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Preliminaries
Definition 1 (Lattice)

An N-dimensional lattice Λ can be define as a discrete subgroup
of RN which is closed under reflection and ordinary vector
addition, i.e., ∀λ ∈ Λ, we have −λ ∈ Λ, and ∀λ1, λ2 ∈ Λ we have
λ1 + λ2 ∈ Λ.

(a) Z2 (b) A2 (c) Λ

Figure 1: Lattices in R2
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Definition 2 (Construction A [1])

Let q > 1 be an integer. Let k ,N ∈ N be integers such that k ≤ N
and let G be N × k a generator matrix of a linear code over Zq.
Construction A consists of the following steps:

1 Consider the linear code C = {x = G ⊙ y : y ∈ Zk
q}, where all

operations are over Zq.

2 “Expand” C to a lattice in ZN defined as:

ΛA(C) = {x ∈ ZN : x mod q ∈ C} = C + qZN .
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Theorem 1 (Chinese Remainder Theorem)

Let R be a commutative ring, and I1, ..., Ik be relatively prime
ideals in R. Then,

R/ ∩k
j=1 Ij

∼= (R/I1)× ...× (R/Ik).

Proposition 1 ([2])

Let p1, ..., pk be a collection of distinct primes and let
q =

∏k
j=1 pj . There exists a ring isomorphism

ϕ : Zq → Zp1 × ...× Zpk .
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Definition 3 (Construction πA [2])

Let p1, ..., pk be distinct primes. Let lj ,N be integers such that
lj ≤ N and let Gj be a generator matrix of a (N, lj)-linear code
over Zpj for j ∈ {1, ..., k}. Construction πA consists of the
following steps,

1 Define the discrete codebooks Cj = {x = Gj ⊙ u : u ∈ Zlj
pj} for

j ∈ {1, ..., k}.
2 Construct C = ϕ−1(C1, ..., Ck) where

ϕ−1 : ZN
p1 × ...× ZN

pk
→ ZN

q is a ring isomorphism.

3 Tile C to the entire RN to form ΛπA
(C) = C + qZN = ΛA.
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Example 1

Let us consider a two-level example where p1 = 3 and p2 = 2. One
has Z2/6Z2 ∼= Z2

3 × Z2
2 from the CRT we have that a ring

isomorphism can be given by

ϕ−1(c1, c2) = (4c1 + 3c2) mod 6.

where c1 ∈ Z2
3 e c2 ∈ Z2

2.
Using the steps of Construction πA we have that, we define the
codes,

C1 = {x = [2 2]Tu; u ∈ Z3} and C2 = {x = [1 0]Tu; u ∈ Z2}.
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Figure 2: On the left, construction of C (step 2.) and on the right, tiling
of C to obtain ΛA(C) = C + 6Z2 (step 3.).



Quaternion Algebras

Definition 4 (Quaternion algebra)

Let F be a field with characteristics different from 2. We call
quaternion algebra over F any (associative) algebra over F
admitting a basis of four elements, denoted 1, i, j, k, which satisfy
the following relations: 1 is the neutral element for multiplication,
and

i2 = a · 1, j2 = 1 · b ij = k = −ji

for some non-zero elements a, b ∈ F. We can denote this algebra F

by

(
a, b

F

)
or in short by (a, b)F. Element 1 is usually omitted in

products; in particular, we denote x · 1 = x for all x ∈ F, which

leads to identifying F with a subfield of

(
a, b

F

)
.



Quaternion Algebras

The conjugate of a quaternion x = x0 + x1i+ x2j+ x3k
∈ (a, b)F is the quaternion x = x0 − x1i− x2j− x3k ∈ (a, b)F.

We also have that for all x ∈ (a, b)F, Tr(x) = x + x and
N(x) = x20 − ax21 − bx22 + abx23 which we call respectively,
trace and norm of x , are elements of F.
The typical example of a division algebra over quaternions is
due to Hamilton (1843):

H = (−1,−1)R = {a0 + a1i+ a2j+ a3k : (a0, a1, a2, a3) ∈ R}.



Quaternion Algebras

Definition 5 (Order)

An order O ⊆ B is a finitely generated submodule that is also a
subring of B.

Proposition 2 ([3], p.245)

Let O and O ′ be two orders of B = H. If O ⊇ O ′, then discrd(O)
divides discrd(O ′). Moreover, if O ⊇ O ′ and
discrd(O) = discrd(O ′), then O = O ′.

Definition 6 (Maximal Order)

An order O ⊆ B is maximal if it is not properly contained in
another order.
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Example 2

Let B = (−1,−1)R = H, and let

L = {a11 + a2i+ a3j+ a4k|a1, ..., a4 ∈ Z},

where (1, i, j, k) is the standard basis of B.We have that it is an
order of B with discrd(L) = 4, but is not a maximal order. This is
called the Lipschitz order. We can add to L the element
ε = 1

2(1 + i+ j+ k) and verify that

H = {b1 + b2i+ b3j+ b4ε|b1, ..., b4 ∈ Z}

is an order with reduced discriminant discrd(H) = 2, and it is a
maximal order over H. The order H is called the Hurwitz order
first described in [4] (1919).



Hurwitz Quaternions

Lemma 1 (Hurwitz order is left-norm Euclidean, [3])

For all α, β ∈ H with β ̸= 0, there exists µ, ρ ∈ H such that,

α = µβ + ρ

and N(ρ) < N(β).

Proposition 3 ([3])

Every left ideal a ⊂ H is left-principal, i.e., there exists β ∈ a such
that a = βH.

Definition 7 (Left divides)

Let α, β ∈ H. We say β left divides α (or α is a left multiple of β)
and write β|Lα if there exists γ ∈ H such that α = γβ.



Hurwitz quaternions

Proposition 4 (Bézout’s theorem, [3])

For all α, β ∈ H not both zero, there exists µ, γ ∈ H such that
µα+ γβ = δ where δ is a left greatest common divisor of α, β.

Proposition 5 ([3])

Let p ∈ Z be prime. Then there exists π ∈ H such that N(π) = p.

Definition 8 (Prime ideal)

A two-sided ideal P ⊆ O is said to be a prime ideal if P ̸= O and,
for ideals U,B ⊆ O, we have, U ·B ⊆ P ⇒ U ⊆ P or B ⊆ P.



Chinese Remainder Theorem
Theorem 2 ([5])

Let O be a maximal order, and let P1, ...,Pn ⊆ O be distinct
prime (two-sided) ideals. Let P =

∏n
i=1P

ai
i , ai ∈ Z, i = 1, ..., n. If

ai ≥ 0 for all i = 1, ..., n then there is a ring isomorphism

O/P ∼= (O/Pa1
1 )× ...× (O/Pan

n ).

Theorem 3

Let O be a maximal order and P be a two-sided prime ideal then
exist an isomorphism,

O/P ∼= O/a× O/b,

where a and b are completely prime left-ideals in O.



Multilevel Lattice Code
Definition 9 (Construction πA over Hurwitz quaternions)

Let O be a maximal order, let p1, ..., pk be distinct primes, such
that Pj = ⟨pj⟩, for j = 1, ..., k, and P1, ...,Pk be distinct prime
ideals of Λ. Let lj ,N be integers such that lj ≤ N and let Gj be a
generator matrix of a (N, lj)-linear code for j ∈ {1, ..., k}.
Construction πA over Hurwitz orders consists of the following
steps,

1 Define the discrete codebooks C(1)
j = {Gj ⊙ u : u ∈ O/aj} and

C(2)
j = {Gj ⊙ u : u ∈ O/bj} for j ∈ {1, ..., k}.

2 Construct C = Ψ−1(C(1)
1 , C(2)

1 , ..., C(1)
k , C(2)

k ) where Ψ is a ring
isomorphism.

3 Tile C to the entire space to form Λ(C) = C +PN .



Multilevel Lattice Code

Using Theorem 3 we can obtain an isomorphism that better
“decomposes” the levels of the constructed lattice.

Consider p1, ..., pn rational primes, put q = p1 · ... · pn.
We know that for each prime we have
pi = N(πi ), πi ∈ H, i = 1, ..., n

By, Theorem 2 and Theorem 3 we can define the following
ring isomorphism:

H/qH ∼= H/P1 × ...×H/Pn

∼= H/a1 ×H/b1 × ...×H/an ×H/bn.



Multilevel Lattice Code

Example 3

Consider p1 = 3, p2 = 5 with P1 = ⟨3⟩ and P2 = ⟨5⟩, as we
can write 3 = (1 + i+ j)(1− i− j) and 5 = (1 + 2i)(1− 2i),
then we have q = 3× 5 = 15 with P = 15H, π1 = 1 + i+ j,
π1 = 1− i− j, π2 = 1 + 2i and π2 = 1− 2i

we can obtain an isomorphism,

Ψ : H/P → H/a1 ×H/b1 ×H/a2 ×H/b2

α 7→ (α mod π1, α mod π1, α mod π2, α mod π2).



Multilevel Lattice Code

For Construction πA we need the inverse isomorphism,

Ψ−1 : H/a1 ×H/b1 ×H/a2 ×H/b2 → H/P

For that, as q = p1.p2 = p2.p1 we can define

µ1 = π−1
1 q = π−1

1 .(p1.p2) = p2.π1 = 5− 5i− 5j

µ2 = π−1
1 q = π−1

1 .(p1.p2) = p2.π1 = 5 + 5i+ 5j

µ3 = π−1
2 q = π−1

2 .(p2.p1) = p1.π2 = 3− 6i

µ4 = π−1
2 q = π−1

2 .(p2.p1) = p1.π2 = 3 + 6i.



Multilevel Lattice Code

By Bézout identity, there are γ1, γ2, γ3, γ4 ∈ H such that

µ1γ1 + µ2γ2 + µ3γ3 + µ4γ4 = 1

We can put γ1 = j+ k, γ2 = 2j+ k, γ3 = 3i and
γ4 = −2 + i− 3j+ k, so

Ψ−1(α1, α2, α3, α4) = (µ1γ1α1+µ2γ2α2+µ3γ3α3+µ4γ4α4) mod 15H

Therefore,

Ψ−1(α1, α2, α3,α4) = [(5− 5i+ 10j) α1 + (−10 + 5i+ 5j+ 15k) α2+

+ (18 + 9i) α3 + (−12− 9i− 15j− 15k) α4] mod 15H



Multilevel Decoder

The received point y ∈ RN at the receiver is given by

y = x + n

where x ∈ ΛπA
(C) and n ∈ RN is the noise.

As x belongs to Construction πA lattice, it can be
decomposed as

x = (x1m1c1 + x2m2c2 + ...+ xkmkck) mod q + qz̃

where ci = Giui , for i = 1, ..., k and q =
∏k

j=1 pj .



Multilevel Decoder



Usefulness of Construction πA over Hurwitz
quaternions

p
Code
Size

Time using
Construction A decoder

Time using
Construction πA

decoder

3 81 0.05159 0.00504

5 625 5.86613 0.00511

7 2401 105.209 0.00516

11 14641 4054.63 0.00548

Table 1: Time comparison using decoding algorithm in Construction A
and Construction πA for codes of the same size, the time was measured
in seconds. The Construction A lattice uses a linear code over Z4

p while
the Construction πA lattice uses a code over pH.



Usefulness of Construction πA over Hurwitz
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Thank you for your attention!


