by considering, e.g., the space $L^p(\ell^q)$.

In [2], D.S. Kurtz-R.L. Wheeden proved the following theorem, for the weighted L^p -space $L^p_{(w)} = \{f : (\int_{\mathbb{R}^n} |f(x)|^p w(x) dx)^{1/p} < +\infty\}$:

1.1 Theorem. Let s and k real numbers such that $1 < s \le 2$ and $n/s < k \le n$.

(i) If $n/k and <math>w \in A_{p,k/n}$

(ii) if $1 and <math>w^{-1/(p-1)} \in A_{p',k/n}$,

then T_m is bounded from $L^p_{(w)}$ into $L^p_{(w)}$.

(iii) if $w^{n/k} \in A_1$, then T_m is of w-weak type (1,1), i.e.,

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}) \le c \cdot \lambda^{-1} \cdot ||f||_{L^1_{ton}}, \ \lambda > 0.$$

A vectorial version of this theorem was given by D. L. Fernandez in [1], considering the weighted space $L^p_{(w)}(\ell^q)$.

In this note we consider the problem of obtaining a theorem of Kurtz-Wheeden type for weighted Orlicz spaces $L_w^{\Phi}(\mathbb{R}^n) = \{f : \int \Phi(|f(x)|w(x))dx < +\infty\}$ (the precise definition is given bellow).

Our result depends essentially on an interpolation result for weighted Orlicz spaces and generalizes parts (i) and (ii) of theorem 1.1.

2. Preliminary definitions

A real continuous convex function Φ defined on the interval $[0, +\infty)$ is called a N-function if $\lim_{t\to 0} \Phi(t)/t = 0$ and $\lim_{t\to +\infty} \Phi(t)/t = +\infty$.

Given a N-function Φ , we can associate its conjugate function denoted by Φ^* and defined by

$$\Phi^*(t) = \max_{s>0} (st - \Phi(s)),$$

for all $t \ge 0$.

Hereafter, we shall always consider a N-function Φ satisfying a Δ_2 -condition

 $(\Phi \in \Delta_2)$, i.e., we shall suppose that there exists a number a > 1 such that

$$\Phi(2t) \leq a\Phi(t)$$

for all t > 0

Given a N-function Φ , the Orlicz space $L^{\Phi}(\mathbb{R}^n, \mathbb{R}) = L^{\Phi}$ consists of all Lebesgue measurable functions f on \mathbb{R}^n such that

$$\rho(f,\Phi) = \int_{\mathbb{R}^n} \Phi(|f(x)|) dx < +\infty.$$

The space L^{Φ} is complete when endowed with the norm (called Orlicz's norm)

$$||f||_{\Phi} = \sup \{ \int_{\mathbb{R}^n} |f(x).g(x)| dx \ : \ \rho(g,\Phi^*) \le 1 \}.$$

Let w be a positive function on \mathbb{R}^n . The weighted Orlicz space $L_w^{\Phi}(\mathbb{R}^n, \mathbb{R}) = L_w^{\Phi}$ is the space of all functions f such that f.w belongs to L^{Φ} . The L_w^{Φ} -norm of f is given by

 $||f||_{\Phi,w} = \sup\{\int_{\mathbb{R}^n} |f(x).g(x)| dx : \rho(g.w^{-1}, \Phi^*) \le 1\}.$

In this note we shall need to consider the numbers

$$\alpha = \lim_{s \to 0^+} \left[-\log(\sup_{t > 0} \Phi^{-1}(t)/\Phi^{-1}(s.t)) / \log s \right]$$

and

$$\beta = \lim_{s \to +\infty} [-\log(\sup_{t>0} \Phi^{-1}(t)/\Phi^{-1}(s.t))/\log s],$$

called Boyd's indices (see[4]) associated to the N-function Φ , where Φ^{-1} is the inverse of Φ .

For more details on Orlicz spaces we refer to Krasnosel'skii-Rutickii's book [7]. We shall denote by $L^p_w(\mathbb{R}^n)$ the space of all measurable functions f such that

$$||f||_{p,u} = (\int_{\mathbb{R}^n} |f(x).w(x)|^p dx)^{1/p} < +\infty.$$

We remember that a positive and locally integrable function w is a weight in the Muckenhoupt class A_p ($w \in A_p$), 1 , if for all cubes <math>Q on \mathbb{R}^n , the inequality

$$(|Q|^{-1}\int_{Q}w(x)dx)(|Q|^{-1}\int_{Q}w(x)^{-1/(p-1)}dx)^{p-1}<+\infty$$

holds, where |Q| stands for the Lebesgue measure of Q.

3. The multiplier theorem

We shall need the following interpolation theorem:

3.1. Theorem. Let Φ be a N-function which satisfies, as well as its conjugate, the Δ_2 -condition. Let α and β be the Boyd indices and let $p_{\Phi} = \beta^{-1}$ and $q_{\Phi} = \alpha^{-1}$. Let r_1 and r_2 be real numbers such that, $1 \leq r_1 < q_{\Phi}$ and $p_{\Phi} < r_2 < +\infty$. Let T be a quasi-linear operator on $L_w^{r_1}(\mathbb{R}^n) + L_w^{r_2}(\mathbb{R}^n)$ such that

(1)
$$|\{x \in \mathbb{R}^n : |Tg(x)w(x)| > \lambda\}| \le (c/\lambda^{r_j}) \int_{\mathbb{R}^n} |g(x)w(x)|^{r_j} dx$$

j=1,2. Then T is well defined on L_w^{Φ} and there exists a finite constant C such that

$$(2) ||Tf||_{\Phi,w} \le C||f||_{\Phi,w}$$

for all $f \in L_w^{\Phi}$.

Proof. Let $f \in L^{\Phi}_{+}$ and let $\lambda > 0$. We decompose f as $f = f_1 + f_2$ where $f_1 = f\chi_{A_{\lambda}(f)}, f_2 = f - f_1$ and $A_{\lambda}(f) = \{ x \in \mathbb{R}^n : |f(x)w(x)| > \lambda \}$. Since by hypothesis $r_1 < q_{\Phi}$ and $\Phi \in \Delta_2$ we obtain $t^{r_1} \le c_1 \lambda^{r_1} \Phi(t)/\Phi(\lambda)$, for all $t > \lambda$ and for some constant c_1 . Therefore,

$$\int_{\mathbb{R}^n} |f_1(x)w(x)|^{r_1} dx \leq c_1(\lambda^{r_1}/\Phi(\lambda)) \int_{\mathbb{R}^n} \Phi(|f(x)w(x)|) dx$$

and whence $f_1 \in L_{w}^{r_1}$.

On the other hand, since $p_{\Phi} < r_2 < +\infty$ and $\Phi \in \Delta_2$, there exists constant c_2 such that $t^{r_2} \leq c_2 \lambda^{r_2} \Phi(t) / \Phi(\lambda)$ for all $t \leq \lambda$. Therefore,

$$\int_{\mathbb{R}^n} |f_2(x)w(x)|^{r_2} dx \le c_2(\lambda^{r_2}/\Phi(\lambda)) \int_{\mathbb{R}^n} \Phi(|f(x)w(x)|) dx$$

and whence $f_2 \in L^{\tau_2}$.

Then we have that L_w^{Φ} is contained in $L_w^{r_1} + L_w^{r_2}$, i.e., T is well defined on L_w^{Φ} . Let us prove 3.1(2). From the quasi-linearity of the operator T, with constant C, and condition 3.1(1) we get

(3)
$$\int_{\mathbb{R}^{n}} \Phi(|(Tf(x).w(x)|)dx = \int_{0}^{\infty} \varphi(\lambda)|A_{\lambda}(Tf)|d\lambda$$

$$\leq \int_{0}^{\infty} \varphi(\lambda)|A_{\lambda/2C}(Tf_{1})|d\lambda + \int_{0}^{\infty} \varphi(\lambda)|A_{\lambda/2C}(Tf_{2})|d\lambda$$

$$\leq c(r_{1}) \int_{B} |f(x).w(x)|^{r_{1}} \left(\int_{0}^{|f(x).w(x)|} \lambda^{-r_{1}} \varphi(\lambda)d\lambda\right)dx$$

$$+ c(r_{2}) \int_{B} |f(x).w(x)|^{r_{2}} \left(\int_{|f(x).w(x)|}^{\infty} \lambda^{-r_{2}} \varphi(\lambda)d\lambda\right)dx$$

$$= I_{1} + I_{2}$$

where φ is the density function of Φ and $B = \{ x \in \mathbb{R}^n : |f(x)| > 0 \}$. Since $\Phi \in \Delta_2$ and $r_1 < q_{\Phi}$, there exists a constant c' > 1 such that

$$(4) s^{r_1-1} \varphi(t) \leq c' \varphi(st)$$

for all s>1 and t>0. Also, since $p_{\Phi}< r_2<+\infty$, there exists a constant c''>1 such that

$$(5) \varphi(st) \leq c'' s^{r_2-1} \varphi(t)$$

for all 0 < s < 1 and t > 0.

From 3.1(4) we obtain

$$\int_0^{|f(x).w(x)|} \lambda^{-r_1} \varphi(\lambda) d\lambda \le C' \Phi(|f(x).w(x)|) |f(x).w(x)|^{-r_1}$$

and whence,

$$I_1 \leq C(r_1) \int_{\mathbb{R}^n} \Phi(|f(x).w(x)|) dx.$$

Analogously, from 3.1(5) we get

$$I_2 \leq C(r_2) \int_{\mathbb{R}^n} \Phi(|f(x).w(x)|) dx.$$

Inserting the estimates obtained for I_1 and I_2 in 3.1(3) we obtain

$$\int_{\mathbb{R}^n} \Phi(|Tf(x).w(x)|) dx \leq C \int_{\mathbb{R}^n} \Phi(|f(x).w(x)|) dx$$

The norm inequality 3.1(2) follows from the fact that T is positively homogeneous, i.e., $|T(\lambda \cdot u)| = |\lambda| |T(u)|$ for all scalar λ , and the equivalence of Orlicz's norm and Luxemburg's norm, namely

$$||f||_{(\Phi,w)} = \inf \; \{k \; : \int_{\mathbb{R}^n} \Phi(|f(x)|.w(x)/k) dx \; \leq 1 \}.$$

The proof is complete.

Now we are in condition to prove the following multiplier theorem

- 3.2. Theorem. Let T_m be the multiplier operator as given in section 1 with m satisfying the Mihlin-Hörmander condition for $1 < s \le 2$ and $n/s < k \le n$. Let Φ be a N-function satisfying the Δ_2 -condition jointly with its conjugate function Φ^* . Let p_{Φ} , q_{Φ} and p_{Φ^*} , q_{Φ^*} the Boyd's exponents with respect to Φ and Φ^* respectively.
- (i) If $n/k < q_{\Phi} < +\infty$ and $w^{p_{\Phi}} \in A_{q_{\Phi},k/n}$, or

(ii) if $1 < p_{\Phi} < (n/k)'$ and $w^{-p_{\Phi^*}} \in A_{q_{\Phi^*},k/n}$

then T_m is bounded from L_w^{ϕ} into L_w^{ϕ} .

Proof (i).

Step 1: There exists p_0 satisfying $n/k < p_0 < q_{\Phi}$ such that $w^{p_{\Phi}} \in A_{p_0,k/n}$. Since $q_{\Phi} \leq p_{\Phi}$ it follows that $p_0 < p_{\Phi}$ and consequently $w^{p_0} \in A_{p_0,k/n}$. From the Kurtz-Wheeden theorem 1.1, we have that T_m is bounded from $L_w^{p_0}$ into $L_w^{p_0}$.

Step 2: From the weight theory we have that if $w^{p_{\Phi}} \in A_{q_{\Phi},k/n}$, there exists $\varepsilon > 0$ such that $w^{p_{\Phi}+\varepsilon} \in A_{q_{\Phi},k/n}$. Let $p_1 = p_{\Phi} + \varepsilon$. Then $w^{p_1} \in A_{q_{\Phi},k/n}$ and consequently $w^{p_1} \in A_{p_1,k/n}$ since $q_{\Phi} < p_1$. The Kurtz-Wheeden theorem 1.1 implies that T_m is bounded from $L_w^{p_1}$ into $L_w^{p_1}$.

Step 3: The boundedness of T_m on $L_w^{p_j}$, j=0.1. implies condition 3.1(1). Moreover, we have that $1 < p_0 < q_{\Phi} \le p_{\Phi} < p_1 < +\infty$. Then by the interpolation theorem we obtain that T_m is bounded from L_w^{Φ} into L_w^{Φ} .

Proof (ii). We have that

(1)
$$||T_m f||_{\Phi, w} = \sup \{ \int_{\mathbb{R}^n} |T_m f(x).g(x)| dx : \rho(g.w^{-1}, \Phi^*) \le 1 \}$$

$$= \sup \{ \int_{\mathbb{R}^n} |f(x).T_m^* g(x)| dx : \rho(g.w^{-1}, \Phi^*) \le 1 \}$$

$$\le \sup \{ ||f||_{\Phi, w}.||T_m^* g||_{\Phi^*, w^{-1}} : \rho(g.w^{-1}, \Phi^*) \le 1 \}$$

where T_m^* is the adjoint operator of T_m .

Taking into account that $1/p_{\Phi} + 1/q_{\Phi^*} = 1$ and $p_{\Phi} < (n/k)'$, it follows that $q_{\Phi^*} > n/k$. Since $w^{-p_{\Phi^*}} \in A_{q_{\Phi^*},k/n}$ by hypotesis (i) we obtain

$$||T_m^*g||_{\Phi^*,w^{-1}} \le c.||g||_{\Phi^*,w^{-1}}.$$

Inserting in 3.2(1) we get the desired result.

Remark 1. Theorem 3.2 generalizes Kurtz-Wheeden theorem. In fact, if we take $\Phi(t)=t^p$, in the above theorem, we have that $p_\Phi=q_\Phi=p$ and $p_{\Phi^*}=q_{\Phi^*}=p'$ with 1/p+1/p'=1.

Remark 2. As consequence of theorem 3.2, the multiplier operator T_m is bounded, e.g., on the weighted Orlicz space $(L^p(1 + \log^+ L))_w$ for p and w in the conditions of our theorem, where $f \in (L^p(1 + \log^+ L))_w$ if

$$\int_{\mathbb{R}^n} (|f(x)|w(x))^p (1 + \log(|f(x)|w(x))) dx < +\infty.$$

Remark 3. A vectorial version of theorem 3.2 can be obtained, considering the weighted Orlicz spaces $L_w^{\Phi}(\mathbb{R}^n, \ell^q)$.

References

- D.L.FERNANDEZ. Multiplier theorems on weighted L^p(l^q) space. Atas 23^o Seminário Brasileiro de Análise, S.B.M., 1986, 119-138.
- [2] D.S.KURTZ and R.L.WHEEDEN, Results on weighted norm inequalities for multipliers. Trans. Am. Math. Soc. 255(1979), 343-362.
- [3] D.G.GOMEZ, Acotaciones de operadores maximales sobre espacios de Orlicz, Thesis doctoral, Universidad de Malaga, 1985.
- [4] D.W.BOYD. Indices of function spaces and their relationship to interpolation. Canad. J. Math. 21(1969), 1245-1254.
- [5] H.TRIEBEL. Spaces of distributions of Besov type on Euclidean n- space. Duality, interpolation. Arkiv Mat. 11(1973), 13-64.
- [6] L.HÖRMANDER. Estimates for translation invariant operator in L^p spaces. Acta Math. 104(1960), 93-140.
- [7] M.A.KRASNOSEL'SKII and Ya. RUTICKII, Convex functions and Orlicz spaces. Groningen, P.Noordhoff, 1961.

RELATÓRIOS TÉCNICOS — 1989

- 01/89 Uniform Approximation of Continuous Functions With Values in [0, 1] João B. Prolla.
- 02/89 On Some Nonlinear Iterative Relaxation Methods in Remote Sensing A. R. De Pierro.
- 03/89 A Parallel Iterative Method for Convex Programming with Quadratic Objective Alfredo N. Iusem and Alvaro R. De Pierro.
- 04/89 Fifth Force, Sixth Force, and all that: a Theoretical (Classical) Comment Erasmo Recami and Vilson Tonin-Zanchin.
- 05/89 An Application of Singer's Theorem to Homogeneous Polynomials Raymundo Alencar.
- 06/89 Summhammer's Experimental Test of the Non-Ergodic Interpretation of Quantum Mechanics Vincent Buonomano.
- 07/89 Privileged Reference Frames in General Relativity Waldyr A. Rodrigues Jr. and Mirian E. F. Scanavini.
- 08/89 On the Numerical Solution of Bound Constrained Optimization Problems — Ana Friedlander and José Mario Martinez.
- 09/89 Dual Extremun Principles for the Heat Equation Solved by Finite Element Methods I Vera Lucia da Rocha Lopes and José Vitório Zago.
- 10/89 Local Convergence Theory of Inexact Newton Methods Based on Structured Least Chance Updates José Mario Martínez
- 11/89 Real Spin-Clifford Bundle and the Spinor Structure of Space-Time — Waldyr A. Rodrigues Jr. and Vera L. Figueiredo.