Rotated D_{n}-lattices via number fields

Grasiele C. Jorge

Federal University of São Paulo

joint work with Sueli I. R. Costa, Agnaldo J. Ferrari and Robson R.
de Araujo

Goals

To present

- families of rotated D_{n}-lattices with full diversity and
- a result on the existence of rotated D_{n}-lattices constructed via fractional ideals of $\mathcal{O}_{\mathbb{K}}$ when $d_{\mathbb{K}}$ is an odd number.

Lattices in \mathbb{R}^{n}

Let $\left\{v_{1}, \ldots, v_{m}\right\}, m \leq n$, be a set of linearly independent vectors in \mathbb{R}^{n}. The set

$$
\Lambda=\left\{\sum_{i=1}^{m} a_{i} v_{i}, \text { where } a_{i} \in \mathbb{Z}, i=1, \ldots, m\right\}
$$

is called lattice.

Lattice generated by $(1,0),(1 / 2, \sqrt{3} / 2)$

Lattices in \mathbb{R}^{n}

- Let $\left\{v_{1}, \ldots, v_{m}\right\}, m \leq n$, be a set of linearly independent vectors in \mathbb{R}^{n}. The set

$$
\Lambda=\left\{\sum_{i=1}^{m} a_{i} v_{i}, \text { where } a_{i} \in \mathbb{Z}, i=1, \ldots, m\right\}
$$

is called lattice.

- The set $\left\{v_{1}, \ldots, v_{m}\right\}$ is called a basis for Λ.
- A matrix M whose rows are these m vectors is said to be a generator matrix for Λ.
- The associated Gram matrix is $G=M M^{t}$.
- Gram matrices for a lattice Λ have the same determinant.
- The determinant of $\Lambda, \operatorname{det}(\Lambda)$, is the determinant of any

Gram matrix for Λ.

Lattice parameters

- 1- Packing density
- 2 - Diversity
- 3 - Minimum product distance

1 - Packing density

The packing density of Λ is the proportion of the space \mathbb{R}^{n} covered by the union of spheres of maximum radius $\rho=\frac{1}{2} \min \{d(x, y) ; x, y \in \Lambda, x \neq y\}$ centered at the points of Λ.

Packing density

What is the densest lattice packing in \mathbb{R}^{n} ?

Packing density

What is the densest lattice packing in \mathbb{R}^{n} ?

- The answer is known in dimensions from 1 to 8 and 24 $\mathbb{Z}, A_{2}, D_{3}, D_{4}, D_{5}, E_{6}, E_{7}, E_{8}, \Lambda_{24}$.

2 - Diversity

Given a lattice $\Lambda \subseteq \mathbb{R}^{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \Lambda$.

- The diversity of x is the number of $x_{i}^{*} s$ nonzero.
- The diversity of Λ is $\operatorname{div}(\Lambda)=\min \{\operatorname{div}(x) ; x \in \Lambda, x \neq 0\}$.
- A full diversity lattice is a lattice such that $\operatorname{div}(\Lambda)=n$.

3 - Minimum product distance

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full diversity lattice and $x \in \Lambda$.

- The product distance of x is $d_{p}(x)=\prod_{i=1}^{n}\left|x_{i}\right|$.
- The minimum product distance of Λ is

$$
d_{p, \min }(\Lambda)=\inf \left\{d_{p}(x) \mid x \in \Lambda, x \neq 0\right\} .
$$

Signal constellations having structure of lattices can be used for signal transmission over both Gaussian and Rayleigh fading channels.

- Gaussian channel \Longrightarrow high packing density.
- Rayleigh fading channel \Longrightarrow full diversity and high minimum product distance.

$$
D_{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in z^{n} ; \sum_{i=1}^{n} x_{i} \text { is even }\right\} .
$$

$$
D_{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Z}^{n} ; \sum_{i=1}^{n} x_{i} \text { is even }\right\} .
$$

- D_{n} is generated by $(-1,-1,0, \ldots, 0),(1,-1,0, \ldots, 0), \ldots$,

$$
(0,1,-1,0, \ldots, 0), \ldots,(0,0, \ldots, 1,-1)
$$

- $\operatorname{det}\left(D_{n}\right)=4$.

We want to construct full diversity rotated D_{n}-lattices and calculate their minimum product distances.

Algebraic lattices

Algebraic lattices are lattices in \mathbb{R}^{n} obtained as the image of a homomorphism applied to a free \mathbb{Z}-module contained in a number field \mathbb{K}.

This association between number fields and lattices allows to derive certain lattice parameters (diversity, minimum product distance) which are usually difficult to calculate for general lattices.

Number Fields

- Let \mathbb{K} be a number field such that $[\mathbb{K}: \mathbb{Q}]=n$ and $\mathcal{O}_{\mathbb{K}}$ its ring of integers.

Number Fields

- Let \mathbb{K} be a number field such that $[\mathbb{K}: \mathbb{Q}]=n$ and $\mathcal{O}_{\mathbb{K}}$ its ring of integers.
- There are exactly n distinct \mathbb{Q}-homomorphisms $\sigma_{i}: \mathbb{K} \longrightarrow \mathbb{C}$.

Number Fields

- Let \mathbb{K} be a number field such that $[\mathbb{K}: \mathbb{Q}]=n$ and $\mathcal{O}_{\mathbb{K}}$ its ring of integers.
- There are exactly n distinct \mathbb{Q}-homomorphisms $\sigma_{i}: \mathbb{K} \longrightarrow \mathbb{C}$.
- Let r_{1} be the number of real homomorphisms (that is, with image in \mathbb{R}), and r_{2} the number of pairs of imaginary homomorphisms. We have $n=r_{1}+2 r_{2}$.

$$
\begin{gathered}
\left\{\sigma_{1}, \cdots, \sigma_{r_{1}}, \sigma_{r_{1}+1}, \cdots, \sigma_{r_{1}+r_{2}}, \sigma_{r_{1}+r_{2}+1}, \cdots, \sigma_{r_{1}+2 r_{2}}\right\} \\
\sigma_{r_{1}+r_{2}+i}=\overline{\sigma_{r_{1}+i}} .
\end{gathered}
$$

Twisted embedding

$$
\left\{\sigma_{1}, \cdots, \sigma_{r_{1}}, \sigma_{r_{1}+1}, \cdots, \sigma_{r_{1}+r_{2}}, \sigma_{r_{1}+r_{2}+1}, \cdots, \sigma_{r_{1}+2 r_{2}}\right\}
$$

Let $\alpha \in \mathbb{K}$ such that $\alpha_{i}=\sigma_{i}(\alpha) \in \mathbb{R}$ and $\sigma_{i}(\alpha)>0$ for all $i=1, \cdots, n$. The twisted embedding is the map

$$
\begin{gathered}
\sigma_{\alpha}: \mathbb{K} \longrightarrow \mathbb{R}^{n} \\
\sigma_{\alpha}(x)=\left(\sqrt{\alpha_{1}} \sigma_{1}(x), \ldots, \sqrt{\alpha_{r_{1}}} \sigma_{r_{1}}(x), \sqrt{2 \alpha_{r_{1}+1}} \Re\left(\sigma_{r_{1}+1}(x)\right),\right. \\
\left.\sqrt{2 \alpha_{r_{1}+1}} \Im\left(\sigma_{r_{1}+1}(x)\right), \cdots, \sqrt{2 \alpha_{r_{1}+r_{2}}} \Im\left(\sigma_{r_{1}+r_{2}}(x)\right)\right)
\end{gathered}
$$

- E. Bayer-Fluckiger, Lattices and number fields, Contemporary Mathematics, vol. 241, pp. 69-84, 1999.
- E. Bayer-Fluckiger, Ideal lattices, Proceedings of the conference Number theory and Diophantine Geometry, Zurich, 1999, Cambridge Univ. Press 2002, pp. 168-184.

If $[\mathbb{K}: \mathbb{Q}]=n$ and $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z}-module with rank n with
\mathbb{Z}-basis $\left\{v_{1}, \ldots, v_{n}\right\}$, then the image $\sigma_{\alpha}(\mathcal{I})$ is a lattice in \mathbb{R}^{n} with basis $\left\{\sigma_{\alpha}\left(v_{1}\right), \ldots, \sigma_{\alpha}\left(v_{n}\right)\right\}$.

Determinant

If $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z}-module of rank n and $\Lambda=\sigma_{\alpha}(\mathcal{I})$, then

$$
\operatorname{det}(\Lambda)=N(\mathcal{I})^{2} N_{\mathbb{K} \mid \mathbb{Q}}(\alpha) d_{\mathbb{K}}
$$

- $N(\mathcal{I})=\left|\mathcal{O}_{\mathbb{K}} / \mathcal{I}\right|$,
- $N_{\mathbb{K} \mid \mathbb{Q}}(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha)$ and
- $d_{\mathbb{K}}$ is the discriminant of $\mathbb{K} \mid \mathbb{Q}$.

Diversity

The lattice $\sigma_{\alpha}(\mathcal{I})$ has diversity

- n, if \mathbb{K} is totally real $\left(r_{2}=0\right)$,
- $\frac{n}{2}$, if \mathbb{K} is totally imaginary $\left(r_{1}=0\right)$.

Minimum product distance

If \mathbb{K} is a totally real number field, then $\Lambda=\sigma_{\alpha}(\mathcal{I})$ has minimum product distance

$$
d_{p, \min }(\Lambda)=\sqrt{\frac{\operatorname{det}(\Lambda)}{d_{\mathbb{K}}}} \frac{1}{N(\mathcal{I})} \min _{0 \neq y \in \mathcal{I}}\left|N_{\mathbb{K} \mid \mathbb{Q}}(y)\right| .
$$

If \mathcal{I} is a principal ideal of $\mathcal{O}_{\mathbb{K}}$, then

$$
d_{p, \min }(\Lambda)=\sqrt{\frac{\operatorname{det}\left(\sigma_{\alpha}(\mathcal{I})\right)}{d_{\mathbb{K}}}}
$$

Cyclotomic Fields

- Let $\zeta=\zeta_{m}=e^{\frac{2 \pi i}{m}}$
- The cyclotomic field $\mathbb{Q}(\zeta)$ is a totally imaginary number field.
- The subfield $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subseteq \mathbb{Q}(\zeta)$ is a totally real number field.

Rayleigh fading channel

- Full diversity rotated \mathbb{Z}^{n}-lattices have been proposed to be used in signal transmission over Rayleigh fading channels.
- Our goal is to construct rotated D_{n}-lattices with full diversity since we want to construct lattices with a greater packing density.

Rotated \mathbb{Z}^{n}-lattices with full diversity n

Proposition

Let $\mathbb{K}=\mathbb{Q}\left(\zeta_{2^{r}}+\zeta_{2^{r}}^{-1}\right)$. If $\mathcal{I}=\mathcal{O}_{\mathbb{K}}$ and $\alpha=2+\left(\zeta_{2^{r}}+\zeta_{2^{r}}^{-1}\right)$, then the lattice $\frac{1}{\sqrt{2^{r-1}}} \sigma_{\alpha}\left(\mathcal{O}_{\mathbb{K}}\right) \subseteq \mathbb{R}^{2^{r-2}}$ is a rotated $\mathbb{Z}^{2^{r-2}}$-lattice.

- E. Bayer-Fluckiger, G. Nebe, On the Euclidean minimum of some real number fields, Journal de Théorie des Nombres de Bordeaux, vol. 17, no. 2, pp. 437-454, 2005.
- A.A. Andrade, C. Alves, T.B Carlos, Rotated lattices via the cyclotomic field $\mathbb{Q}\left(\zeta_{2 r}\right)$, International Journal of Applied Mathematics, vol. 19, no. 3, pp. 321-331, 2006.

Proposition

Let p be a prime number, $p \geq 5, \mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}{ }^{-1}\right)$. If $\mathcal{I}=\mathcal{O}_{\mathbb{K}}$ and $\alpha=2-\left(\zeta_{p}+\zeta_{p}^{-1}\right)$, then the lattice $\frac{1}{\sqrt{p}} \sigma_{\alpha}\left(\mathcal{O}_{\mathbb{K}}\right) \subseteq \mathbb{R}^{\frac{p-1}{2}}$ is a rotated $\mathbb{Z}^{\frac{p-1}{2}}$-lattice.

- E. Bayer-Fluckiger, F. Oggier, E. Viterbo, New Algebraic Constructions of Rotated \mathbb{Z}^{n}-Lattice Constellations for the Rayleigh Fading Channel, IEEE Transactions on Information Theory, vol. 50, no. 4, pp. 702-714, 2004.

Rotated D_{n}-lattices, $n=2^{r-2}, r \geq 5$

Let $\mathbb{K}=\mathbb{Q}\left(\zeta_{2^{r}}+\zeta_{2^{r}}^{-1}\right), e_{0}=1$ and $e_{i}=\zeta_{2^{r}}^{i}+\zeta_{2^{r}}^{-i}$.

Proposition

Let $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ the free \mathbb{Z}-module with \mathbb{Z}-basis
$\left\{-2 e_{0}+2 e_{1}-2 e_{2}+\cdots-2 e_{n-2}+e_{n-1},-e_{n-1}, e_{n-2}, \ldots, e_{2},-e_{1}\right\}$
and $\alpha=2+e_{1}$. The lattice $\frac{1}{\sqrt{2^{r-1}}} \sigma_{\alpha}(\mathcal{I}) \subseteq \mathbb{R}^{2^{r-2}}$ is a rotated D_{n}-lattice and $\mathcal{I}=e_{1} \mathcal{O}_{\mathbb{K}}$.

Let $\mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ and $e_{i}=\zeta_{p}^{i}+\zeta_{p}^{-i}$.

Proposition

If $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ is the \mathbb{Z}-module with \mathbb{Z}-basis

$$
\left\{-e_{1}-2 e_{2}-\cdots-2 e_{n}, e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

and $\alpha=2-e_{1}$, then the lattice $\frac{1}{\sqrt{p}} \sigma_{\alpha}(\mathcal{I})$ is a rotated D_{n}-lattice.
In this case, $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ is not an ideal of $\mathcal{O}_{\mathbb{K}}$.

If it were possible to construct these rotated D_{n}-lattices via principal ideals of $\mathcal{O}_{\mathbb{K}}$, their minimum product distances would be twice those obtained in our construction since $\min _{0 \neq y \in \mathcal{I}}\left|N_{\mathbb{K} \mid \mathbb{Q}}(y)\right|=N(\mathcal{I})$ when \mathcal{I} is a principal ideal.

$$
d_{p, \min }(\Lambda)=\sqrt{\frac{\operatorname{det}(\Lambda)}{d_{\mathbb{K}}}} \frac{1}{N(\mathcal{I})} \min _{0 \neq y \in \mathcal{I}}\left|N_{\mathbb{K} \mid \mathbb{Q}}(y)\right| .
$$

Proposition

For any totally real Galois extension $\mathbb{K} \mid \mathbb{Q}$ of degree
$n \notin\{1,2,4\}$ and odd discriminant, it is impossible to construct a rotated D_{n}-lattice via a twisted embedding applied to a fractional ideal of $\mathcal{O}_{\mathbb{K}}$.

$$
4 c^{n}=\operatorname{det}(\Lambda)=N(\mathcal{I})^{2} N_{\mathbb{K} \mid \mathbb{Q}}(\alpha) d_{\mathbb{K}}
$$

Corollary

It is impossible to construct rotated D_{3} and D_{5}-lattices via fractional ideals of any Galois extension $\mathbb{K} \subseteq \mathbb{Q}\left(\zeta_{m}+\zeta_{m}^{-1}\right)$ with m odd.

Let $e_{0}=1, e_{i}=\zeta_{2^{r}}^{i}+\zeta_{2^{r}}^{-i}$ for $i=1, \ldots, 2^{r-2}-1$ and
$b_{i}=\zeta_{p}^{i}+\zeta_{p}^{-i}$ for $i=1, \ldots, \frac{p-1}{2}$.

Proposition

Consider $\mathbb{K}=\mathbb{K}_{1} \mathbb{K}_{2}$ the compositum of \mathbb{K}_{1} and \mathbb{K}_{2} where
$\mathbb{K}_{1}=\mathbb{Q}\left(\zeta_{2 r}+\zeta_{2^{r}}^{-1}\right)$ and $\mathbb{K}_{2}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ for $r \geq 3$ and $p \geq 5$ prime. Let $n_{1}=2^{r-2}$ and $n_{2}=\frac{p-1}{2}$. If \mathcal{I} is the \mathbb{Z}-submodule of $\mathcal{O}_{\mathbb{K}}$ with \mathbb{Z}-basis $\gamma=\left\{e_{0} b_{1}, \ldots, e_{0} b_{n_{2}-1}, 2 e_{0} b_{n_{2}}, e_{1} b_{1}, \ldots, e_{1} b_{n_{2}}, \ldots\right.$, $\left.e_{n_{1}-1} b_{1}, \ldots, e_{n_{1}-1} b_{n_{2}}\right\}$, then the lattice $\left(\sqrt{2^{r-1} p}\right)^{-1} \sigma_{\alpha}(\mathcal{I}) \subseteq \mathbb{R}^{n}$, where $\alpha=\left(2-e_{1}\right)\left(2-b_{1}\right)$, is a rotated D_{n}-lattice.

Let $e_{i}=\zeta_{p_{1}}^{i}+\zeta_{p_{1}}^{-i}$ for $i=1, \ldots, n_{1}=\frac{p_{1}-1}{2}$ and $b_{i}=\zeta_{p_{2}}^{i}+\zeta_{p_{2}}^{-i}$ for $i=1, \ldots, n_{2}=\frac{p_{2}-1}{2}$.

Proposition

Let $\mathbb{K}_{1}=\mathbb{Q}\left(\zeta_{p_{1}}+\zeta_{p_{1}}^{-1}\right)$ with $p_{1} \geq 5$ and $\mathbb{K}_{2}=\mathbb{Q}\left(\zeta_{p_{2}}+\zeta_{p_{2}}^{-1}\right)$ with $p_{2} \geq 5$ and $p_{2} \neq p_{1}$. Set $\mathbb{K}=\mathbb{K}_{1} \mathbb{K}_{2}$, the compositum of \mathbb{K}_{1} and
\mathbb{K}_{2}. If \mathcal{I} is the \mathbb{Z}-submodule of $\mathcal{O}_{\mathbb{K}}$ with \mathbb{Z}-basis $\gamma_{1}=$ $\left\{e_{1} b_{1}, e_{1} b_{2}, \ldots, e_{1} b_{n_{2}-1}, e_{1} b_{n_{2}}, e_{2} b_{1}, \ldots, e_{2} b_{n_{2}}, \ldots, e_{n_{1}} b_{1}, \ldots\right.$, $\left.2 e_{n_{1}} b_{n_{2}}\right\}$, then the lattice $\left(\sqrt{p_{1} p_{2}}\right)^{-1} \sigma_{\alpha}(\mathcal{I}) \subseteq \mathbb{R}^{n}$ with $\alpha=\left(2-e_{1}\right)\left(2-b_{1}\right)$ is a rotated D_{n}-lattice.

n	p	r	$r_{\mathbf{1}}$	$p_{\mathbf{1}}$	$p_{\mathbf{2}}$	$p_{\mathbf{3}}$	$\mathbb{K}_{\mathbf{1}}$	$\mathbb{K}_{\mathbf{2}}$	$\mathbb{K}_{\mathbf{3}}$	$\mathbb{K}_{\mathbf{4}}$
3	7	-	-	-	-	-	-	0.369646	-	-
4	-	4	3	5	-	-	0.324210	-	0.281171	-
5	11	-	-	-	-	-	-	0.27097	-	-
6	13	-	3	7	-	-	-	0.24285	0.219793	-
8	17	5	4	5	-	-	0.201311	0.20472	0.182317	-
10	-	-	3	11	-	-	-	-	0.161122	-
11	23	-	-	-	-	-	-	0.17003	-	-
12	-	-	3	7	-	-	-	-	0.144401	-
14	29	-	-	-	-	-	-	0.148086	-	-
15	31	-	-	-	7	11	-	0.142402	-	0.1380198
20	41	-	4	11	-	-	-	0.121175	0.104475	-
128	257	9	-	-	-	-	0.044554	0.0450746	-	-
32768	65537	17	-	-	-	-	0.00276222	0.00276258	-	-

Table: Relative minimum product distances considering
$\mathbb{K}_{1}=\mathbb{Q}\left(\zeta_{2^{r}}+\zeta_{2^{r}}^{-1}\right), \mathbb{K}_{2}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$,
$\mathbb{K}_{3}=\mathbb{Q}\left(\zeta_{2^{\prime} 1}+\zeta_{2^{\prime} 1}^{-1}\right) \mathbb{Q}\left(\zeta_{p_{1}}+\zeta_{p_{1}}^{-1}\right)$ and $\mathbb{K}_{4}=\mathbb{Q}\left(\zeta_{p_{2}}+\zeta_{p_{2}}^{-1}\right) \mathbb{Q}\left(\zeta_{p_{3}}+\zeta_{p_{3}}^{-1}\right)$.

- Let $n>1$ be an odd number.
- Let $n>1$ be an odd number.
- Due to Dirichlet's Theorem, there exists a prime number p such that $p \equiv 1(\bmod n)$.
- Let $n>1$ be an odd number.
- Due to Dirichlet's Theorem, there exists a prime number p such that $p \equiv 1(\bmod n)$.
- The cyclotomic extension $\mathbb{Q}\left(\zeta_{p}\right)$ has cyclic Galois group, $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$, generated by σ where $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{r}$, in which r is a primitive element of the field \mathbb{Z}_{p}^{*}.
- Let $n>1$ be an odd number.
- Due to Dirichlet's Theorem, there exists a prime number p such that $p \equiv 1(\bmod n)$.
- The cyclotomic extension $\mathbb{Q}\left(\zeta_{p}\right)$ has cyclic Galois group, $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$, generated by σ where $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{r}$, in which r is a primitive element of the field \mathbb{Z}_{p}^{*}.
- Let \mathbb{K} be the fixed field of the subgroup

$$
H=\left\langle\sigma^{n}\right\rangle \subset \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)
$$

- The degree of \mathbb{K} is n.
- $\mathbb{K} \subseteq \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$.
- Consider $\alpha=\prod_{j=0}^{m-1}\left(1-\zeta_{p}^{r^{j}}\right) \in \mathbb{Q}\left(\zeta_{p}\right)$ for $m=(p-1) / 2$.
- Consider $\alpha=\prod_{j=0}^{m-1}\left(1-\zeta_{p}^{r^{j}}\right) \in \mathbb{Q}\left(\zeta_{p}\right)$ for $m=(p-1) / 2$.
- Since $r-1 \in \mathbb{Z}_{p}^{*}$, there exists an integer λ satisfying $\lambda(r-1) \equiv 1(\bmod p)$. Also, consider the element

$$
z=\zeta_{p}^{\lambda} \alpha\left(1-\zeta_{p}\right) \in \mathbb{Q}\left(\zeta_{p}\right) .
$$

- Consider $\alpha=\prod_{j=0}^{m-1}\left(1-\zeta_{p}^{r^{j}}\right) \in \mathbb{Q}\left(\zeta_{p}\right)$ for $m=(p-1) / 2$.
- Since $r-1 \in \mathbb{Z}_{p}^{*}$, there exists an integer λ satisfying $\lambda(r-1) \equiv 1(\bmod p)$. Also, consider the element

$$
z=\zeta_{p}^{\lambda} \alpha\left(1-\zeta_{p}\right) \in \mathbb{Q}\left(\zeta_{p}\right) .
$$

- Since z is an algebraic integer,

$$
x=\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{K}}(z)=\sum_{j=1}^{\frac{p-1}{n}} \sigma^{n j}(z) \in \mathcal{O}_{\mathbb{K}}
$$

Proposition

Let $\mathcal{I} \subseteq \mathcal{O}_{\mathbb{K}}$ be the free \mathbb{Z}-module with \mathbb{Z}-basis
$\left\{x, \sigma(x), \ldots, \sigma^{n-1}(x)\right\}$ and $\alpha=1 / p^{2}$. The algebraic lattice $\sigma_{\alpha}(\mathcal{I})$ is a rotated \mathbb{Z}^{n}-lattice.

- P. Elia, B.A. Sethuraman and P.V. Kumar, Perfect Space-Time Codes with Minimum and Non-Minimum Delay for Any Number of Antennas, IEEE Transactions on Information Theory, vol. 11, pp. 722-727, 2005

Proposition

Let \mathcal{J} be the \mathbb{Z}-module with \mathbb{Z}-basis

$$
\left\{x+\sigma(x), x-\sigma(x), \sigma(x)-\sigma^{2}(x), \ldots, \sigma^{n-2}(x)-\sigma^{n-1}(x)\right\}
$$

The algebraic lattice $\sigma_{\alpha}(\mathcal{J})$ is a full diversity rotated D_{n}-lattice.

Proposition

If $\sigma(x) / x \in \mathbb{Z}\left[\zeta_{p}\right]$, then the minimum product distance of $\sigma_{\alpha}(\mathcal{J}) \simeq D_{n}$ satisfies $d_{p, \min }\left(\sigma_{\alpha}(\mathcal{J})\right) \geq p^{\frac{1-n}{2}}$.

References

击 G.C. Jorge, A.J. Ferrari, S.I.R. Costa, Rotated D_{n}-lattices, Journal of Number Theory, vol. 132, pp. 2397-2406, 2012.
R. G. C. Jorge, S. I. R. Costa, On rotated D_{n}-lattices construct via totally real number fields, Archiv der Mathematik, vol. 100, pp. 323-332, 2013.
R. R. R. de Araujo, G. C. Jorge, Constructions of full diversity D_{n}-lattices for all n, Rocky Mountain Journal of Mathematics, vol. 50, pp. 1137-1150, 2020.

