## A SPLITTING THEOREM FOR COMPLETE MANIFOLDS WITH NON-NEGATIVE CURVATURE OPERATOR

#### Maria Helena Noronha

## RELATÓRIO TÉCNICO Nº 02/88

ABSTRACT. In this paper we consider non-compact Riemannian manifolds with non-negative curvature operator. The main result is the following theorem:

"If  $M^n$  is a complete non-compact Riemannian manifold, simply-connected with non-negative curvature operator, then M is isometric to the product  $\Delta^k \times P^{n-k}$ , where  $\Delta^k$  is a k-dimensional soul of M and  $P^{n-k}$  is a complete manifold diffeomorphic to  $\mathbb{R}^{n-k}$ ."

This result provides a complete topological description of such manifolds, since there is a topological classification for compact, simply-connected manifolds with non-negative curvature operator. This result implies, for the non simply-connected case, the following corollary:

"Let  $M^n$  be a non-compact Riemannian manifold with non-negative curvature operator. Then M is locally isometric to a product over S. In particular if the curvature operator is positive at one point then  $M^n$  is diffeomorphic to  $\mathbb{R}^n$ ."

This corollary gives a positive answer to a Conjecture of Cheeger and Gromoll in the case of non-negative curvature operator.

In the case of codimension two submanifolds of the Euclidean space non-negativity of sectional curvatures is well known to be equivalent to the non-negativity of the curvature operator. In that case, the corollary above generalizes the Theorem of Sackesteder for submanifolds with codimension 1 in the following sense:

"Let  $M^n$  be a complete non-compact Riemannian manifold with non-negative sectional curvatures isometrically immersed in  $\mathbb{R}^{n+2}$ . If there is a point P in M such that all sectional curvatures are positive then  $M^n$  is diffeomorphic to  $\mathbb{R}^{n}$ ".

Universidade Estadual de Campinas
Instituto de Matemática, Estatística e Ciência da Computação
IMECC — UNICAMP
Caixa Postal 6065
13.081 - Campinas, SP
BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade da autora.

# A SPLITTING THEOREM FOR COMPLETE MANIFOLDS WITH NON-NEGATIVE CURVATURE OPERATOR.

#### LINTRODUCTION:

It has been an important problem in Riemannian geometry to determine the structure of a complete, non-compact manifold M whose sectional curvatures are non-negative. J.Cheeger and D.Gromoll in [CG] have shown that M is diffeomorphic to the total space of a vector bundle over a compact, totally geodesic submanifold, called the soul, and classified it in dimensions≤3 up to isometry. These are the most significant results in this direction. In the same paper the authors left an interesting problem: "Suppose there is a point x∈M such that all the sectional curvatures are positive. Is the soul of M a point, or equivalently, is M diffeomorphic to the Euclidean space R<sup>n</sup>?" This is known to be true for immersed hypersurfaces in euclidean space.

In this paper we want to consider a stronger condition on such manifolds, namely the non-negativity of the curvature operator (see definition below) and answer the Cheeger-Gromoll conjecture affirmatively in this case. This in turn implies a positive answer to the same conjecture for manifolds isometrically immersed in Euclidean space with codimension two, since it is a well known result that in codimension two, the non-negativity of the sectional curvatures is equivalent to the non-negativity of the curvature operator (see [We]). Our result states:

<u>THEOREM:</u> Let  $M^n$  be a complete non-compact, simply connected manifold with non-negative curvature operator. Then M is isometric to the product  $S^k \times \mathbb{C}^{n-k}$  where S is the k-dimensional soul of M and  $\mathbb{C}^{n-k}$  is a complete manifold diffeomorphic to  $\mathbb{R}^{n-k}$ .

<u>REMARK</u>: This result gives a complete topological description of this manifold since we know the possibilities for the soul S from the classification of simply connected, compact manifolds with non-negative curvature operator which appears in [GM] and [CY]. Namely, S is a riemannian product of manifolds of the following types: compact symmetric

spaces, Kähler manifolds biholomorphic to complex projective spaces and manifolds homeomorphic to spheres.

<u>COROLLARY:</u> Let  $\mathbb{M}^n$  be a complete non-compact manifold with non-negative curvature operator. Then  $\mathbb{M}$  is locally isometric to a product over  $\mathbb{S}$ . In particular, if the curvature operator is positive at some point, then  $\mathbb{M}^n$  is diffeomorphic to  $\mathbb{R}^n$ .

We want to observe that the non-negativity of the curvature operator is equivalent to the non-negativity of the sectional curvatures in two more cases:

- i) Manifolds which can be immersed isometrically into space forms with flat normal connection
- 11) Submanifolds in which the second fundamental form satisfies the condition (4.13) in [KW].

For these cases, our theorem also gives an answer to the Cheeger-Gromoll conjecture.

Some of the arguments in this paper can also be found in G.Walschap [Wa].

### 2.BASIC RESULTS:

For a Riemannian manifold M the curvature operator at xEM is the linear symmetric map

$$\rho: \Lambda^2(T_xM) \to \Lambda^2(T_xM)$$

characterized by

$$\langle \rho(X \wedge Y), (W \wedge Z) \rangle = \langle R(X,Y)Z,W \rangle$$

where the scalar product on the left hand side is the induced one at the level of two-forms and R is the Riemannian tensor. Since  $\rho$  is symmetric, it makes sense to talk about the positivity and the non-negativity of  $\rho$ .

Now suppose that M is a complete manifold with a soul denoted by S.

(2.1) <u>PROPOSITION</u>: If the curvature operator is non-negative and dimS  $\geq 2$ , then the inclusion i: S $\rightarrow$  M has flat normal bundle.

I. M. E. C. C. BIBLIOTECA <u>Proof.</u> For every xEM, let us consider the normal set  $\{w_i\}$  in  $\wedge^2(T_XM)$  which diagonalizes  $\rho$  with eigenvalues  $\lambda_i$ . Then for X,YET $_XM$  we write X $\wedge$ Y =  $\sum a_iw_i$  and therefore

$$\rho(X \wedge Y) = \sum a_i \rho(w_i) = \sum a_i \lambda_i w_i$$

with  $\lambda_1 \ge 0$ . Notice that

(2.2) If the sectional curvature K(X,Y)=0 we have  $\rho(X\wedge Y)=0$  this following from

 $0 = \langle \rho(X \wedge Y), X \wedge Y \rangle = \sum a_1^2 \lambda_i$  and  $\lambda_i \ge 0$  for all i.

Now, take xeS, X,YeT<sub>x</sub>S and ZeT<sub>x</sub>S<sup>1</sup>. By Theorem 3.1 in [CG], K(X,Z)=0 and F(Y,Z)=0 which implies  $\rho(X\wedge Z)=0$  and  $\rho(Y\wedge Z)=0$ . Using the first Bianchi identity, it is easy to see that R(X,Y)Z=0. Applying this fact to the Ricci equation for the totally geodesic immersion i:S-M, we have for all X,YeTS and Z,WeTS<sup>1</sup>,  $\langle R(X,Y)Z,W \rangle = \langle R_1^{-1}(X,Y)Z,W \rangle$ . But the first term is  $\langle \rho(X\wedge Y),W\wedge Z\rangle \rangle$  which is zero since R(X,Y)Z=0 and the conclusion follows.

Now suppose M simply connected so that the soul is simply connected. Proposition (2.1) implies that for each unit normal vector Z at x we can get, by parallel transportation, a parallel section of the flat normal bundle  $\nu(S)$ . This parallel section together with the proposition below will take us to the concept of the pseudo-soul.

(2.3) PROPOSITION (Proposition 3.2, [Y]): Let S be a soul of M. Then S has minimal volume in its homology class.

This result was used by Yim in [Y] to show that if Z is any parallel section of  $\nu(S)$  then the map  $\phi_Z: S \times \mathbb{R} \to M$ , given by  $\phi_Z(x,t) = \exp_X t Z(x)$  is an isometric immersion. In fact, by the Rauch Comparison Theorem [CE],  $\phi_Z(.,t)$  is distance non-increasing for small t which implies that  $\phi_Z$  is an isometry since for each t,  $S_t = \phi_Z(S,t)$  is in the same homology class as S and its volume is not less than that of S. By the connectedness of  $\mathbb{R}$ ,  $\phi_Z$  is an isometric immersion for all te $\mathbb{R}$  and its image is isometric to a product manifold  $S \times \mathbb{R}$ . Actually this immersion is totally geodesic (see [2.7] below), and then for each t,  $\bar{S}_t = \phi_Z(S,t)$  is a totally geodesic manifold isometric to S. Yim has called it a pseudo-soul.

BIBLIOTECA

(2.4)<u>PROPOSITION</u>: If the curvature operator is non-negative, S is simply connected and dimS≥2, then the pseudo-soul 5 also has flat normal bundle.

Proof: Let us consider the pseudo-soul  $\bar{S}=\exp_S t Z_1$ , where  $Z_1$  is a parallel section of  $\nu(S)$ . We can define for each  $\bar{x}\in\bar{S}$  such that  $\bar{x}=\exp_X t Z_1$  with  $x\in S$ ,  $Z_1$   $(\bar{x})$  by  $\delta'(\bar{t})$  where  $\delta(t)=\exp_X t Z_1$ . Then  $\bar{Z}_1$  is a parallel section of  $\nu(\bar{S})$  by construction. We want to prove that we can construct m linearly independent sections in  $\nu(\bar{S})$  where m is the codimension of the soul. We fix  $x\in S$  and if  $Z_2,...,Z_m$  are unit orthogonal vectors to  $Z_1(x)$ , we define  $\bar{Z}_2,...,\bar{Z}_m$  at  $\bar{x}$ , by parallel transportation along the geodesic  $\delta$ . We claim that  $\bar{Z}_2,...,\bar{Z}_m$  belong to the normal space to  $\bar{S}$ , denoted by  $T_{\bar{X}}\bar{S}^1$ . In fact, consider  $\bar{y}\in \bar{S}$  such that  $\bar{y}=\exp_y t Z_1$ ,  $y\in S$ , and the curves c from x to y and  $\bar{c}$  from  $\bar{x}$  to  $\bar{y}$  respectively. Let us consider the rectangle  $f:[0,a]\times[0,\bar{t}]\to M$  defined by  $f(s,t)=\exp_C(s)tZ_1(s)$ . We have

 $(\partial f/\partial s)(s,t) = \lambda X$ 

 $(\partial f/\partial t)(s,t) = \mu Z_1$ 

with X(s,t),  $Z_1(s,t)$  having unit length and  $Z_1(s,\bar{t})=\bar{Z}_1(s)$ . Since the Lie bracket  $[\partial f/\partial s,\partial f/\partial t]=0$ , this will be

(2.5) 
$$\lambda X(\mu)Z_1 + \lambda \mu \nabla_X Z_1 - \mu Z_1(\lambda)X - \mu \lambda \nabla_{Z_1} X = 0.$$

We have omitted t for brevity. We see that:

- i)  $\nabla_X Z_1 = 0$ , since  $Z_1$  is parallel
- ii)  $\langle \nabla_{Z_1} X_1 Z_1 \rangle = 0$  because  $\varphi_{Z_1}(S)$  is a product
- iii)  $\langle \nabla_{Z_1} X, X \rangle = 0$  because X is unitary.

Then, (i),(ii) and (iii) imply in (2.5) that  $\nabla_{Z_1}X=0$ . This implies that  $T_X\bar{S}_t$  is parallel along  $\breve{z}$  and then if  $Z_2,...Z_m \in T_XS^1$ ,  $\bar{Z}_2,...,\bar{Z}_m \in T_X^-\bar{S}^1$ .

Now we make a parallel transportation of  $\bar{Z}_2,...,\bar{Z}_m$  along  $\bar{c}$  and we write the expression for  $R(X,\bar{Z}_1)\bar{Z}_1$ ,  $i\geq 2$ , which is zero by (2.2):

 $R(X,\bar{Z}_1)\bar{Z}_1 = \nabla_X\nabla_{\bar{Z}_1}\bar{Z}_1 - \nabla_{\bar{Z}_1}\nabla_X\bar{Z}_1 - \nabla_{[X,\bar{Z}_1]}\bar{Z}_1 = \nabla_X\nabla_{\bar{Z}_1}\bar{Z}_1 = 0,$  since  $\nabla_X\bar{Z}_1=0$  and  $[X,\bar{Z}_1]=0$  by (i),(ii),(iii) and (2.5). It follows that

 $(2.6) \qquad \partial \left( \left\langle \nabla \bar{Z}_{1}(s) \bar{Z}_{i}(s), \nabla \bar{Z}_{i}(s) \bar{Z}_{i}(s) \right\rangle \right) / \partial s = 0.$ 

But  $\bar{c}(0)=\bar{x}$  and  $\nabla \bar{z}_1(0)\bar{z}_1(0)=0$ . So, (2.6) implies  $\nabla \bar{z}_1(s)\bar{z}_1(s)=0$  for each s. This means that the vectors  $\bar{z}_2,...,\bar{z}_m$  obtained along  $\bar{c}$  by parallel

I. M. E. C. C. BIBLIOT transportation are the same vectors that we would obtain making parallel transportation of  $Z_2,...Z_m$  from x to y along c and then along the geodesic  $\psi(t) = \exp_y t Z_1$ . Since by Proposition (2.1), the parallel transportation in S does not depend on the curve c joining x to y, the parallel transportation in \$\bar{s}\$ from \$\bar{x}\$ to \$\bar{y}\$ will not depend on the curve \$\bar{c}\$ joining \$\bar{x}\$ to \$\bar{y}\$ either. This implies the proposition.

(2.7) <u>REMARK</u>: We observe that the above proof also shows that the isometric immersion  $\phi_{Z_1}$  is totally geodesic. Since for each xeS,  $\exp_x t Z_1$  is a geodesic in M, all we need is to prove that for each t,  $\bar{S}_t$  is a totally geodesic submanifold of M. Then, if X(t) and Y(t) are vector fields tangent to  $\bar{S}_t$ , we have for every i

(2.8) 
$$\frac{1}{4} \langle \nabla_X Y, Z_i \rangle = \langle \nabla_{Z_1} \nabla_X Y, Z_i \rangle + \langle \nabla_X Y, \nabla_{Z_1} Z_i \rangle = 0$$

because R(Z<sub>1</sub>,X)Y=0 and [Z<sub>1</sub>,X]=0 imply that  $\nabla_{Z_1}\nabla_XY=\nabla_X\nabla_{Z_1}Y$ =0 and Z<sub>1</sub> is parallel along  $\Im$ . Since for t=0 we have  $\langle\nabla_XY,Z_1\rangle$ =0 because the soul is totally geodesic, (2.8) implies that  $\bar{S}_t$  is also totally geodesic.

(2.9) PROPOSITION: Let M be a manifold as in Proposition (2.4) Then there exists a smooth foliation of M by totally geodesic manifolds isometric to S.

<u>Proof:</u> First, we prove that for each point x $\in$ M there exists a totally geodesic manifold  $\bar{S}$  isometric to S such that x $\in$ S. For that, consider  $\mathcal{F}[0,a]-M$  the minimal connection from x to S.  $\mathcal{F}'(a)\in \mathcal{F}(S)$ . Let Z be the parallel normal field defined on S such that  $Z(\mathcal{F}(a))=\mathcal{F}'(a)$ . Then we have a pseudo-soul  $\bar{S}=\exp_S aZ$  and  $x\in\bar{S}$ .

We claim that there exists only one totally geodesic manifold  $\bar{S}$  such that  $x \in \bar{S}$  and  $\bar{S}$  is isometric to S. Suppose that there exits  $\tilde{S}$  with the same conditions and  $x \in \bar{S}$ . Let  $\bar{S}$  be a pseudo-soul containing x. If  $X \in T_X \bar{S}$  and  $X \notin T_X \bar{S}$ , we consider  $\bar{X}$  the unitary orthogonal projection of X on  $T_X \bar{S}^1$ . Since  $\bar{S}$  has flat normal bundle we take the parallel transportation of  $\bar{X}$  along  $\bar{S}$ . Let us call  $\bar{M} = \exp_{\bar{S}} t \bar{X}$ .  $\bar{M}$  has  $\bar{S}$  as a soul, since  $\bar{M}$  is isometric to  $\bar{S} \times \mathbb{R}$ . The vector X belongs to  $T_X \bar{M}$  and is transversal to  $\bar{S}$ . By Theorem (5.1) of [CG], the geodesic  $\sigma(t) = \exp_X t X$  must go to infinity. Since  $\bar{M}$  and  $\bar{S}$  are totally geodesic,  $\sigma$  is a geodesic in M and  $\bar{S}$  going to infinity, contradicting the fact that  $\bar{S}$  is compact.

I. M. E. C. C.

This shows that the foliation is well defined. We need to prove the smoothness of the foliation. Let  $\bar{S}$  be the leaf containing x. Let us take  $\epsilon$  smaller than the injectivity radius of  $\nu(\bar{S})$ . Now we exponentiate the global sections of  $\nu(\bar{S})$  at distances smaller than  $\epsilon$  and we get totally geodesic manifolds isometric to  $\bar{S}$  which coincide with the leaves by uniqueness.

#### 3.PROOF OF THE THEOREM

By the proposition (2.9) we have two differentiable distributions defined on M. The first one  $D_1^*$ , given by the tangent vectors to the leaves of the foliation F and the second  $D_2 = D_1^{-1}$ . We will prove that  $D_1$  and  $D_2$  are involutive and parallel and the theorem will follow by Frobenius.

In order to prove this, notice that the leaves of F are equidistant and simply connected. Then we can apply the Theorem of R.Hermann in [H] which says that M/F is a smooth manifold and admits a Riemannian metric for which the projection  $\Phi\colon M\to M/F$  is a Riemannian submersion. We see that for this submersion, horizontal vectors are orthogonal to the pseudo-souls and vertical vectors are tangent to the pseudo-souls. Now, it is easy to calculate the O'Neill tensors (see [O]). With  $\mathcal H$  and  $\mathcal V$  denoting the projections onto the horizontal and vertical subspaces and X and V being horizontal and vertical vectors respectively, we have

$$T_V X = V(\nabla_V X)$$
  $A_X V = \mathcal{H}(\nabla_X V)$ 

T is zero because the pseudo-souls are totally geodesic. Then it will be enough to prove that A is zero. By the Corollary 1 of [O] we have for the sectional curvature of the plane spanned by X and V.

$$\mathsf{K}(\mathsf{X},\mathsf{V}) = \langle (\nabla_{\mathsf{X}}\mathsf{T})_{\mathsf{V}}\mathsf{V},\mathsf{X}\rangle + \|\ \mathsf{A}_{\mathsf{X}}\mathsf{V}\|^2 - \|\mathsf{T}_{\mathsf{V}}\mathsf{X}\|^2$$

But K(X,Y)=0 and  $T_VX=0$ . Then, all we need is to prove that

$$\langle (\nabla_X \mathsf{T})_\mathsf{V} \mathsf{V}, \mathsf{X} \rangle = \langle \nabla_\mathsf{X} \mathsf{T}_\mathsf{V} \mathsf{V}, \mathsf{X} \rangle - \langle \mathsf{T}_\mathsf{V} \mathsf{V}, \mathsf{X} \rangle - \langle \mathsf{T}_\mathsf{V} \nabla_\mathsf{X} \mathsf{V}, \mathsf{X} \rangle = 0$$

In fact, using again that the pseudo-souls are totally geodesic we have

$$T_V V = \mathcal{H}(\nabla_V V) = 0$$
  
 $\langle T_{\nabla_X} V, X \rangle - \langle T_V \nabla_X V, X \rangle =$ 

$$= \langle \mathcal{H}(\nabla \ \nu_{(\bigtriangledown_X \lor)} \lor) - \mathcal{H}(\bigtriangledown_V \ \nu(\bigtriangledown_X \lor)) - \ \nu(\bigtriangledown_V \ \mathcal{H}(\bigtriangledown_X \lor)), x \rangle = 0$$

Hence, it follows that  $A_XV=0$ .

I. M. E. C. C. BIBLIOTECA Let us consider S the soul of M and  $\tilde{S}$  and  $\tilde{M}$  the respective universal coverings. By Theorem 9.1 of [CG],  $\tilde{S}$  is isometrically diffeomorphic to  $S_0 \times \mathbb{R}^m$  with  $S_0$  compact and the splitting is in the sense of Toponogov [T]. Then these lines in  $\tilde{S}$  must split off in  $\tilde{M}$  too and hence  $\tilde{M}$  is isometrically diffeomorphic to  $M_0 \times \mathbb{R}^m$ . But  $M_0$  is simply connected and by the previous theorem,  $M_0 = S' \times \mathbb{P}^f$ , where S' is the soul of  $M_0$ 

We claim that  $S_0=S'$ . For that, consider  $X\in T_XS_0$ . Suppose that  $X\in T_XS'$  and take the geodesic  $\sigma(t)=\exp_X tX$ . This geodesic, again by Theorem 5.1 of [CG], must go to the infinity contradicting the compactness of  $S_0$ . Then  $S_0\subset S'$ . Since S is totally convex.  $\tilde{S}$  and  $S_0$  are totally convex. Now we have  $S_0$  and S' compact, totally convex and without boundary. Applying Theorem 2.1 of [CG], we see that  $S_0$  and S' have the same homotopy type. Since  $S_0\subset S'$  and both are compact we have the claim.

Now, we have the following diagram:



where  $\Pi$  is the covering map,  $P_1$  the projection onto the first factor. Since  $\Pi$  is a local isometry and the fundamental group preserves the splitting  $S_0 \times \mathbb{C}^{\Gamma} \times \mathbb{R}^m$ ,  $P_1$  induces a submersion  $P_2$ :  $M \to S$ , which is a local product.

In particular, if there is a point such that the curvature operator is positive, S must be a point and the corollary follows.

LM.E.C.C. BIBLIOTECA

#### REFERENCES

- [CE] J.Cheeger and D.Ebin, <u>Comparison theorems in Riemannian geometry</u>, North-Holland publishing co. (1975).
- [CG] J. Cheeger and D. Gromoil, <u>On the structure of complete manifolds</u> of nonnegative curvature, Annals of Math. 96 (1972), 413–443.
- [CY] B.Chow and D.Yang, <u>A classification of compact Riemannian manifolds</u> with nonegative curvature operator, preprint.
- [GH] S.Gallot and D.Meyer, <u>Operateur de courbure et Laplacien des formes</u> <u>différentielles d'une varieté Riemanniene</u>, J.Math. Pures et Appl. 54 (1975),285-304.
- [H] R. Hermann, On the differential geometry of foliations, Annals of Math. 72, (1960),445–457.
- [KW] N. Kleinjonann and R. Walter, <u>Nonnegativity of the Curvature</u> operator and isotropy for isometric immersions, Math. Z. (1982),181, 129-142.
- [0] B. O'Neill, <u>The fundamental equations of a submersion</u> Mich. Math.J. 13, (1966), 459–469.
- [T] V.A. Toponogov, <u>Spaces with straight lines</u>, Amer. Math. Soc. Trans. 37, (1964), 287–290.
- [Wa] G. Walschap, A splitting theorem for 4-dimensional manifolds of nonnegative curvature, preprint.
- [We] A. Weinstein, <u>Positively curved n-manifolds in R</u><sup>n+2</sup>, J. Diff. Geom. 4 (1970), 1-4.
- [Y] J.-W. Yim, <u>Distance nonincreasing retraction on a complete open</u> manifold of nonnegative curvature, preprint.

### RELATÓRIOS TÉCNICOS - 1988

01/88 — A linear Continuous Transportation Problem — Enrique D. Andjel, Tarcísio L. Lopes and José Mario Martínez.

[GP] 5.5allet and Orteyer, Querateur de cauroure et Laglacien des formes différentielles d'une variete Riemanniene Urlath Pures et Appl. 54 (1975),285-304.

[KW] N. Kleinjonann and R. Walter, <u>Wonnedativity of the Curvature</u>

(b) E. O'Naill, Ins. Customental equalities of a submersion, Mich. (19th.).
13, (1966), 459-469.

[7] V.A. Toponogov, Spaces with straight lines, Amer. Plath. Sec. Trans 37, (1964), 287-290.

[wa] 6. Walsoneo, A splitting theorem for 4 dimensional manifolds of oppnedative our values, preprint

[we] A. Weinstein, <u>Positively curved namenifolds in R<sup>n+2</sup></u>, J. Diff. Geom. 4 (1970), 1-4

 (Y) J-W. Vim. Bistance nonnecessing retraction on a complete such manifold of nonnegative curvature, preprint.