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ABSTRACT. In previous paper [ Rodrigues et al (1) ], we characterized a space
time theory T as the theory of a species of structure in the sense of Bourbaki (2).
We succeded in this way in giving precise mathematical and physical meaning to the
concepts, of covariance and invariance of T and in introducing the fundamental
notion of equivalent reference frames, which are time-like vector fields X € TU,
U C M, where M is part of the space-time substructure ST(1,2) for each T € ModT.
In particular we showed in the quoted reference that a space-time theory T admits
a Principle of Relativity only if GyT (the equivalence group of the class of
reference frames of kind X according to T) is different from the identity for some X.
Here, after remembering the definition of reference frames appropriated for
relativistic space-time [ Rodrigues and Faria-Rosa (3) and also (1)] , we prove that
there are models of General Relativity with a canonically privileged reference frame
(cprf). The precise meaning of the cprf is given through Propositions 3 and 4. We
show that the cprf can be physically distinguished from any other reference frame
with the performance of mechanical experiments (Proposition 4). Although the
predicted effects are perhaps very small to be detected within present technology,
our results show that no Primciple of General Relativity (meaning Physical
equivalence of all reference frames) holds for General Relativity. Of particular
importance is that even locally inertial reference frames are not equivalent.
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Abstract: 1In previous paper [Rodrigues et al (1)] , we
characterized a space time theory T as the theory of a
species of structure in the sense of Bourbaki (2). We suc-—
ceded in this way in giving precise mathematical and
physical meaning to the concepts, of covariance and invari-
ance of T and in introducing the fundamental notion of
equivalent reference frames, which are time-like vector

fields X € TU,U C M, where M is part of the space-time

substructure ST(1,2) for each T € ModT. In particular we
showed in the quoted reference that a space-time theory T
admits a Principle of Relativity omly if GXT (the equiva-

lence group of the class of reference frames of kind X ac-
cording to T) is different from the identity for some X.
Here, after remembering the definition of reference frames
appropriated for relativistic space-time [ Rodrigues and
Faria-Rosa (3) and also (1) ], we prove that there are
models of General Relativity with a canonically privileged
reference frame (cprf). The precise meaning of the cprf is
given through Propositions 3 and 4. We show that the cprf
can be physically distinguished from any other reference
frame with the performance of mechanical experiments (Prop-
osition 4). Although the predicted effects are perhaps very
small to be detected within present technology,our results
show that no Principle of Genmeral Relativity (meaning phys-
ical equivalence of all reference frames) holds for General
Realativity. Of particular importance is that even locally
inertial reference frames are not equivalent.



1. THE CONCEPT OF REFERENCE FRAMES IN RELATIVISTIC SPACE-
TIME THEORIES '

Let T be a space time theory as defined in (1). Let ModT
be the class of all models of T. T is said to be a rela-
tivistic theory if each T €ModT contains a substructure
ST = (M,g,D) that is a relativistic space—time, as defined
in (1,2) and in Sachs and Wu (4). We remember here that g
is a Lorentz metric and D 1is the Levi-Civita connection
of g on M,

Definition 1. Let ST be a relativistic space-time. A mov-
ing frame,*in x € M, is an orthonormal basis for the tan-
gent space TxM'

Proposition 1. Let Q €TM be a time-like vector field such
that g(Q,Q) = 1. Then for each x €M there exists in a
neigbouhood U of x three space-like vector fields such
that together with Q determine a moving frame for each x €
€ U. (The proof is trivial)

Definition 2. A particle in ST is a pair (m,0) where O :
R DI -M is a future pointing causal curve [1,3,4] and
m € [0,+° ) is the rest mass. When m = 0 the particle is
called a photon . When m € (0,+=) the particle is said to
be a material particle. O is said to be the world linme of
the particle.

The relation between m # 0 and 0 is given by:

Proposition 2. For each pair (x,m), x € M, m €(0,+=), there
exists a unique curve 0: R DI - M with closed image o(I)
such that VYu € I g u is future pointing and g(o,u, *u)-mz.

The proof of Proposition 2 can be constructed as an exten-
sion of Proposition 0.21 of (4). Quantify o,u is called
the momentum of the particle.

Definition 3. An observer in {(M,g,D) is a future pointing
time-like curve Yy: R DI - M such that g(ygzu,ysu) = 1.
The inclusion parameter I * R in this case is called the
proper time along Y, which is said to be the world line of
the observer.

Observation 1. The physical meaning of proper time is dis-

cussed in details in (3) which deals with the theory of
time in relativistic theories.
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Definition 4. An instantaneous observer is an element of
™, Lo 8 paic Az Z) . v €M oand ZET!! is a future
pointing time-like vector.

The Proposition 1 together with the above definitions sug-
gests:

Definition 5. A reference frame in ST = (M,g,D) is a time~
like vector field in TU, U S M such that each one of its
integral lines is an observer.

2. CANONICALLY PRIVILEGED FRAMES IN GENERAL RELATIVITY

Einstein's General Relativity TE is a theory of the grav-

itational field [Weinberg (5) and also (4)].Then a typical

model T € ModT, 1is of the form T = (M,g,D, T,{(m, 0)P ,

where ST = (M,g,D) is a relativistic space-time and T €
€ secT*M XT*M 1is said to be the energy momentum tensor.
T represents the material and enmergetic content of space-
time, including contributions from all physical fields (with
exception of the gravitational field) and particles . For
what follows we do not need knowing the explicit form of
T. The proper axioms of T, are:

D(g) = 0; G = Ri c——Sg-'r (1)

G is said to be the Einstein temsor. Ric is the Ricci ten-
sor, S is the scalar curvature. The equation of motion of
a particle (m,0) that moves only under the influence of
gravitation is:

D 0, = 0O (2)

ST is in general not flat , which implies that (1n general)
there do not exist inertial reference frames 7, i.e.,refer-
ence frames such that (Dz.) = 0 ¥x€ M.The reference frames

more similar to the mertxal reference frames of flat space-
time are given by:

Definition 6. A reference frame i € TU,U M is said to be
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locally inertial if D, i, =0 and da, Aa, =0
i, i 1 1
Vx EU and o, = g(iz,).

Observation 2. In (1,3) we classify an arbitrary reference
frame Q either according to its synchronizability or ac-
cording to the decomposition of Da,a = g(Q, ). This last
decomposition shows that the reference frames can be char-
acterized for each T € ModTg according to their accelera-
tion, rotation, shear and expansion in an absolute way (1,
3,4). It follows that in general different reference frames
cannot be physically equivalent according to the definition
of physical equivalence presented in (1,3). From this it
follows that there does not exist a Principle of General
Relativity in Tg -

Now, the physical universe we live in is well represented
by metrics of the Robertson-Walker-Friedman type (6) . In
particular a very simple space-time structure ST = (M,g,D)
that represents the main properties observed is formulated

as follows: Let M = R° x I,ICR and Rz I =(0,9),t ~ R(t)

and define g in M(considering M as a subset of Y by:
g = dt@dt - R(t)’Tax'®ax’, i = 1,2,3. (3)

Then g is a Lorentzian metric in M and 3/9t is a time-
like vector field in (M,g). Let {(M,g,D} be oriented 1in
time by 3/3t and space-time oriented by dt adxladxZadx3.
Then {M,g,D} is a relativistic space-time for I = (0,»).
We have the

Proposition 3. Let V € TM be a future pointing time-like

vector field, g(V,V) = 1, and an eigenvector of Einstein's
tensor G in the sense that

G(v, ) = fg(v, ) (4)
for some real function f: M - R. Then V = 3/3t.

Proof: First we need to calculate the Einstein's temsor G
for the metric given by eq.(3). We get:

¢ = 3R %atede ; R = adTR (5)
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Using eq.(5) in eq.(4) we obtain:

2

32" 2ae(v)de = £g(V,) (6)

and then for each x € M we have

de(V)dt = ag(V, ); a = f(x)RZIJﬁz (7

In eq.(7) a € R. Also dt(V) = 0 since dt and V are time-
like. Then dt = bg(V, ); R Ob # 0, which implies (V) =

= e(B/Bt:)x for some R De # 0 and since V is normalized

and future pointing then e = 1. Since the above argument
is valid ¥x € M, then V = 3/3t.

Observation 3. Proposition 3 appears in a particular form
and in a very different context in (4).

We shall say that V = 3/3t is canonically preferred or
privileged in the mathematical sense that it can be
defined, in the particular T € Hnd'IE above, only in terms

of the metric temsor g and the time orientatiom, without

any reference to structures that 14 possesses but M does
not.

We can show very easily that V = 3/3t is a locally iner-
tial reference frame . It is canonically privileged in the
physical sense that there are no other reference frame
physically equivalent to it, as proved in Proposition 4.
Of course , we must only show that any other locally iner-
tial reference frame is not equivalent to V.

3. PHYSICAL NON EQUIVALENCE OF LOCALLY INERTIAL REFERENCE
FRAMES

Proposition 4. In the space-time defined by eq.(2) which

is a model of Tg locally inertial reference frames are

not physically equivalent.

The proof of Proposition 4 can be obtained immediately
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with the methodology of (1) . Here we prove the wvalidity
of the proposition, following Rodrigues (6), i.e.,by show-
ing that there are mechanical experiments that can distin-
guish between two locally inertial frames, V = 3/3t and
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EED  Dine s %B/Bxl (8)

Z = "

In eq.(8) R is the function defined by eq.(2) and R Du #0
is a constant with the physical meaning of coordinate ve-
locity of Z relative to V. To prove Proposition 4 we need
the concept of naturally adapted coordinate system to a
reference frame Q(nacs/Q). This concept has been originally
introduced in (1,3). We have:

Definition 7. Let Q € TU,UC M. A chart in U of the maxi-
mal oriented atlas of M is said to be a (nacs/Q) if in
the natural coordinate basis of TU associated with the
chart the space-like components of Q are null.

Proof of Proposition 4: (i) We start by finding a (nacs/Z).
To do that we note that , if Yy is an integral curve of
Z , then its parametic equations can be written as

ddt xlo'y WV’ XZOY‘O; 1307"0 (9
R+ :

(The direction xl 0 Y is obviously arbitrary) . We then
T ]
choose for (nacs/Z) the coordinate functions (t',x1 ,xz 5

3!
x~ ) given by:

t
1 1
x '*l'“f “‘W i
0 R +u”)
t
" e (]
£ g g -.I dt RERZsuD V2 _ 5l (10)
0
We then get:
- e ;_2 v B N '
g = dt'ou'-n(:')z{[-l-LG)l dxl'@dx!'+ dx? @ax® +
1-v
' u
ax> @dx> } (11)



where R(t') =R(t(t")) and v=R(-— dt x OY)t-O-u(1+“z)-1/2

is the initial metric velocity of Z relative to V.

(ii) The solution of the equation of motion for a free par-
ticle (m,0) in V, with the initial cond;tmns. xi 00(0) =0,
e 12 Tl %xl 00 (0) = u 3/3x> and xJo o(0)= 0

j#i, is given by an equation amalogous to eq. (9) The ac-

celerations are such that -d—z x) 0o o(t) =0 for O e £
dt

(ii1) The solution of the equation of motion for a free
particle (m,0') in Z can be found in the case R(t) = 1 +

1 1
+ At + ..., A<< 1. We get for motion in the (xl ,xz)plane:

(a)

If R(-——x 00') =03 !(d !

0')t_o- v; i:—txl'oo (t')-vi,

the measured acceleration in Z will be:

"
d = T 1/2 2.1/2
(Rx oo'(t")) = —A(l-vz) vi(l - v! s
;:2' 1 1
g g
—:-Z-(R x~ oo'(t")) =0 (12)
dt
(b) ) ,
If R_(%xl og )t'o-O' l(d—i leoo')t_o-v; iaixz oo'(t' )-vz,
the measured acceleration in Z will be:
2
:_Zﬁf oot = v avy/(1 - e
.dt
2 '
L ®x oo ")) = ~av31 - vihra - vHY2, (13)
dt

From (ii) and equations (12) and (13) is follows that V and
and Z are not physically equivalent.
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4. CONCLUSIONS

We noticed that reference frames in ST = (M,g,D} can be
classified according to their acceleration, rotation, shear
and expansion (these concepts being absolute in the sense
that they depend only on D) or according to their synchro-
nizability. This means that, given two arbitrary reference
frames, they are not in general physically equivalent ac-
cording to the definitioms of (1,3). In this paper , even
without using the methodology of (1,3), we succeded in

proving (Proposition 4) that there are models of TE in

which even locally inertial reference frames are not equiv-
alent. ZWe conclude that no Principle of Relativity (in the
sense of the physical equivalence of all reference frames)
hold for TE. All reference frames are however mathemati-

cally equivalent , a trivial consequence of the mathemati-

cal structure associated with TE (general covariance ac-

cording to the methodology of (1)). Of course , physical
equivalence and mathematical equivalence are completely
different concepts, it being a misanderstanding trying to
associate general covariance with a Principle of Relativ-
ity

According to Einstein (7,8,9,10,11,12,13,14,16)General rel-
ativity is a theory of the aether! However, Einstein had
the wrong opinion that it would be impossible to associate
a privileged reference frame to the aether and then that
his "relativistic aether would not violate the Principle of
Relativity. For more details on this point see Kostro (17)

In a letter by Einstein to Lorentz (17) we read:

"... the general relativity theory is nearer to amn aether
hypothesis than is special relativity theory. However, this
new aether theory would nmot violate the principle of rela-

tivity, because its state A aether would not be of a

rigid body in an independent state of motion,but its state
of motion would be a function of position determined via
material processes."

We see that the origin of Einstein's wrong statement is
the fact that he did not know how to characterize mathemat-
ically reference frames. If he knew that a reference frame
must be characterized by a time-like vector field Q € TM,
as done above, he would realized from the decomposition of



Da, a = g(Q, ) that in General Relativity reference frames
(in general) do not have the properties of rigid bodies.
From our analysis in (1,3) and also in Rodrigues and Tiommo
(18,19), Maciel and Tiommo (20) and Witenberg (21), we ar-
rive at the conclusion that even breakdown of Lorentz in-
variance is to be expected in experiments involving the
coupling of light and the roto-translational motion of
solid bodies.
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