ABSTRACT

All Nachbin spaces $\text{CV}_{\infty}(\mathbf{X})$ of continuous scalar-valued functions have the approximation property.

§1. INTRODUCTION

Throughout this paper X is a Hausdorff space such that $C_b(X;\mathbb{K})$ ($\mathbb{K}=\mathbb{R}$ or \mathbb{C}) separates the points of X, and E is a nonzero locally convex space. Our aim is to prove that certain function spaces L \subset $C(X;\mathbb{E})$ have the approximation property as soon as E has the approximation property. We show this for the class of all Nachbin spaces $CV_\infty(X;\mathbb{E})$. Such spaces include $C(X;\mathbb{E})$ with the compact-open topology; $C_b(X;\mathbb{E})$ with the strict topology; $C_0(X;\mathbb{E})$ with the uniform topology. When $E=\mathbb{K}$, Bierstedt [1], using the technique of ε -products, had proved that $CV_\infty(X;\mathbb{K})$ has the approximation property, under the hypothesis that X is a completely regular $k_{\mathbb{R}}$ -space, and that the family V of weights is such that given a compact subset K \subset X, one can find a weight v \in V such that V(x) > 1 for all $x \in K$.

The technique we use here was suggested by the paper [5] of Gierz, who proved the analogue of Theorem 1 below for the case of X compact and bundles of Banach spaces. This technique of "localization" of the approximation property was used by Bierstedt, in the case of the partition by antisymmetric sets (Bierstedt [2]), but the main idea of representing the space of operators of L as another Nachbin space of cross sections is due to Gierz. However our presentation is much simpler, in particular we do not use the concept of a locally C(X)-convex C(X)-module. In the Introduction to his paper, Gierz said that his method could be applied to the vector fibrations in the sense of [8], and this led to our effort at simplifying his proof and adapting it to our context.

§2. THE APPROXIMATION PROPERTY FOR NACHBIN SPACES.

A vector fibration over a Hausdorff topological space X is a pair $(X, (F_X)_{X \in X})$, where each F_X is a vector space over the field $\mathbb K$ (where $\mathbb K = \mathbb R$ or $\mathbb C$). A cross-section is then any element f of the Cartesian product of the spaces F_X , i.e., $f=(f(X))_{X \in X}$.

A weight on X is a function v on X such that v(x) is a seminorm over F_X for each x \in X. A Nachbin space LV_∞ is a vector space L of cross-sections f such that the mapping

$$x \in X \longrightarrow v(x) [f(x)]$$

is upper semicontinuous and null at infinity on X for each weight v belonging to a directed set V of weights (directed means that, given v_1 , $v_2 \in V$, there is some $v \in V$ and $\lambda > 0$ such that $v_i(x) \leq \lambda v(x)$ (i = 1,2) for all $x \in X$); the space L is then equipped with the topology defined by the directed set of seminorms

$$f \longrightarrow || f ||_{V} = \sup\{v(x)[f(x)]; x \in X\}$$

and it is denoted by LV_{∞} .

Since only the subspace $L(x) = \{f(x) ; f \in L\} \subset F_X$ is relevant, we may assume that $L(x) = F_X$ for each $x \in X$.

The cartesian product of the spaces F_X has the structure of a C(X; K)-module, where C(X; K) denotes the ring of all continuous K-valued functions on X, if we define the product ϕf for each $\phi \in C(X; K)$ and each cross-section f by

$$(\phi f)(x) = \phi(x) f(x)$$

for all x \in X. If W \subset L is a vector subspace and B \subset C(X ; IK) is a subalgebra, we say that W is a B-module, if BW = $\{\phi \in B, f \in W\} \subset W$.

We recall that a locally convex space E has the approximation property if the identity map e on E can be approximated, uniformly on every totally bounded set in E, by continuous linear maps of finite rank. This is equivalent to say that E' \oplus E is dense in $\mathcal{Z}_{\mathbf{c}}(\mathsf{E})$, the space $\mathcal{Z}(\mathsf{E})$ with the topology of uniform convergence on totally bounded sets of E. Let $\mathsf{cs}(\mathsf{E})$ be the set of all continuous seminorms on E. For each seminorm p E $\mathsf{cs}(\mathsf{E})$, let E_{p} denote the

space E seminormed by p. If, for each p E cs(E), the space E_p has the approximation property, then E has the approximation property.

THEOREM 1. Suppose that, for each x E X, the space F_X equipped with the topology defined by the family of seminorms $\{v(x); v \in V\}$ has the approximation property. Let B \subset $C_b(X ; \mathbb{K})$ be a self-adjoint and separating subalgebra. Then any Nachbin space LV_∞ which is a B-module has the approximation property.

The idea of the proof is to represent the space \mathcal{L} (W), where W = LV $_{\infty}$, as a Nachbin space of cross-sections over X, each fiber being \mathcal{L} (W; $F_{\rm X}$), and then apply the solution of the Bernstein-Nachbin approximation problem in the separating and self-adjoint bounded case. Before proving theorem 1 let us state some corollaries.

COROLLARY 1. Let X be a Hausdorff space, and for each $x \in X$ let F_x be a normed space with the approximation property. Let $B \subset C_b(X;K)$ be a self-adjoint and separating subalgebra.

Let L be a vector space of cross-sections pertaining to (X; $(F_x)_{x \in X}$) such that

- (1) for every $f \in L$, the map $x \longmapsto ||f(x)||$ is upper semicontinuous and null at infinity;
 - (2) L is a B-module;
 - (3) $L(x) = F_x$ for each $x \in X$.

Then L equipped with norm $||f|| = \sup \{ ||f(x)|| : x \in X \}$ has the approximation property.

PROOF. Consider the weight v on X defined by v(x) = norm of $F_{\rm X}$, for each x E X. Then ${\rm LV}_{\infty}$ is just L equipped with the norm

 $||f|| = \sup \{||f(x)|| ; x \in X\}.$

REMARK. From Corollary 1 it follows that all "continuous sums", in the sense of Godement [6] or [7], of Banach spaces with the approximation property have the approximation property, if the "base space" X is compact and if such a "continuous sum" is a $C_b(X; \mathbb{K})$ -module. In particular, all "continuous sums" of Hilbert spaces and of C*-algebras, in the sense of Dixmier and Douady [3] have the approximation property, if X is compact. Indeed, a "continuous sum" in the sense of [3] is a $C(X; \mathbb{K})$ -module.

COROLLARY 2. Let X be a Hausdorff space such that $C_b(X; \mathbb{K})$ is separating; let V be a directed set of real-valued, non-negative, upper semicontinuous functions on X; and let E be a locally convex space with the approximation property. Then $CV_\infty(X; E)$ has the approximation property.

PROOF. By definition, $CV_{\infty}(X;E) = \{f \in C(X;E); v \text{ f vanishes at infinity, for all } v \in V\}$, equipped with the topology defined by the family of seminorms

$$|| f ||_{v,p} = \sup\{v(x) p(f(x)) ; x \in X\}$$

where v E V and p E cs(E).

Let L_V denote $CV_\infty(X ; E)$ equipped with the topology $d\underline{e}$ fined by the above seminorms when $v \in V$ is kept fixed. Then, for each $x \in X$, either $L_V(x) = 0$ or $L_V(x) = E$ equipped with the topology defined by the seminorms $\{v(x)p ; p \in cs(E)\}$. Hence in both cases, $L_V(x)$ has the approximation property. It remains to notice that all Nachbin spaces are $C_b(X ; K)$ -modules. Therefore L_V has the approximation property. Since $v \in V$ was arbitrary, $CV_\infty(X ; E)$ has the approximation property.

COROLLARY 3. Let X and E be as in Corollary 2. Then

- (a) C(X ; E) with the compact-open topology has the approximation property.
- (b) $C_0(X ; E)$ with the uniform topology has the approximation property.

REMARK. In (a) above, it is sufficient to assume that C(X ; IK) is separating.

COROLLARY 4. (Fontenot [4]) Let X be a locally compact Hausdorff space, and let E be a locally convex space with the approximation property. Then $C_b(X;E)$ with the strict topology β has the approximation property.

PROOF. Apply Corollary 2, with $V = \{v \in C_0(X ; \mathbb{R}) ; v \ge 0\}$.

COROLLARY 5. All Nachbin spaces of continuous scalar-valued functions have the approximation property.

PROOF. In Corollary 2, take E = IK.

§3. PROOF OF THEOREM 1

Let $W = LV_m$ and let $A \subset W$ be a totally bounded set.

Let $v_0 \in V$ and $\epsilon > 0$ be given.

For each T $\in \mathcal{L}(W)$ consider the map

$$\epsilon_{x}$$
 o T : W \longrightarrow F_x

for x E X, where $\epsilon_{\rm X}$: W ——> $F_{\rm X}$ is the evaluation map, i.e., $\epsilon_{\rm X}$ (f) = f(x), for all f E W.

STEP 1. ϵ_{x} o T ϵ \mathcal{L} (W ; F_{x}).

PROOF. Just notice that $\epsilon_{\mathbf{x}} \in \mathcal{L}(\mathbf{W}\ ;\ \mathbf{F}_{\mathbf{x}})$, since

$$v(x) [f(x)] \le ||f||_v$$
, for any $v \in V$.

For each T E \mathscr{L} (W), consider the cross-section $\hat{T} = (\epsilon_X \circ T)_{X \in X}; \text{ and for each } v \in V \text{ consider the weight } \hat{v} \text{ on } X$ defined by

$$\hat{\mathbf{v}}(\mathbf{x})[\mathbf{U}(\mathbf{x})] = \sup\{\mathbf{v}(\mathbf{x})[(\mathbf{U}(\mathbf{x}))(\mathbf{f})]; \mathbf{f} \in \mathbf{A}\}$$

for every $U(x) \in \mathcal{L}(W ; F_x)$. Then

$$\hat{\mathbf{v}}(\mathbf{x}) \begin{bmatrix} \hat{\mathbf{T}}(\mathbf{x}) \end{bmatrix} = \hat{\mathbf{v}}(\mathbf{x}) \begin{bmatrix} \boldsymbol{\epsilon}_{\mathbf{x}} & \mathbf{0} & \mathbf{T} \end{bmatrix} = \sup\{\mathbf{v}(\mathbf{x}) \begin{bmatrix} (\mathbf{T} & \mathbf{f}) & (\mathbf{x}) \end{bmatrix} ; \mathbf{f} \in \mathbf{A}\}$$
 for any $\mathbf{T} \in \mathcal{L}(\mathbf{W})$.

STEP 2. The map $x \mapsto \hat{v}(x)[\hat{T}(x)]$ is upper semicontinuous and vanishes at infinity on X, for each $T \in \mathcal{L}(W)$.

PROOF. Let $x_0 \in X$ and assume

$$\hat{v}(x_0)[\hat{T}(x_0)] < h$$
.

Choose h" and h' such that

(1)
$$\hat{\mathbf{v}}(\mathbf{x}_0)[\hat{\mathbf{T}}(\mathbf{x}_0)] < h' < h'' < h.$$

Let $\delta=2(h"-h')$. Then $\delta>0$. Since T(A) is totally bounded, there exist f_1,f_2,\ldots,f_m E A such that, given $f\in A$, there is i E $\{1,2,\ldots,m\}$ such that

(2)
$$|| T f - T f_i ||_{V} < \delta/4$$

Since $x \mapsto v(x)[(T f_i)(x)]$ is upper semicontinuous , there are V_1, V_2, \ldots, V_m neighborhoods of x_0 such that

(3)
$$v(x)[(T f_i)(x)] < v(x_0)[(T f_i)(x_0)] + \delta/4$$

for all $x \in V_i$ (i = 1,2,...,m).

Let $U = V_1 \cap V_2 \cap \dots \cap V_m$. Then U is a neighborhood of x_0 in X. Let $x \in U$ and let $f \in A$. Choose $i \in \{1,2,\dots,m\}$ such that (2) is true. Then

$$v(x)[(T f)(x)] \leq v(x)[(T f)(x) - (T f_{i})(x)] + v(x)[(T f_{i})(x)]$$

$$< ||T f - T f_{i}||_{V} + v(x_{o})[(T f_{i})(x_{o})] + \delta/4$$

$$< \delta/2 + v(x_{o})[(T f_{i})(x_{o})]$$

$$= h'' - h' + v(x_{o})[(T f_{i})(x_{o})].$$

On the other hand, by (1), we have

$$v(x_0)[(T f_i)(x_0)] \leq \hat{v}(x_0)[\hat{T}(x_0)] < h'.$$

Hence v(x)[(T f)(x)] < h" for all $f \in A$, and $x \in U$.

Therefore $\hat{v}(x)[\hat{T}(x)] \leq h'' < h$, for all $x \in U$.

Let us now prove that the mapping $x \longmapsto \hat{v}(x)[T(x)]$ vanishes at infinity.

Let $\delta > 0$ be given and define

$$K_{\delta} = \{x \in X; \hat{v}(x)[\hat{T}(x)] \geq \delta\}.$$

Since $K_{\delta}=\emptyset$, if $\sup\{||T\ f||_V$; f $\in A\}<\delta$, we may assume $\sup\{||T\ f||_V$; f $\in A\}>\delta$.

Since T(A) is totally bounded, there are f_1,\ldots,f_m E A such that, given f E A, there is i E $\{1,\ldots,m\}$ such that

(4)
$$|| T f - T f_{i} ||_{V} < \delta/4$$
.

Let
$$K = \bigcup_{i=1}^{m} \{t \in X ; v(t)[(T f_i)(t)] \geq \delta/2\}.$$

Then K is compact, since each of the functions $x \;\longmapsto\; v(x)\big[\;(T\;f_{\dot{1}})\;(x)\;\big]\;\; vanishes\;\; at\;\; infinity.\;\; Let\;\; now\;\; x\;\; \in \; K_{\dot{0}} \qquad and \\ choose\;\; f\;\; \in \; A \;\; such\;\; that$

(5)
$$v(x)[(T f)(x)] > \frac{3\delta}{4}$$
.

Choose f E A satisfying (4). Then

(6)
$$v(x)[(T f)(x)] < v(x)[(T fi)(x)] + \delta/4$$
.

Therefore $\delta/2 < v(x)[(T f_i)(x)]$ and so $x \in K$, i.e., $K_{\delta} \subset K$. Since K_{δ} is closed, this ends the proof.

The above two steps show that the image $\mathcal{L} = \{ \mathbf{T} : \mathbf{T} \in \mathcal{L}(\mathbf{W}) \} \text{ of } \mathcal{L}(\mathbf{W}) \text{ under the map } \mathbf{T} \longmapsto \mathbf{T} \text{ is a Nachbin space } \mathcal{L}\mathcal{V}_{\infty} \text{ of cross sections over X, pertaining to the vector fibration } (\mathbf{X} : (\mathcal{L}(\mathbf{W} : \mathbf{F}_{\mathbf{X}}))_{\mathbf{X} \in \mathbf{X}}), \text{ if we take as family } \mathcal{V} \text{ of weights the family } \mathcal{V} = \{ \hat{\mathbf{v}} : \mathbf{v} \in \mathbf{V} \}$

STEP 3. For every T $\in \mathcal{L}(W)$,

$$\sup_{f \in A} ||T f||_{V} \leq \sup_{x \in X} \hat{v}(x) [\hat{T} (x)].$$

PROOF. Let f & A. Then

$$||T f||_{V} = \sup_{x \in X} v(x)[(T f)(x)]$$

$$= \sup_{\mathbf{x} \in \mathbf{X}} \mathbf{v}(\mathbf{x}) \left[\left(\varepsilon_{\mathbf{x}} \circ \mathbf{T} \right) \left(\mathbf{f} \right) \right]$$

$$= \sup_{\mathbf{x} \in \mathbf{X}} \hat{\mathbf{v}}(\mathbf{x}) \left[\hat{\mathbf{T}}(\mathbf{x}) \right] = \left| \left| \hat{\mathbf{T}} \right| \right|_{\hat{\mathbf{V}}} .$$

Let now $\mathcal{F} = \{\hat{\mathbf{T}} : \mathbf{T} \in \mathbf{W}' \otimes \mathbf{W}\}.$

Our aim is to prove that we can find T $\textsc{E}\ \textsc{W}^{\mbox{!`}} \otimes \textsc{W}$ such that

$$\sup_{f \in A} ||T f - f||_{V_0} < \epsilon$$

Hence, by Step 3, it is enough to prove that $||\hat{\mathbf{T}} - \hat{\mathbf{I}}||_{\hat{\mathbf{V}}_0} < \epsilon, \text{ where } \hat{\mathbf{I}} = (\epsilon_{\mathbf{X}})_{\mathbf{X} \in \mathbf{X}}.$

By the bounded case of the Bernstein-Nachbin approximation problem (Theorem 11, [8], pg. 314) it is enough to prove that

STEP 4. I is a B-module.

STEP 5. For each $x \in X$, f(x) is dense in $L(W ; F_x)$, equipped with the topology defined by the seminorms $\{\hat{v}(x) ; v \in V\}$.

PROOF. To prove that ${\mathcal F}$ is a B-module, it is enough to prove that

$$(7) \qquad (M_{\phi} \circ T)^{\hat{}} = \phi \widehat{T}$$

for all T \in \mathcal{F} , i.e., for all T \in W' \otimes W and for all φ \in B; and M_ φ : W \to W is defined by M_ φ (f) = φ f , for all f \in W.

Now to prove (7), one has to prove that

(8)
$$(M_{\phi} \circ T)^{\hat{}} (x) = (\phi T)(x)$$

for all x E X. However,

$$(M_{\varphi} \circ T)^{\hat{}}(x) = \varepsilon_{x} \circ (M_{\varphi} \circ T)$$
, and
$$(\varphi \hat{T})(x) = \varphi(x) \hat{T}(x)$$
$$= \varphi(x) (\varepsilon_{x} \circ T).$$

And, for all f & W one has

$$\begin{bmatrix} \varepsilon_{_{\mathbf{X}}} \circ & (M_{_{\boldsymbol{\varphi}}} \circ \mathbf{T}) \end{bmatrix} (\mathbf{f}) = \varepsilon_{_{\mathbf{X}}} ((M_{_{\boldsymbol{\varphi}}} \circ \mathbf{T}) (\mathbf{f}))$$

$$= \varepsilon_{_{\mathbf{X}}} (\boldsymbol{\varphi} (\mathbf{T} \mathbf{f}))$$

$$= \boldsymbol{\varphi} (\mathbf{x}) (\mathbf{T} \mathbf{f}) (\mathbf{x})$$

$$= \boldsymbol{\varphi} (\mathbf{x}) (\varepsilon_{_{\mathbf{X}}} \circ \mathbf{T}) (\mathbf{f}).$$

This ends the proof of step 4.

To prove step 5, we first notice that, since each F_X equipped with the topology defined by $\{v(x) : v \in V\}$ has the approximation property, then $W' \otimes F_X$ is dense in $\mathcal{L}_C(W : F_X)$, a fortiori in $\mathcal{L}(W : F_X)$ with the topology of the seminorms $\{\hat{v}(x) : v \in V\}$.

Hence, all we have to prove is that $\mathcal{F}(x)$ contains $W'\otimes F_x$, for each $x\in X$.

Let then T E W' \otimes F be a continuous linear operator of finite rank, say

$$T = \sum_{i=1}^{n} \phi_{i} \otimes v_{i}$$

where $\phi_i \in W'$ and $v_i \in F_X$. Since $W(x) = F_X$, choose $f_i \in W$ such that

$$f_{i}(x) = v_{i}$$

for i = 1, 2, ..., n.

Define $U = \sum_{i=1}^{n} \phi_i \otimes f_i$.

Then UEW' \otimes W; so $\hat{\mathbf{U}}$ E \mathcal{F} . Now

$$\hat{\mathbf{U}}(\mathbf{x}) = \boldsymbol{\varepsilon}_{\mathbf{x}} \circ (\boldsymbol{\Sigma}_{\mathbf{i}=1}^{\mathbf{n}} \boldsymbol{\phi}_{\mathbf{i}} \otimes \mathbf{f}_{\mathbf{i}})$$

and therefore

$$\hat{\mathbf{U}}(\mathbf{x})$$
 (f) = $\sum_{i=1}^{n} \phi_{i}$ (f) $f_{i}(\mathbf{x}) = \sum_{i=1}^{n} \phi_{i}$ (f) $v_{i} = \mathbf{T}$ (f)

for all f E W.

REFERENCES

- [1] Bierstedt, K-D., Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. reine angew. Math. 259 (1973), 186-210.
- [2] Bierstedt, K-D., The approximation property for weighted function spaces, Bonner Math. Schriften 81 (1975), 3-25.
- [3] Dixmier, J., and A. Douady, Champs continus d'espaces hilbertiens et de C*-algèbres, Bull. Soc. Math. France 91 (1963), 227-284.
- [4] Fontenot, R.A., Strict topologies for vector-valued functions, Can. J. Math. <u>26</u> (1974), 841-853.
- [5] Gierz, G., Representation of spaces of compact operators and applications to the approximation property, Preprint Nr. 335, Techn. Hochschule Darmstadt, Feb. 1977.

- [6] Godement, R., Théorie générale des sommes continues d'espaces de Banach, C.R. Acad. Sci. Paris 228 (1949), 1321-1323.
- [7] Godement, R., Sur la théorie des répresentations unitaires, Ann. of Math. 53 (1951), 68-124.
- [8] Nachbin, L., S. Machado, and J. B. Prolla, Weighted approximation, vector fibrations and algebras of operators, J. Math. pures et appl. 50 (1971), 299-323.

JOÃO BOSCO PROLLA
Instituto de Matemática
Universidade Estadual de Campinas
Caixa Postal 1170
13100 Campinas, SP, Brasil