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Goals

To present

families of rotated Dn-lattices with full diversity and

a result on the existence of rotated Dn-lattices constructed via

fractional ideals of OK when dK is an odd number.



Lattices in Rn

Let {v1, . . . , vm}, m ≤ n, be a set of linearly independent vectors in

Rn. The set

Λ =

{
m∑
i=1

aivi , where ai ∈ Z, i = 1, . . . ,m

}

is called lattice.
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Lattices in Rn

Let {v1, . . . , vm}, m ≤ n, be a set of linearly independent

vectors in Rn. The set

Λ =

{
m∑
i=1

aivi , where ai ∈ Z, i = 1, . . . ,m

}

is called lattice.

The set {v1, . . . , vm} is called a basis for Λ.



A matrix M whose rows are these m vectors is said to be a

generator matrix for Λ.

The associated Gram matrix is G = MMt .

Gram matrices for a lattice Λ have the same determinant.

The determinant of Λ, det(Λ), is the determinant of any

Gram matrix for Λ.



Lattice parameters

1- Packing density

2 - Diversity

3 - Minimum product distance



1 - Packing density

The packing density of Λ is the proportion of the space Rn

covered by the union of spheres of maximum radius

ρ = 1
2min{d(x , y); x , y ∈ Λ, x ̸= y} centered at the points of Λ.
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Packing density

What is the densest lattice packing in Rn?

The answer is known in dimensions from 1 to 8 and 24

Z, A2, D3, D4, D5, E6, E7, E8, Λ24.
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2 - Diversity

Given a lattice Λ ⊆ Rn and x = (x1, . . . , xn) ∈ Λ.

The diversity of x is the number of x ,i s nonzero.

The diversity of Λ is div(Λ) = min{div(x); x ∈ Λ, x ̸= 0}.

A full diversity lattice is a lattice such that div(Λ) = n.
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3 - Minimum product distance

Let Λ ⊆ Rn be a full diversity lattice and x ∈ Λ.

The product distance of x is dp(x) =
n∏

i=1

|xi |.

The minimum product distance of Λ is

dp,min(Λ) = inf {dp(x) | x ∈ Λ, x ̸= 0}.



Signal constellations having structure of lattices can be used for

signal transmission over both Gaussian and Rayleigh fading

channels.

Gaussian channel =⇒ high packing density.

Rayleigh fading channel =⇒ full diversity and high minimum

product distance.



Dn =

{
(x1, · · · , xn) ∈ Zn;

n∑
i=1

xi is even

}
.

Dn is generated by (−1,−1, 0, . . . , 0), (1,−1, 0, . . . , 0), . . . ,

(0, 1,−1, 0, . . . , 0), . . . , (0, 0, . . . , 1,−1).

det(Dn) = 4.
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(x1, · · · , xn) ∈ Zn;

n∑
i=1

xi is even

}
.
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We want to construct full diversity rotated Dn-lattices and calculate

their minimum product distances.



Algebraic lattices

Algebraic lattices are lattices in Rn obtained as the image of a

homomorphism applied to a free Z-module contained in a number

field K.

I

This association between number fields and lattices allows to derive

certain lattice parameters (diversity, minimum product distance)

which are usually difficult to calculate for general lattices.



Number Fields

Let K be a number field such that [K : Q] = n and OK its ring

of integers.

There are exactly n distinct Q-homomorphisms σi : K −→ C.

Let r1 be the number of real homomorphisms (that is, with

image in R), and r2 the number of pairs of imaginary

homomorphisms. We have n = r1 + 2r2.

{σ1, · · · , σr1 , σr1+1, · · · , σr1+r2 , σr1+r2+1, · · · , σr1+2r2}

σr1+r2+i=σr1+i .
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Twisted embedding

{σ1, · · · , σr1 , σr1+1, · · · , σr1+r2 , σr1+r2+1, · · · , σr1+2r2}

Let α ∈ K such that αi = σi (α) ∈ R and σi (α) > 0 for all

i = 1, · · · , n. The twisted embedding is the map

σα : K −→ Rn

σα(x) = (
√
α1σ1(x), . . . ,

√
αr1σr1(x),

√
2αr1+1ℜ(σr1+1(x)),√

2αr1+1ℑ(σr1+1(x)), · · · ,
√

2αr1+r2ℑ(σr1+r2(x)))



E. Bayer-Fluckiger, Lattices and number fields, Contemporary

Mathematics, vol. 241, pp. 69-84, 1999.

E. Bayer-Fluckiger, Ideal lattices, Proceedings of the

conference Number theory and Diophantine Geometry, Zurich,

1999, Cambridge Univ. Press 2002, pp. 168-184.



If [K : Q] = n and I ⊆ OK is a free Z-module with rank n with

Z-basis {v1, . . . , vn}, then the image σα(I) is a lattice in Rn with

basis {σα(v1), . . . , σα(vn)}.

I



Determinant

If I ⊆ OK is a free Z-module of rank n and Λ = σα(I), then

det(Λ) = N(I)2NK|Q(α)dK

N(I) = |OK/I|,

NK|Q(α) =
∏n

i=1 σi (α) and

dK is the discriminant of K|Q.



Diversity

The lattice σα(I) has diversity

n, if K is totally real (r2 = 0),

n
2 , if K is totally imaginary (r1 = 0).



Minimum product distance

If K is a totally real number field, then Λ = σα(I) has minimum

product distance

dp,min(Λ) =

√
det(Λ)

dK

1
N(I)

min0 ̸=y∈I |NK|Q(y)|.

If I is a principal ideal of OK, then

dp,min(Λ) =

√
det(σα(I))

dK
.



Cyclotomic Fields

Let ζ = ζm = e
2πi
m

The cyclotomic field Q(ζ) is a totally imaginary number field.

The subfield Q(ζ + ζ−1) ⊆ Q(ζ) is a totally real number field.



Rayleigh fading channel

Full diversity rotated Zn-lattices have been proposed to be

used in signal transmission over Rayleigh fading channels.

Our goal is to construct rotated Dn-lattices with full diversity

since we want to construct lattices with a greater packing

density.



Rotated Zn-lattices with full diversity n

Proposition

Let K = Q(ζ2r + ζ−1
2r ). If I = OK and α = 2 + (ζ2r + ζ−1

2r ), then

the lattice 1√
2r−1σα(OK) ⊆ R2r−2

is a rotated Z2r−2
-lattice.

E. Bayer-Fluckiger, G. Nebe, On the Euclidean minimum of

some real number fields, Journal de Théorie des Nombres de

Bordeaux, vol. 17, no. 2, pp. 437-454, 2005.

A.A. Andrade, C. Alves, T.B Carlos, Rotated lattices via the

cyclotomic field Q(ζ2r ), International Journal of Applied

Mathematics, vol. 19, no. 3, pp. 321-331, 2006.



Proposition

Let p be a prime number, p ≥ 5, K = Q(ζp + ζp
−1). If I = OK

and α = 2 − (ζp + ζ−1
p ), then the lattice 1√

pσα(OK) ⊆ R
p−1
2 is a

rotated Z
p−1
2 -lattice.

E. Bayer-Fluckiger, F. Oggier, E. Viterbo, New Algebraic

Constructions of Rotated Zn-Lattice Constellations for the

Rayleigh Fading Channel, IEEE Transactions on Information

Theory, vol. 50, no. 4, pp. 702-714, 2004.



Rotated Dn-lattices, n = 2r−2, r ≥ 5

Let K = Q(ζ2r + ζ−1
2r ), e0 = 1 and ei = ζ i2r + ζ−i

2r .

Proposition
Let I ⊆ OK the free Z-module with Z-basis

{−2e0 + 2e1 − 2e2 + · · · − 2en−2 + en−1,−en−1, en−2, . . . , e2,−e1}

and α = 2 + e1. The lattice 1√
2r−1σα(I) ⊆ R2r−2

is a rotated

Dn-lattice and I = e1OK.



Let K = Q(ζp + ζp
−1) and ei = ζ ip + ζ−i

p .

Proposition
If I ⊆ OK is the Z-module with Z-basis

{−e1 − 2e2 − · · · − 2en, e1, e2, . . . , en−1}

and α = 2 − e1, then the lattice 1√
pσα(I) is a rotated Dn-lattice.

In this case, I ⊆ OK is not an ideal of OK.



If it were possible to construct these rotated Dn-lattices via

principal ideals of OK, their minimum product distances would be

twice those obtained in our construction since

min0 ̸=y∈I |NK|Q(y)| = N(I) when I is a principal ideal.

dp,min(Λ) =

√
det(Λ)

dK

1
N(I)

min0 ̸=y∈I |NK|Q(y)|.



Proposition

For any totally real Galois extension K|Q of degree

n ̸∈ {1, 2, 4} and odd discriminant, it is impossible to construct a

rotated Dn-lattice via a twisted embedding applied to a fractional

ideal of OK.

4cn = det(Λ) = N(I)2NK|Q(α)dK



Corollary
It is impossible to construct rotated D3 and D5-lattices via

fractional ideals of any Galois extension K ⊆ Q(ζm + ζ−1
m ) with m

odd.



Let e0 = 1, ei = ζ i2r + ζ−i
2r for i = 1, . . . , 2r−2 − 1 and

bi = ζ ip + ζ−i
p for i = 1, . . . , p−1

2 .

Proposition
Consider K = K1K2 the compositum of K1 and K2 where

K1 = Q(ζ2r + ζ−1
2r ) and K2 = Q(ζp + ζ−1

p ) for r ≥ 3 and p ≥ 5

prime. Let n1 = 2r−2 and n2 = p−1
2 . If I is the Z-submodule of OK

with Z-basis γ = {e0b1, . . . , e0bn2−1, 2e0bn2 , e1b1, . . . , e1bn2 , . . . ,

en1−1b1, . . . , en1−1bn2}, then the lattice (
√

2r−1p)−1σα(I) ⊆ Rn,

where α = (2 − e1)(2 − b1), is a rotated Dn-lattice.



Let ei = ζ ip1
+ ζ−i

p1
for i = 1, . . . , n1 = p1−1

2 and bi = ζ ip2
+ ζ−i

p2
for

i = 1, . . . , n2 = p2−1
2 .

Proposition

Let K1 = Q(ζp1 + ζ−1
p1

) with p1 ≥ 5 and K2 = Q(ζp2 + ζ−1
p2

) with

p2 ≥ 5 and p2 ̸= p1. Set K = K1K2, the compositum of K1 and

K2. If I is the Z-submodule of OK with Z-basis γ1 =

{e1b1, e1b2, . . . , e1bn2−1, e1bn2 , e2b1, . . . , e2bn2 , . . . , en1b1, . . . ,

2en1bn2}, then the lattice (
√
p1p2)

−1σα(I) ⊆ Rn with

α = (2 − e1)(2 − b1) is a rotated Dn-lattice.



n p r r1 p1 p2 p3 K1 K2 K3 K4

3 7 − − − − − − 0.369646 − −

4 − 4 3 5 − − 0.324210 − 0.281171 −

5 11 − − − − − − 0.27097 − −

6 13 − 3 7 − − − 0.24285 0.219793 −

8 17 5 4 5 − − 0.201311 0.20472 0.182317 −

10 − − 3 11 − − − − 0.161122 −

11 23 − − − − − − 0.17003 − −

12 − − 3 7 − − − − 0.144401 −

14 29 − − − − − − 0.148086 − −

15 31 − − − 7 11 − 0.142402 − 0.1380198

20 41 − 4 11 − − − 0.121175 0.104475 −

128 257 9 − − − − 0.044554 0.0450746 − −

32768 65537 17 − − − − 0.00276222 0.00276258 − −

Table: Relative minimum product distances considering

K1 = Q(ζ2r + ζ−1
2r ), K2 = Q(ζp + ζ−1

p ),

K3 = Q(ζ2r1 + ζ−1
2r1 )Q(ζp1 + ζ−1

p1
) and K4 = Q(ζp2 + ζ−1

p2
)Q(ζp3 + ζ−1

p3
).



Let n > 1 be an odd number.

Due to Dirichlet’s Theorem, there exists a prime number p

such that p ≡ 1 (mod n).

The cyclotomic extension Q(ζp) has cyclic Galois group,

Gal(Q(ζp)/Q), generated by σ where σ(ζp) = ζrp, in which r

is a primitive element of the field Z∗
p.

Let K be the fixed field of the subgroup

H = ⟨σn⟩ ⊂ Gal(Q(ζp)/Q).
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Let n > 1 be an odd number.

Due to Dirichlet’s Theorem, there exists a prime number p

such that p ≡ 1 (mod n).

The cyclotomic extension Q(ζp) has cyclic Galois group,

Gal(Q(ζp)/Q), generated by σ where σ(ζp) = ζrp, in which r

is a primitive element of the field Z∗
p.

Let K be the fixed field of the subgroup

H = ⟨σn⟩ ⊂ Gal(Q(ζp)/Q).



The degree of K is n.

K ⊆ Q(ζp + ζ−1
p ).



Consider α =
m−1∏
j=0

(
1 − ζr

j

p

)
∈ Q(ζp) for m = (p − 1)/2.

Since r − 1 ∈ Z∗
p, there exists an integer λ satisfying

λ(r − 1) ≡ 1 (mod p). Also, consider the element

z = ζλpα(1 − ζp) ∈ Q(ζp).

Since z is an algebraic integer,

x = TrQ(ζp)/K(z) =

p−1
n∑

j=1

σnj(z) ∈ OK.
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Proposition
Let I ⊆ OK be the free Z-module with Z-basis

{x , σ(x), . . . , σn−1(x)} and α = 1/p2. The algebraic lattice σα(I)

is a rotated Zn-lattice.

P. Elia, B.A. Sethuraman and P.V. Kumar, Perfect

Space-Time Codes with Minimum and Non-Minimum Delay

for Any Number of Antennas, IEEE Transactions on

Information Theory, vol. 11, pp. 722-727, 2005



Proposition
Let J be the Z-module with Z-basis

{x + σ(x), x − σ(x), σ(x)− σ2(x), . . . , σn−2(x)− σn−1(x)}.

The algebraic lattice σα(J ) is a full diversity rotated Dn-lattice.



Proposition

If σ(x)/x ∈ Z[ζp], then the minimum product distance of

σα(J ) ≃ Dn satisfies dp,min(σα(J )) ≥ p
1−n
2 .
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