15 June 2023

Multilevel lattice codes from Hurwitz quaternions

Juliana Souza

julianagfs@ime.unicamp.br

Sueli Costa IMECC Cong Ling Imperial College

Definition 1 (Lattice)

An N-dimensional lattice Λ can be define as a discrete subgroup of \mathbb{R}^N which is closed under reflection and ordinary vector addition, i.e., $\forall \lambda \in \Lambda$, we have $-\lambda \in \Lambda$, and $\forall \lambda_1, \lambda_2 \in \Lambda$ we have $\lambda_1 + \lambda_2 \in \Lambda$.

Figure 1: Lattices in \mathbb{R}^2

Definition 2 (Construction A [1])

Let q > 1 be an integer. Let $k, N \in \mathbb{N}$ be integers such that $k \leq N$ and let G be $N \times k$ a generator matrix of a linear code over \mathbb{Z}_q . Construction A consists of the following steps:

- Onsider the linear code C = {x = G ⊙ y : y ∈ Z^k_q}, where all operations are over Z_q.
- **2** "Expand" C to a lattice in \mathbb{Z}^N defined as:

$$\Lambda_A(\mathcal{C}) = \{x \in \mathbb{Z}^N : x \mod q \in \mathcal{C}\} = \mathcal{C} + q\mathbb{Z}^N.$$

Theorem 1 (Chinese Remainder Theorem)

Let R be a commutative ring, and $I_1, ..., I_k$ be relatively prime ideals in R. Then,

$$R / \cap_{j=1}^k I_j \cong (R/I_1) \times ... \times (R/I_k).$$

Proposition 1 ([2])

Let $p_1, ..., p_k$ be a collection of distinct primes and let $q = \prod_{j=1}^k p_j$. There exists a ring isomorphism

$$\phi: \mathbb{Z}_q \to \mathbb{Z}_{p_1} \times \ldots \times \mathbb{Z}_{p_k}.$$

Definition 3 (Construction π_A [2])

Let $p_1, ..., p_k$ be distinct primes. Let l_j, N be integers such that $l_j \leq N$ and let G_j be a generator matrix of a (N, l_j) -linear code over \mathbb{Z}_{p_j} for $j \in \{1, ..., k\}$. Construction π_A consists of the following steps,

- Define the discrete codebooks C_j = {x = G_j ⊙ u : u ∈ Z^{l_j}_{P_j}} for j ∈ {1,...,k}.
- Construct $C = \phi^{-1}(C_1, ..., C_k)$ where $\phi^{-1}: \mathbb{Z}_{p_1}^N \times ... \times \mathbb{Z}_{p_k}^N \to \mathbb{Z}_q^N$ is a ring isomorphism.

• Tile C to the entire \mathbb{R}^N to form $\Lambda_{\pi_A}(C) = C + q\mathbb{Z}^N = \Lambda_A$.

Example 1

Let us consider a two-level example where $p_1 = 3$ and $p_2 = 2$. One has $\mathbb{Z}^2/6\mathbb{Z}^2 \cong \mathbb{Z}_3^2 \times \mathbb{Z}_2^2$ from the CRT we have that a ring isomorphism can be given by

$$\phi^{-1}(c_1, c_2) = (4c_1 + 3c_2) \mod 6.$$

where $c_1 \in \mathbb{Z}_3^2$ e $c_2 \in \mathbb{Z}_2^2$. Using the steps of Construction π_A we have that, we define the codes,

$$C_1 = \{x = [2 \ 2]^T u; u \in \mathbb{Z}_3\} \text{ and } C_2 = \{x = [1 \ 0]^T u; u \in \mathbb{Z}_2\}.$$

Figure 2: On the left, construction of C (step 2.) and on the right, tiling of C to obtain $\Lambda_A(C) = C + 6\mathbb{Z}^2$ (step 3.).

Definition 4 (Quaternion algebra)

Let \mathbb{F} be a field with characteristics different from 2. We call quaternion algebra over \mathbb{F} any (associative) algebra over \mathbb{F} admitting a basis of four elements, denoted $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$, which satisfy the following relations: 1 is the neutral element for multiplication, and

$$\mathbf{i}^2 = \mathbf{a} \cdot \mathbf{1}, \ \mathbf{j}^2 = \mathbf{1} \cdot \mathbf{b} \ \mathbf{ij} = \mathbf{k} = -\mathbf{ji}$$

for some non-zero elements $a, b \in \mathbb{F}$. We can denote this algebra \mathbb{F} by $\left(\frac{a, b}{\mathbb{F}}\right)$ or in short by $(a, b)_{\mathbb{F}}$. Element 1 is usually omitted in products; in particular, we denote $x \cdot 1 = x$ for all $x \in \mathbb{F}$, which leads to identifying \mathbb{F} with a subfield of $\left(\frac{a, b}{\mathbb{F}}\right)$.

- The conjugate of a quaternion x = x₀ + x₁**i** + x₂**j** + x₃**k** ∈ (a, b)_F is the quaternion x̄ = x₀ - x₁**i** - x₂**j** - x₃**k** ∈ (a, b)_F.
- We also have that for all x ∈ (a, b)_F, Tr(x) = x + x̄ and N(x) = x₀² ax₁² bx₂² + abx₃² which we call respectively, trace and norm of x, are elements of F.
- The typical example of a division algebra over quaternions is due to Hamilton (1843):

$$\mathbb{H} = (-1, -1)_{\mathbb{R}} = \{a_0 + a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} : (a_0, a_1, a_2, a_3) \in \mathbb{R}\}.$$

Definition 5 (Order)

An order $O \subseteq B$ is a finitely generated submodule that is also a subring of B.

Proposition 2 ([3], p.245)

Let O and O' be two orders of $B = \mathbb{H}$. If $O \supseteq O'$, then discrd(O) divides discrd(O'). Moreover, if $O \supseteq O'$ and discrd(O) = discrd(O'), then O = O'.

Definition 6 (Maximal Order)

An order $O \subseteq B$ is maximal if it is not properly contained in another order.

Example 2

Let
$$B = (-1, -1)_{\mathbb{R}} = \mathbb{H}$$
, and let

$$\mathcal{L} = \{\mathbf{a}_1 \mathbf{1} + \mathbf{a}_2 \mathbf{i} + \mathbf{a}_3 \mathbf{j} + \mathbf{a}_4 \mathbf{k} | \mathbf{a}_1, ..., \mathbf{a}_4 \in \mathbb{Z}\},\$$

where $(1, \mathbf{i}, \mathbf{j}, \mathbf{k})$ is the standard basis of B.We have that it is an order of B with discrd $(\mathcal{L}) = 4$, but is not a maximal order. This is called the **Lipschitz order**. We can add to \mathcal{L} the element $\varepsilon = \frac{1}{2}(1 + \mathbf{i} + \mathbf{j} + \mathbf{k})$ and verify that

$$\mathfrak{H} = \{b_1 + b_2\mathbf{i} + b_3\mathbf{j} + b_4arepsilon|b_1, ..., b_4 \in \mathbb{Z}\}$$

is an order with reduced discriminant discrd(\mathcal{H}) = 2, and it is a maximal order over \mathbb{H} . The order \mathcal{H} is called the **Hurwitz order** first described in [4] (1919).

Hurwitz Quaternions

Lemma 1 (Hurwitz order is left-norm Euclidean, [3])

For all $\alpha, \beta \in \mathfrak{H}$ with $\beta \neq 0$, there exists $\mu, \rho \in \mathfrak{H}$ such that,

 $\alpha=\mu\beta+\rho$

and $N(\rho) < N(\beta)$.

Proposition 3 ([3])

Every left ideal $\mathfrak{a} \subset \mathfrak{H}$ is left-principal, i.e., there exists $\beta \in \mathfrak{a}$ such that $\mathfrak{a} = \beta \mathfrak{H}$.

Definition 7 (Left divides)

Let $\alpha, \beta \in \mathcal{H}$. We say β left divides α (or α is a left multiple of β) and write $\beta|_L \alpha$ if there exists $\gamma \in \mathcal{H}$ such that $\alpha = \gamma \beta$.

Hurwitz quaternions

Proposition 4 (Bézout's theorem, [3])

For all $\alpha, \beta \in \mathcal{H}$ not both zero, there exists $\mu, \gamma \in \mathcal{H}$ such that $\mu \alpha + \gamma \beta = \delta$ where δ is a left greatest common divisor of α, β .

Proposition 5 ([3])

Let $p \in \mathbb{Z}$ be prime. Then there exists $\pi \in \mathfrak{H}$ such that $N(\pi) = p$.

Definition 8 (Prime ideal)

A two-sided ideal $\mathfrak{P} \subseteq O$ is said to be a prime ideal if $\mathfrak{P} \neq O$ and, for ideals $\mathfrak{U}, \mathfrak{B} \subseteq O$, we have, $\mathfrak{U} \cdot \mathfrak{B} \subseteq \mathfrak{P} \Rightarrow \mathfrak{U} \subseteq \mathfrak{P}$ or $\mathfrak{B} \subseteq \mathfrak{P}$.

Chinese Remainder Theorem

Theorem 2 ([5])

Let O be a maximal order, and let $\mathfrak{P}_1, ..., \mathfrak{P}_n \subseteq O$ be distinct prime (two-sided) ideals. Let $\mathfrak{P} = \prod_{i=1}^n \mathfrak{P}_i^{a_i}$, $a_i \in \mathbb{Z}$, i = 1, ..., n. If $a_i \ge 0$ for all i = 1, ..., n then there is a ring isomorphism $O/\mathfrak{P} \cong (O/\mathfrak{P}_1^{a_1}) \times ... \times (O/\mathfrak{P}_n^{a_n}).$

Theorem 3

Let O be a maximal order and \mathfrak{P} be a two-sided prime ideal then exist an isomorphism,

$$O/\mathfrak{P} \cong O/\mathfrak{a} \times O/\mathfrak{b},$$

where \mathfrak{a} and \mathfrak{b} are completely prime left-ideals in O.

Definition 9 (Construction π_A over Hurwitz quaternions)

Let O be a maximal order, let $p_1, ..., p_k$ be distinct primes, such that $\mathfrak{P}_j = \langle p_j \rangle$, for j = 1, ..., k, and $\mathfrak{P}_1, ..., \mathfrak{P}_k$ be distinct prime ideals of Λ . Let l_j , N be integers such that $l_j \leq N$ and let G_j be a generator matrix of a (N, l_j) -linear code for $j \in \{1, ..., k\}$. Construction π_A over Hurwitz orders consists of the following steps,

- Define the discrete codebooks $C_j^{(1)} = \{G_j \odot u : u \in O/\mathfrak{a}_j\}$ and $C_j^{(2)} = \{G_j \odot u : u \in O/\mathfrak{b}_j\}$ for $j \in \{1, ..., k\}$.
- So Construct $C = \Psi^{-1}(C_1^{(1)}, C_1^{(2)}, ..., C_k^{(1)}, C_k^{(2)})$ where Ψ is a ring isomorphism.
- Solution Tile C to the entire space to form $\Lambda(C) = C + \mathfrak{P}^N$.

- Using **Theorem 3** we can obtain an isomorphism that better "decomposes" the levels of the constructed lattice.
- Consider $p_1, ..., p_n$ rational primes, put $q = p_1 \cdot ... \cdot p_n$.
- We know that for each prime we have $p_i = N(\pi_i), \pi_i \in \mathcal{H}, i = 1, ..., n$
- By, Theorem 2 and Theorem 3 we can define the following ring isomorphism:

$$\begin{split} \mathfrak{H}/q\mathfrak{H} &\cong \mathfrak{H}/\mathfrak{P}_1 \times \ldots \times \mathfrak{H}/\mathfrak{P}_n \\ &\cong \mathfrak{H}/\mathfrak{a}_1 \times \mathfrak{H}/\mathfrak{b}_1 \times \ldots \times \mathfrak{H}/\mathfrak{a}_n \times \mathfrak{H}/\mathfrak{b}_n. \end{split}$$

Example 3

• Consider $p_1 = 3$, $p_2 = 5$ with $\mathfrak{P}_1 = \langle 3 \rangle$ and $\mathfrak{P}_2 = \langle 5 \rangle$, as we can write $3 = (1 + \mathbf{i} + \mathbf{j})(1 - \mathbf{i} - \mathbf{j})$ and $5 = (1 + 2\mathbf{i})(1 - 2\mathbf{i})$, then we have $q = 3 \times 5 = 15$ with $\mathfrak{P} = 15\mathfrak{H}$, $\pi_1 = 1 + \mathbf{i} + \mathbf{j}$, $\overline{\pi}_1 = 1 - \mathbf{i} - \mathbf{j}$, $\pi_2 = 1 + 2\mathbf{i}$ and $\overline{\pi}_2 = 1 - 2\mathbf{i}$

• we can obtain an isomorphism,

$$\begin{split} \Psi: \mathcal{H}/\mathfrak{P} & \to \mathcal{H}/\mathfrak{a}_1 \times \mathcal{H}/\mathfrak{b}_1 \times \mathcal{H}/\mathfrak{a}_2 \times \mathcal{H}/\mathfrak{b}_2 \\ \alpha & \mapsto (\alpha \mod \pi_1, \alpha \mod \overline{\pi}_1, \alpha \mod \pi_2, \alpha \mod \overline{\pi}_2). \end{split}$$

• For Construction π_A we need the inverse isomorphism,

 $\Psi^{-1}: \mathfrak{H}/\mathfrak{a}_1\times\mathfrak{H}/\mathfrak{b}_1\times\mathfrak{H}/\mathfrak{a}_2\times\mathfrak{H}/\mathfrak{b}_2\to\mathfrak{H}/\mathfrak{P}$

• For that, as $q = p_1 p_2 = p_2 p_1$ we can define

$$\mu_{1} = \pi_{1}^{-1}q = \pi_{1}^{-1}.(p_{1}.p_{2}) = p_{2}.\overline{\pi}_{1} = 5 - 5\mathbf{i} - 5\mathbf{j}$$

$$\mu_{2} = \overline{\pi}_{1}^{-1}q = \overline{\pi}_{1}^{-1}.(p_{1}.p_{2}) = p_{2}.\pi_{1} = 5 + 5\mathbf{i} + 5\mathbf{j}$$

$$\mu_{3} = \pi_{2}^{-1}q = \pi_{2}^{-1}.(p_{2}.p_{1}) = p_{1}.\overline{\pi}_{2} = 3 - 6\mathbf{i}$$

$$\mu_{4} = \overline{\pi}_{2}^{-1}q = \overline{\pi}_{2}^{-1}.(p_{2}.p_{1}) = p_{1}.\pi_{2} = 3 + 6\mathbf{i}.$$

• By Bézout identity, there are $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \in \mathcal{H}$ such that

$$\mu_1 \gamma_1 + \mu_2 \gamma_2 + \mu_3 \gamma_3 + \mu_4 \gamma_4 = 1$$

• We can put $\gamma_1 = \mathbf{j} + \mathbf{k}, \gamma_2 = 2\mathbf{j} + \mathbf{k}, \gamma_3 = 3\mathbf{i}$ and $\gamma_4 = -2 + \mathbf{i} - 3\mathbf{j} + \mathbf{k}$, so

 $\Psi^{-1}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\mu_1 \gamma_1 \alpha_1 + \mu_2 \gamma_2 \alpha_2 + \mu_3 \gamma_3 \alpha_3 + \mu_4 \gamma_4 \alpha_4) \mod 15\mathcal{H}$

• Therefore,

$$\begin{split} \Psi^{-1}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) &= [(5 - 5\mathbf{i} + 10\mathbf{j}) \ \alpha_1 + (-10 + 5\mathbf{i} + 5\mathbf{j} + 15\mathbf{k}) \ \alpha_2 + \\ &+ (18 + 9\mathbf{i}) \ \alpha_3 + (-12 - 9\mathbf{i} - 15\mathbf{j} - 15\mathbf{k}) \ \alpha_4] \mod 15\mathcal{H} \end{split}$$

Multilevel Decoder

• The received point $y \in \mathbb{R}^N$ at the receiver is given by

$$y = x + n$$

where $x \in \Lambda_{\pi_A}(\mathcal{C})$ and $n \in \mathbb{R}^N$ is the noise.

 As x belongs to Construction π_A lattice, it can be decomposed as

$$x = (x_1m_1c_1 + x_2m_2c_2 + \ldots + x_km_kc_k) \mod q + q\tilde{z}$$

where $c_i = G_i u_i$, for i = 1, ..., k and $q = \prod_{j=1}^k p_j$.

Multilevel Decoder

Usefulness of Construction π_A over Hurwitz quaternions

p	Code Size	Time using Construction <i>A</i> decoder	Time using Construction π_A decoder
3	81	0.05159	0.00504
5	625	5.86613	0.00511
7	2401	105.209	0.00516
11	14641	4054.63	0.00548

Table 1: Time comparison using decoding algorithm in Construction A and Construction π_A for codes of the same size, the time was measured in seconds. The Construction A lattice uses a linear code over \mathbb{Z}_p^4 while the Construction π_A lattice uses a code over $p\mathcal{H}$.

Usefulness of Construction π_A over Hurwitz quaternions

References

- S. Costa, F. Oggier *et al.*, *Lattices Applied to Coding for Realiable and Secure Communications*. Springer, 2017.
- Y.-C. Huang and K. R. Narayanan, "Construction π_A and π_D lattices: Construction, goodness, and decoding algorithms," *IEEE Transactions on Information Theory*, vol. 63, no. 9, pp. 5718–5733, 2017.
- J. Voight, *Quaternion algebras*. Springer Nature, 2021.
- A. Hurwitz, Vorlesungen über die Zahlentheorie der Quaternionen. Springer, 1919.
- I. Reiner, *Maximal Orders*. Academic Press London, 1975.

Thank you for your attention!