O APRENDIZADO DA ESTATÍSTICA NO ENSINO MÉDIO: A ESTATÍSTICA NÃO-PARAMÉTRICA COMO FERRAMENTA – O TESTE DOS SINAIS.

Antonio Carlos Fonseca Pontes - acfpontes@bol.com.br Universidade Federal do Acre - Doutorando na ESALQ/USP

RESUMO

A introdução do ensino de Estatística dentro da reformulação no Ensino médio trouxe para a sala de aula temas antes restritos às discussões acadêmicas, tendo como objetivo fazer com que o aluno tenha capacidade, como ser pensante, de discutir a realidade à sua volta por intermédio de números, tabelas e gráficos. Apesar deste passo em direção à formação do cidadão ter sido um avanço, ainda é insuficiente para a capacitação plena do sujeito na compreensão de sua realidade já que falta a ele a discussão e manipulação de ferramentas que possam ser utilizadas na tomada de decisões baseadas em probabilidades e incertezas. Tais ferramentas, entretanto, baseadas especialmente na distribuição normal ou de Gauss e na distribuição t de Student, são impossíveis de serem ensinadas e apreendidas em sua totalidade com o conhecimento matemático à disposição dos alunos neste nível. A utilização de tabelas bem como a manipulação de fórmulas incompreensíveis aos alunos poderia então inverter o quadro, fazendo com que o aprendizado transformasse meramente em algoritmos "para facilitar o uso de tabelas". Assim, as tabelas da distribuição normal e da distribuição t de Student poderiam vir a ser nos dias de hoje o que foram as tabelas de logaritmos a algumas décadas. Neste contexto, a estatística não-paramétrica, baseada na permutação adequada dos dados, pode ser uma ferramenta valiosa para o aprendizado de testes que sirvam para a tomada de decisões, além de ser compreensível dentro do nível de conhecimento matemático do aluno quando o tamanho da amostra é pequeno. O objetivo deste trabalho é mostrar como a estatística não-paramétrica pode ser utilizada no ensino médio, como ferramenta no aprendizado de tomada de decisões em testes de hipóteses simples utilizando o Teste dos Sinais, bem como mostrar a funcionalidade da aplicação de tal teste em situações cotidianas e a sua ligação com a distribuição binomial.

1. INTRODUÇÃO

Os testes não-paramétricos, pela sua simplicidade, são ideais para o ensino de conceitos matemáticos, em especial a análise combinatória. Os princípios aditivo e multiplicativo, permutações, arranjos, combinações são ferramentas para a utilização da estatística não-paramétrica e esta, por sua vez, pode tornar-se uma aplicação destes conceitos matemáticos na vida real. As aplicações da análise combinatória, feitas com jogos, cartas, dados, etc., podem ser lúdicas, mas tem pouco a ver com a vida cotidiana e não podem ser as únicas. A combinação de aplicações lúdicas com aplicações práticas, advindas de testes que podem e são realizados cotidianamente por pesquisadores em áreas diversas, tais como Educação, Medicina, Agronomia, Odontologia, Ciências Sociais, dentre outras, deve ser buscada e é facilmente alcançável com a introdução dos métodos não-paramétricos.

Dentre os testes não-paramétricos, um dos mais simples e de grande utilização é o Teste dos Sinais, que, de acordo com Hollander & Wolfe (1999), já era utilizado no início do século XVIII. Outros testes, tais como o de Wilcoxon-Mann-Whitney, Kruskal-Wallis e Friedman, podem também ser aplicados em sala de aula, mas exigem um pouco mais de elaboração e detalhamento. Detalhes desses testes podem ser encontrados em Pontes (2000). O teste dos sinais tem por objetivo a comparação de dados obtidos em dois estágios (antes e depois) ou ainda testes comparativos entre elementos com características semelhantes.

Nas comparações entre dados obtidos em dois estágios, denominado teste "antes e depois", *n* indivíduos são escolhidos para testar um determinado tratamento e as medidas são feitas antes e depois. O tratamento aqui referido pode ser uma nova metodologia de ensino, um novo remédio a ser testado, o uso ou não de herbicidas em plantas, dentre outros exemplos. No caso de testes comparativos entre elementos semelhantes, podemos estar interessados em testar a eficiência de uma determinada metodologia comparando pessoas que se assemelham antes da sua aplicação. Por exemplo, pode-se comparar o efeito de uma determinada forma de abordagem de um assunto para verificar se existe diferença entre a absorção entre os alunos, separando-os em pares que têm desempenhos semelhantes ou ainda, em testes com animais utiliza-se pares provenientes de uma mesma ninhada.

2. METODOLOGIA

Nas duas situações abordadas, "antes e depois" e testes comparativos, são feitas medidas (antes e depois ou nos dois tratamentos, separadamente) e calculadas as diferenças entre os resultados, verificando-se os sinais destas diferenças. Para cada par de elementos, dois resultados são possíveis: sinais positivos e sinais negativos. Quando ocorrem empates, ou seja, os

resultados de um e de outro tratamento são iguais, em geral a abordagem utilizada é a de eliminação do dado empatado quando este não influenciar no resultado. Considerando-se assim os n pares (não empatados), pelo princípio da multiplicação tem-se $2 \times 2 \times ... \times 2 = 2^n$ resultados possíveis.

Considerando o resultado do experimento realizado, o método dar respostas às seguintes perguntas:

- 1. Qual a chance deste resultado ter ocorrido casualmente?
- 2. Qual a chance da ocorrência casual de um resultado igual ou mais adverso aos propósitos da pesquisa?

Ambas as perguntas podem ser respondidas com o auxílio da análise combinatória, ou seja, a probabilidade ou chance de ocorrência de cada uma das situações (eventos) pode ser obtida mediante o cálculo de combinações referentes a cada uma delas, que serão divididas pelo número total de eventos possíveis, ou seja, 2^n .

Supondo que os processos da análise combinatória já tenham sido desenvolvidos em sala de aula, a situação nos remete a uma simples aplicação de conceitos discutidos anteriormente.

3. EXEMPLOS DE APLICAÇÃO

3.1. Siegel (1977) apresenta um estudo referente ao efeito da ausência do pai no desenvolvimento das crianças. Dezessete casais foram entrevistados, pais e mães separadamente, e foi verificado o grau de discernimento quanto à disciplina paterna após o retorno dos pais ao lar, após uma grande ausência. Buscou-se então verificar se havia ou não diferença entre os cônjuges. Apesar de serem esperadas diferenças favoráveis à mãe, tendo em vista a ausência prolongada dos pais, considerou-se como hipótese inicial (nula) a de não diferença entre os pais. Além disso, três casais foram eliminados do estudo, tendo em vista que o pai e a mãe apresentaram graus de discernimento considerados iguais. Assim, os resultados referentes aos 14 casais restantes, as diferenças no grau de discernimento (D_i) e o sinal destas diferenças, representados por I se é positivo e por 0 se este sinal é negativo, são mostrados na tabela 1.

Tabela 1. Grau de discernimento quanto à disciplina paterna para 14 casais (Siegel, 1956)

Casais	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
g.d. mãe	4	4	5	5	2	5	1	5	5	5	4	5	5	5	
g.d. pai	2	3	3	3	3	3	2	3	2	2	5	2	3	1	
Diferença (D_i)	2	1	2	2	-1	2	-1	2	3	3	-1	3	2	4	
Direção do Sinal (A_i)	1	1	1	1	0	1	0	1	1	1	0	1	1	1	11

Verifica-se que para 11 casais o grau de discernimento da mãe é superior ao do pai, ou seja, existe uma forte evidência de que a suspeita dos psicólogos era correta em relação ao discernimento da autoridade paterna após o retorno ao lar. Como existem 14 casais (pares de dados), o número de casos possíveis é igual a 2^{14} ou seja, 16~384 e este é o denominador a ser utilizado para o cálculo da probabilidade desejada.

Temos então que procurar saber qual a chance de ocorrência de um resultado igual ou mais favorável às mães (ou adverso aos pais), ou seja, qual a chance do resultado ser maior que 11, ou ainda, qual o número de ocorrências em que o número de *uns* é igual a 11 ou a 12 ou a 13 ou a 14. Este número é a soma das combinações de 14 elementos a cada um dos resultados citados, ou seja, é dado por

$$C_{14}^{11} + C_{14}^{12} + C_{14}^{13} + C_{14}^{13} + C_{14}^{14} = 364 + 91 + 14 + 1 = 470$$

Assim, a probabilidade de ocorrência de um resultado igual ou mais extremo do que foi obtido com os dados é igual a

$$P(A_i \ge 11) = 470/16384 = 0.029$$

Portanto, existe uma probabilidade pequena de que o resultado obtido tenha sido por mero acaso e conclui-se que o discernimento das mães em relação à autoridade paterna, neste caso, é maior que o dos pais.

Por outro lado, caso pensássemos de forma reversa, ou seja, qual a probabilidade de resultados nulos menores ou iguais a *3* obteríamos o mesmo resultado devido à igualdade dos valores correspondentes dos coeficientes do binômio de Newton, ou seja,

$$C_{14}^{11} = C_{14}^{3}$$
; $C_{14}^{12} = C_{14}^{2}$; $C_{14}^{13} = C_{14}^{1}$; $C_{14}^{14} = C_{14}^{0}$

Assim, além da utilização dos coeficientes binomiais, algumas propriedades podem ser mostradas e utilizadas em conjunto com a técnica estatística.

3.2. Campos (1983) apresenta um exemplo interessante de aplicação de uma adaptação do teste do sinal, denominado teste de Cox-Stuart para tendências, visando verificar se houve uma melhoria na distribuição de verbas ao setor educacional numa determinada cidade, utilizando para isto o percentual do orçamento do município aplicado ao setor nos últimos 17 anos, cujos dados são apresentados na Tabela 2.

Tabela 2. Percentual do orçamento do município X aplicado no Setor de Educação de 1965 a 81.

anos	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81
i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
%	16,4	17,3	18,6	15,6	18,4	21,6	18,4	22,3	23,0	21,4	19,3	17,4	22,0	21,6	25,4	24,2	26,2

Para fazer comparações pareadas com um número ímpar de dados, é necessário que um deles seja descartado. Em geral, descarta-se o dado central. Neste caso, o dado a ser descartado é o nono e então são comparados primeiro com o décimo, o segundo com o décimo primeiro, e assim por diante, até o oitavo com o décimo sétimo.

Assim, uma nova tabela pode ser obtida, com os valores a serem comparados, suas diferenças (D_i) e o valor A_i que é igual a I se a diferença é positiva e 0 se a diferença é negativa.

X_i	X_{9+i}	D_{i}	A_{i}
16,4	21,4	5,0	1
17,3	19,3	2,0	1
18,6	17,4	-1,2	0
15,6	22,0	6,4	1
18,4	21,6	3,2	1
21,6	25,4	3,8	1
18,4	24,2	5,8	1
22,3	26,2	3,9	1
			7

Tabela 3. Percentuais aplicados e suas diferenças

Qual seria a probabilidade (chance) deste resultado ocorrer apenas por acaso:

• Como temos oito pares, pelo princípio da multiplicação existem $2^8 = 256$ possibilidades de ocorrência de zeros e uns. Além disso, o número de ocorrências onde tem-se 7 uns e apenas 1 zero é dada pela combinação de 8, 1 a 1, ou seja, $C_8^{I} = 8$. Assim, um resultado deste tipo ocorre com probabilidade igual a

$$P(ocorr\hat{e}ncia\ de\ A_i = 7) = 8/256 = 0.03125 = 3.125\ \%$$

Qual a probabilidade de ocorrência de um resultado igual ou pior do que o apresentado?

Neste caso temos, além da ocorrência de apenas *um zero*, a possibilidade de ocorrência de *nenhum zero*, ou, equivalentemente, de que A_i seja igual a 8. Mas, este tipo de configuração só é possível de uma única forma (ou ainda, podemos calcular este valor através da combinação $C_8^0 = I$). Assim, o número de resultados em que $A_i = 7$ ou $A_i = 8$ é igual a 9, ou seja, a probabilidade de um resultado igual ou pior ao que foi obtido seria igual a

$$P(ocorr\hat{e}ncia\ de\ A_i \ge 7) = 9/256 = 0.0351562 = 3.5\%$$

Assim, verifica-se que a chance (probabilidade) de que este tipo de resultado seja obtido apenas por acaso é pequena (3,5%), ou seja, existe uma grande probabilidade de que o percentual de aplicação em educação tenha crescido nos últimos anos.

Pode-se ainda 'brincar' com os resultados, supondo outras situações, como por exemplo:

- i. o que aconteceria se, ao invés de 7 resultados favoráveis, houvessem 6, 5, etc.
- ii. discutir até que resultado seria razoável supor que houve crescimento no percentual destinado à Educação.
- iii. verificar o que aconteceria se mudassem os valores das diferenças (D_i) , mas os sinais destas (A_i) permanecessem os mesmos (implicando assim em discutir os pontos negativos e positivos do teste).

4. CONCLUSÕES

A estatística não-paramétrica pode ser utilizada no ensino médio, como ferramenta no aprendizado de tomada de decisões em testes de hipóteses simples utilizando, por exemplo, o Teste dos Sinais. A utilização de elementos da análise combinatória é clara, permitindo a aplicação dos conceitos aprendidos em situações cotidianas.

Além disso, o aprendizado de técnicas de decisão pode levar a uma reflexão a respeito de ações que são ou podem ser desenvolvidas baseadas na Estatística e sua possíveis consequências. Um estudo deste tipo permite ainda aos alunos e professores uma discussão dos possíveis erros que estão envolvidos quando se usa a Estatística como ferramenta, permitindo assim uma maior conscientização de todos, colaborando para a construção do espírito crítico no cidadão-aluno e cidadão-professor.

5. BIBLIOGRAFIA

- CAMPOS, H. Estatística experimental não-paramétrica. 4ed. FEALQ, Piracicaba, S.P., 1983.
- SIEGEL, S. **Estatística não-paramétrica** (para as ciências do comportamento). Editora McGraw-Hill do Brasil, 1977.
- HOLLANDER, M.; WOLFE, D.A. **Nonparametric Statistical Methods.** 2nd ed, John Wiley & Sons, New York, 1999.
- PONTES, A.C.F. Obtenção dos níveis de significância para os testes de Kruskal-Wallis, Friedman e comparações múltiplas não-paramétricas. Piracicaba, 2000. 140p. Dissertação (M.S.) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.