CODIMENSION TWO PRODUCT SUBMANIFOLDS WITH NON-NEGATIVE CURVATURE

Yuriko Y. Baldin and Maria Helena Noronha

RELATÓRIO TÉCNICO Nº 36/87

ABSTRACT. We study an isometric immersion $f: M^n \to \mathbb{R}^{n+2}$, $n \ge 4$, of a complete, non-compact Riemannian manifold with non-negative sectional curvatures when M is a Riemannian product $M_1^{n_1} \times M_2^{n_2}$ of two irreducible manifolds with $n_i \ge 2$. We prove that either M is homeomorphic to $S^{n_1} \times \mathbb{R}^{n_2}$ or one of the factors is flat and f is cylindrical.

Universidade Estadual de Campinas
Instituto de Matemática, Estatística e Ciência da Computação
IMECC — UNICAMP
Caixa Postal 6065
13.081 - Campinas, SP
BRASIL

O conteúdo do presente Relatório Técnico é de única responsabilidade dos autores.

Setembro - 1987

CODIMENSION TWO PRODUCT SUBMANIFOLDS WITH NON-NEGATIVE CURVATURE

<u>Abstract</u>: We study an isometric immersion $f: M^{n} \rightarrow \mathbb{R}^{n+2}$, $n \ge 4$, of a complete, non-compact Riemannian manifold with non-negative sectional curvatures when M is a Riemannian product $M_1^{n} I_{\times} M_2^{n} I_{\times}$ of two irreducible manifolds with $n_i \ge 2$. We prove that either M is homeomorphic to $S^{n} I \times \mathbb{R}^{n} I_{\times}$ or one of the factors is flat and f is cylindrical.

1.Introduction: A complete Riemannian manifold M with non-negative sectional curvatures is diffeomorphic to the total space of a vector bundle over a compact submanifold, its soul (Cheeger-Gromoll, [4]). It is an interesting problem to know under which conditions M turns out to be a trivial bundle over its soul. Some results in this direction were obtained in [1] and [7]. In this note we prove the following:

<u>Theorem</u>: Let M^n be a Riemannian product $M_1^{n_1} \times M_2^{n_2}$, where for each i=1,2, $M_i^{n_i}$ is a n_i -dimensional $(n_i \geq 2)$ complete, non-compact, irreducible Riemannian manifold with non-negative sectional curvatures. Suppose M_n^n with non-trivial soul. If $f: M^n \to \mathbb{R}^{n+2}$ is an isometric immersion then either

- (a) one of Mini is flat and f is ni cylindrical; or
- (b) M is homeomorphic to the product $S^{n_1} \times \mathbb{R}^{n_2}$ and f is a product of hypersurface immersions.

2. Proof of Theorem:

First we prove that if both $\,\mathrm{M}_{1}$ and $\,\mathrm{M}_{2}$ are not flat then f is not cylindrical.

In fact, if f is cylindrical we consider an isometric splitting of M as $\overline{\mathbb{M}^m} \times \mathbb{R}^{n-m}$, $m \ge 2$, so that f is (n-m)-cylindrical ([5]). By a Theorem of Bishop ([2]) the holonomy algebra of M, h (M.) = h (\overline{M}) is one of the following possibilities:

$$h(M) = h(\overline{M}) = \begin{cases} o(m); \\ o(r) + o(m-r), r = 0; \\ u(2), \text{ the unitary algebra of some complex structure} \end{cases}$$
on $T\overline{M}$ if $m=4$.

By the other hand, we have also h (M) = h (M₁) + h (M₂). For each $(x_1,x_2) \in M_1 \times M_2$ let $j_1 \colon M_1 \to M_1 \times \{x_2\}$ and $j_2 \colon M_2 \to \{x_1\} \times M_2$ be respectively the copies of M_1 and M_2 through (x_1,x_2) . Since M_i are irreducible, we observe that f_i =foj_i cannot be cylindrical. Therefore, we choose x_i in each M_i so that there is no relative nullity directions of f_i at x_i . Each holonomy algebra h(M_i) at x_i is again one of the possibilities: o (n_i) : o (r_i) + o (n_i-r_i) , r_i = 0 ; u (2), the unitary algebra of some complex structure on TM_i if n_i = 4.

Since both M_i are not flat, it is obvious that at $(x_1,x_2) \in M$ chosen as above, the only possibility for the holonomy is $o(n_1 - 1) + o(n_2 - 1)$ with

 $_{2}(n_{1}-1)=0$, i=1,2. In this case, Theorem 1' of Bishop ([2]) implies that the normal curvature of f at (x_{1},x_{2}) vanishes, that is, there is a choice of tangent and normal frame at (x_{1},x_{2}) such that the matrices for the second fundamental operators have the form:

$$\begin{bmatrix} A_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where each A_i is a $(n_i-1)\times(n_i-1)$ non-singular diagonal matrix, i=1,2. This means that there must be directions of relative nullity tangent to each M_i at (x_1,x_2) , which is a contradiction.

As above, consider $(x_1,x_2) \in M$ such that for each i=1,2, f_i has no relative nullity directions at x_i . M_i has some non-zero sectional curvature at x_i . Otherwise, since M_i has no relative nullity vectors at x_i , we would have $n_i=2$ which implies that M_i is flat. Then the argument of Lemma 3.3 in [7] implies that the relative nullity subspace of f_i at f_i is at least f_i (f_i)-dimensional, which is a contradiction.

Therefore, since M_i are both irreducible, we can conclude that at every $(x_1,x_2)\in M$ all the vectors tangent to M_2 are directions of relative nullity, hence f is n_2 -cylindrical, as claimed.

To conclude, we prove that if f is not cylindrical then f is a product of hypersurface immersions.

In fact, if f is not a product of hypersurface immersions, Theorem 2 of

Moore ([6]) implies that there is a complete geodesic carried by f cr.to a straight line in \mathbb{R}^{n+2} . This geodesic must be a line, that is, a geodesic each segment of which realizes the distance between its end points. Then Toponogov's Theorem ([9],[4]) allows us to consider the isometric splitting of M as $\overline{\mathbb{M}}^m \times \mathbb{R}^{n-m}$ with $\overline{\mathbb{M}}$ without lines and \mathbb{R}^{n-m} flat. The claim above implies that f is cylindrical, a contradiction.

Therefore, there are isometric immersions $f_1\colon M_1^{n_1}\to \mathbb{R}^{n_1+1}$ and $f_2\colon M_2^{n_2}\to \mathbb{R}^{n_2+1}$ such that $f=f_1\times f_2$. Furthermore, since both M_1 and M_2 are irreducible, there are points x_1 and x_2 respectively in M_1 and M_2 with no relative nullity directions. For each i=1,2, all the sectional curvatures of M_1 at x_1 are positive, hence $M_1^{n_1}$ is either homeomorphic to \mathbb{S}^{n_1} or \mathbb{R}^{n_1} ([3], [8]). As we supposed M_1 with non-trivial soul, we must have M_1 homeomorphic to $\mathbb{S}^{n_1} \times \mathbb{R}^{n_2}$.

References

- [1] Baldin, Y.Y.-Noronna, M.H.: Some complete manifolds with non-negative curvature operator, to appear in Math. Z.
- [2] Bishcp,R.L.: The holonomy algebra of immersed manifolds of codimension two, J. Diff. Geometry 2(1968), 347–353.
- [3] Carmo, M.do-Lima, E.: Immersions of manifolds with non-negative sectional curvatures, Bol. Soc. Bras. Mat. 2(1972), 9-22.
- [4] Cheeger, J.-Gromoll, D.: On the structure of complete open manifolds of non-negative curvature, Ann. of Math. (2) 96(1972),413-443.
- [5] Hartman,P.: On the isometric immersions in Euclidean space of manifolds with non-negative sectional curvatures II ,Trans.Amer.Math. Soc.147(1970),529-540.
- [6] Moore, J.D.: Isometric immersion of Riemannian products, J.Diff. Geometry 5(1971), 159–168.
- [7] Noronha,M.H.: Codimension two complete non-compact submanifolds with non-negative curvature, preprint.
- [8] Sacksteder,R.: On hypersurfaces with non-negative sectional curvatures, Amer.J.Math. 82(1960),609-630.
- [9] Toponogov, V.A.: Spaces with straight lines, Amer. Math. Soc. Trans. 37 (1964).