Multilevel lattice codes from Hurwitz quaternions

\author{

Juliana Souza
 julianagfs@ime.unicamp.br
 | Sueli Costa | Cong Ling |
| :---: | :---: |
| IMECC | Imperial College |

}

Preliminaries

Definition 1 (Lattice)

An N-dimensional lattice Λ can be define as a discrete subgroup of \mathbb{R}^{N} which is closed under reflection and ordinary vector addition, i.e., $\forall \lambda \in \Lambda$, we have $-\lambda \in \Lambda$, and $\forall \lambda_{1}, \lambda_{2} \in \Lambda$ we have $\lambda_{1}+\lambda_{2} \in \Lambda$.

(a) \mathbb{Z}_{2}
(b) A_{2}

(c) \wedge

Figure 1: Lattices in \mathbb{R}^{2}

Preliminaries

Definition 2 (Construction A [1])

Let $q>1$ be an integer. Let $k, N \in \mathbb{N}$ be integers such that $k \leq N$ and let G be $N \times k$ a generator matrix of a linear code over \mathbb{Z}_{q}.
Construction A consists of the following steps:
(1) Consider the linear code $\mathcal{C}=\left\{x=G \odot y: y \in \mathbb{Z}_{q}^{k}\right\}$, where all operations are over \mathbb{Z}_{q}.
(2) "Expand" \mathcal{C} to a lattice in \mathbb{Z}^{N} defined as:

$$
\Lambda_{A}(\mathcal{C})=\left\{x \in \mathbb{Z}^{N}: x \quad \bmod q \in \mathcal{C}\right\}=\mathcal{C}+q \mathbb{Z}^{N}
$$

Preliminaries

Theorem 1 (Chinese Remainder Theorem)

Let R be a commutative ring, and I_{1}, \ldots, I_{k} be relatively prime ideals in R. Then,

$$
R / \cap_{j=1}^{k} I_{j} \cong\left(R / I_{1}\right) \times \ldots \times\left(R / I_{k}\right)
$$

Proposition 1 ([2])

Let p_{1}, \ldots, p_{k} be a collection of distinct primes and let $q=\prod_{j=1}^{k} p_{j}$. There exists a ring isomorphism

$$
\phi: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{p_{1}} \times \ldots \times \mathbb{Z}_{p_{k}}
$$

Preliminaries

Definition 3 (Construction π_{A} [2])

Let p_{1}, \ldots, p_{k} be distinct primes. Let l_{j}, N be integers such that $l_{j} \leq N$ and let G_{j} be a generator matrix of a $\left(N, l_{j}\right)$-linear code over $\mathbb{Z}_{p_{j}}$ for $j \in\{1, \ldots, k\}$. Construction π_{A} consists of the following steps,
(1) Define the discrete codebooks $\mathcal{C}_{j}=\left\{x=G_{j} \odot u: u \in \mathbb{Z}_{p_{j}}^{l_{j}}\right\}$ for $j \in\{1, \ldots, k\}$.
(2) Construct $\mathcal{C}=\phi^{-1}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$ where $\phi^{-1}: \mathbb{Z}_{p_{1}}^{N} \times \ldots \times \mathbb{Z}_{p_{k}}^{N} \rightarrow \mathbb{Z}_{q}^{N}$ is a ring isomorphism.
(3) Tile \mathcal{C} to the entire \mathbb{R}^{N} to form $\Lambda_{\pi_{A}}(\mathcal{C})=\mathcal{C}+q \mathbb{Z}^{N}=\Lambda_{A}$.

Preliminaries

Example 1

Let us consider a two-level example where $p_{1}=3$ and $p_{2}=2$. One has $\mathbb{Z}^{2} / 6 \mathbb{Z}^{2} \cong \mathbb{Z}_{3}^{2} \times \mathbb{Z}_{2}^{2}$ from the $C R T$ we have that a ring isomorphism can be given by

$$
\phi^{-1}\left(c_{1}, c_{2}\right)=\left(4 c_{1}+3 c_{2}\right) \quad \bmod 6
$$

where $c_{1} \in \mathbb{Z}_{3}^{2}$ e $c_{2} \in \mathbb{Z}_{2}^{2}$.
Using the steps of Construction π_{A} we have that, we define the codes,

$$
\mathcal{C}_{1}=\left\{x=\left[\begin{array}{ll}
2 & 2
\end{array}\right]^{T} u ; u \in \mathbb{Z}_{3}\right\} \text { and } \mathcal{C}_{2}=\left\{x=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T} u ; u \in \mathbb{Z}_{2}\right\} .
$$

Preliminaries

Figure 2: On the left, construction of \mathcal{C} (step 2.) and on the right, tiling of \mathcal{C} to obtain $\Lambda_{A}(\mathcal{C})=\mathcal{C}+6 \mathbb{Z}^{2}$ (step 3.).

Quaternion Algebras

Definition 4 (Quaternion algebra)

Let \mathbb{F} be a field with characteristics different from 2. We call quaternion algebra over \mathbb{F} any (associative) algebra over \mathbb{F} admitting a basis of four elements, denoted $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$, which satisfy the following relations: 1 is the neutral element for multiplication, and

$$
\mathbf{i}^{2}=a \cdot 1, \quad \mathbf{j}^{2}=1 \cdot b \quad \mathbf{j}=\mathbf{k}=-\mathbf{j} \mathbf{i}
$$

for some non-zero elements $a, b \in \mathbb{F}$. We can denote this algebra \mathbb{F} by $\left(\frac{a, b}{\mathbb{F}}\right)$ or in short by $(a, b)_{\mathbb{F}}$. Element 1 is usually omitted in products; in particular, we denote $x \cdot 1=x$ for all $x \in \mathbb{F}$, which leads to identifying \mathbb{F} with a subfield of $\left(\frac{a, b}{\mathbb{F}}\right)$.

Quaternion Algebras

- The conjugate of a quaternion $x=x_{0}+x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k}$ $\in(a, b)_{\mathbb{F}}$ is the quaternion $\bar{x}=x_{0}-x_{1} \mathbf{i}-x_{2} \mathbf{j}-x_{3} \mathbf{k} \in(a, b)_{\mathbb{F}}$.
- We also have that for all $x \in(a, b)_{\mathbb{F}}, \operatorname{Tr}(x)=x+\bar{x}$ and $N(x)=x_{0}^{2}-a x_{1}^{2}-b x_{2}^{2}+a b x_{3}^{2}$ which we call respectively, trace and norm of x, are elements of \mathbb{F}.
- The typical example of a division algebra over quaternions is due to Hamilton (1843):
$\mathbb{H}=(-1,-1)_{\mathbb{R}}=\left\{a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}:\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}\right\}$.

Quaternion Algebras

Definition 5 (Order)

An order $O \subseteq B$ is a finitely generated submodule that is also a subring of B.

Proposition 2 ([3], p.245)

Let O and O^{\prime} be two orders of $B=\mathbb{H}$. If $O \supseteq O^{\prime}$, then discrd (O) divides discrd $\left(O^{\prime}\right)$. Moreover, if $O \supseteq O^{\prime}$ and $\operatorname{discrd}(O)=\operatorname{discrd}\left(O^{\prime}\right)$, then $O=O^{\prime}$.

Definition 6 (Maximal Order)

An order $O \subseteq B$ is maximal if it is not properly contained in another order.

Quaternion Algebras

Example 2

Let $B=(-1,-1)_{\mathbb{R}}=\mathbb{H}$, and let

$$
\mathcal{L}=\left\{a_{1} 1+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k} \mid a_{1}, \ldots, a_{4} \in \mathbb{Z}\right\},
$$

where $(1, \mathbf{i}, \mathbf{j}, \mathbf{k})$ is the standard basis of B. We have that it is an order of B with $\operatorname{discrd}(\mathcal{L})=4$, but is not a maximal order. This is called the Lipschitz order. We can add to \mathcal{L} the element $\varepsilon=\frac{1}{2}(1+\mathbf{i}+\mathbf{j}+\mathbf{k})$ and verify that

$$
\mathcal{H}=\left\{b_{1}+b_{2} \mathbf{i}+b_{3} \mathbf{j}+b_{4} \varepsilon \mid b_{1}, \ldots, b_{4} \in \mathbb{Z}\right\}
$$

is an order with reduced discriminant $\operatorname{discrd}(\mathcal{H})=2$, and it is a maximal order over \mathbb{H}. The order \mathcal{H} is called the Hurwitz order first described in [4] (1919).

Hurwitz Quaternions

Lemma 1 (Hurwitz order is left-norm Euclidean, [3])

For all $\alpha, \beta \in \mathcal{H}$ with $\beta \neq 0$, there exists $\mu, \rho \in \mathcal{H}$ such that,

$$
\alpha=\mu \beta+\rho
$$

and $N(\rho)<N(\beta)$.

Proposition 3 ([3])

Every left ideal $\mathfrak{a} \subset \mathcal{H}$ is left-principal, i.e., there exists $\beta \in \mathfrak{a}$ such that $\mathfrak{a}=\beta \mathcal{H}$.

Definition 7 (Left divides)

Let $\alpha, \beta \in \mathcal{H}$. We say β left divides α (or α is a left multiple of β) and write $\left.\beta\right|_{L} \alpha$ if there exists $\gamma \in \mathcal{H}$ such that $\alpha=\gamma \beta$.

Hurwitz quaternions

Proposition 4 (Bézout's theorem, [3])

For all $\alpha, \beta \in \mathcal{H}$ not both zero, there exists $\mu, \gamma \in \mathcal{H}$ such that $\mu \alpha+\gamma \beta=\delta$ where δ is a left greatest common divisor of α, β.

Proposition 5 ([3])

Let $p \in \mathbb{Z}$ be prime. Then there exists $\pi \in \mathcal{H}$ such that $N(\pi)=p$.

Definition 8 (Prime ideal)

A two-sided ideal $\mathfrak{P} \subseteq O$ is said to be a prime ideal if $\mathfrak{P} \neq O$ and, for ideals $\mathfrak{U}, \mathfrak{B} \subseteq O$, we have, $\mathfrak{U} \cdot \mathfrak{B} \subseteq \mathfrak{P} \Rightarrow \mathfrak{U} \subseteq \mathfrak{P}$ or $\mathfrak{B} \subseteq \mathfrak{P}$.

Chinese Remainder Theorem

Theorem 2 ([5])

Let O be a maximal order, and let $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{n} \subseteq O$ be distinct prime (two-sided) ideals. Let $\mathfrak{P}=\prod_{i=1}^{n} \mathfrak{P}_{i}^{a_{i}}, a_{i} \in \mathbb{Z}, i=1, \ldots, n$. If $a_{i} \geq 0$ for all $i=1, \ldots, n$ then there is a ring isomorphism

$$
O / \mathfrak{P} \cong\left(O / \mathfrak{P}_{1}^{a_{1}}\right) \times \ldots \times\left(O / \mathfrak{P}_{n}^{a_{n}}\right)
$$

Theorem 3

Let O be a maximal order and \mathfrak{P} be a two-sided prime ideal then exist an isomorphism,

$$
O / \mathfrak{P} \cong O / \mathfrak{a} \times O / \mathfrak{b}
$$

where \mathfrak{a} and \mathfrak{b} are completely prime left-ideals in O.

Multilevel Lattice Code

Definition 9 (Construction π_{A} over Hurwitz quaternions)

Let O be a maximal order, let p_{1}, \ldots, p_{k} be distinct primes, such that $\mathfrak{P}_{j}=\left\langle p_{j}\right\rangle$, for $j=1, \ldots, k$, and $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{k}$ be distinct prime ideals of Λ. Let l_{j}, N be integers such that $l_{j} \leq N$ and let G_{j} be a generator matrix of a $\left(N, l_{j}\right)$-linear code for $j \in\{1, \ldots, k\}$. Construction π_{A} over Hurwitz orders consists of the following steps,
(1) Define the discrete codebooks $\mathcal{C}_{j}^{(1)}=\left\{G_{j} \odot u: u \in O / \mathfrak{a}_{j}\right\}$ and $\mathcal{C}_{j}^{(2)}=\left\{G_{j} \odot u: u \in O / \mathfrak{b}_{j}\right\}$ for $j \in\{1, \ldots, k\}$.
(2) Construct $\mathcal{C}=\Psi^{-1}\left(\mathcal{C}_{1}^{(1)}, \mathcal{C}_{1}^{(2)}, \ldots, \mathcal{C}_{k}^{(1)}, \mathcal{C}_{k}^{(2)}\right)$ where Ψ is a ring isomorphism.
(3) Tile \mathcal{C} to the entire space to form $\Lambda(\mathcal{C})=\mathcal{C}+\mathfrak{P}^{N}$.

Multilevel Lattice Code

- Using Theorem 3 we can obtain an isomorphism that better "decomposes" the levels of the constructed lattice.
- Consider p_{1}, \ldots, p_{n} rational primes, put $q=p_{1} \cdot \ldots \cdot p_{n}$.
- We know that for each prime we have $p_{i}=N\left(\pi_{i}\right), \pi_{i} \in \mathcal{H}, i=1, \ldots, n$
- By, Theorem 2 and Theorem 3 we can define the following ring isomorphism:

$$
\begin{aligned}
\mathcal{H} / q \mathcal{H} & \cong \mathcal{H} / \mathfrak{P}_{1} \times \ldots \times \mathcal{H} / \mathfrak{P}_{n} \\
& \cong \mathcal{H} / \mathfrak{a}_{1} \times \mathcal{H} / \mathfrak{b}_{1} \times \ldots \times \mathcal{H} / \mathfrak{a}_{n} \times \mathcal{H} / \mathfrak{b}_{n}
\end{aligned}
$$

Multilevel Lattice Code

Example 3

- Consider $p_{1}=3, p_{2}=5$ with $\mathfrak{P}_{1}=\langle 3\rangle$ and $\mathfrak{P}_{2}=\langle 5\rangle$, as we can write $3=(1+\mathbf{i}+\mathbf{j})(1-\mathbf{i}-\mathbf{j})$ and $5=(1+2 \mathbf{i})(1-2 \mathbf{i})$, then we have $q=3 \times 5=15$ with $\mathfrak{P}=15 \mathcal{H}, \pi_{1}=1+\mathbf{i}+\mathbf{j}$, $\bar{\pi}_{1}=1-\mathbf{i}-\mathbf{j}, \pi_{2}=1+2 \mathbf{i}$ and $\bar{\pi}_{2}=1-2 \mathbf{i}$
- we can obtain an isomorphism,

$$
\begin{aligned}
\Psi: \mathcal{H} / \mathfrak{P} & \rightarrow \mathcal{H} / \mathfrak{a}_{1} \times \mathcal{H} / \mathfrak{b}_{1} \times \mathcal{H} / \mathfrak{a}_{2} \times \mathcal{H} / \mathfrak{b}_{2} \\
\alpha & \mapsto\left(\alpha \quad \bmod \pi_{1}, \alpha \quad \bmod \bar{\pi}_{1}, \alpha \quad \bmod \pi_{2}, \alpha \quad \bmod \bar{\pi}_{2}\right)
\end{aligned}
$$

Multilevel Lattice Code

- For Construction π_{A} we need the inverse isomorphism,

$$
\Psi^{-1}: \mathcal{H} / \mathfrak{a}_{1} \times \mathcal{H} / \mathfrak{b}_{1} \times \mathcal{H} / \mathfrak{a}_{2} \times \mathcal{H} / \mathfrak{b}_{2} \rightarrow \mathcal{H} / \mathfrak{P}
$$

- For that, as $q=p_{1} \cdot p_{2}=p_{2} \cdot p_{1}$ we can define

$$
\begin{aligned}
& \mu_{1}=\pi_{1}^{-1} q=\pi_{1}^{-1} \cdot\left(p_{1} \cdot p_{2}\right)=p_{2} \cdot \bar{\pi}_{1}=5-5 \mathbf{i}-5 \mathbf{j} \\
& \mu_{2}=\bar{\pi}_{1}^{-1} q=\bar{\pi}_{1}^{-1} \cdot\left(p_{1} \cdot p_{2}\right)=p_{2} \cdot \pi_{1}=5+5 \mathbf{i}+5 \mathbf{j} \\
& \mu_{3}=\pi_{2}^{-1} q=\pi_{2}^{-1} \cdot\left(p_{2} \cdot p_{1}\right)=p_{1} \cdot \bar{\pi}_{2}=3-6 \mathbf{i} \\
& \mu_{4}=\bar{\pi}_{2}^{-1} q=\bar{\pi}_{2}^{-1} \cdot\left(p_{2} \cdot p_{1}\right)=p_{1} \cdot \pi_{2}=3+6 \mathbf{i} .
\end{aligned}
$$

Multilevel Lattice Code

- By Bézout identity, there are $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} \in \mathcal{H}$ such that

$$
\mu_{1} \gamma_{1}+\mu_{2} \gamma_{2}+\mu_{3} \gamma_{3}+\mu_{4} \gamma_{4}=1
$$

- We can put $\gamma_{1}=\mathbf{j}+\mathbf{k}, \gamma_{2}=2 \mathbf{j}+\mathbf{k}, \gamma_{3}=3 \mathbf{i}$ and $\gamma_{4}=-2+\mathbf{i}-3 \mathbf{j}+\mathbf{k}$, so
$\psi^{-1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\mu_{1} \gamma_{1} \alpha_{1}+\mu_{2} \gamma_{2} \alpha_{2}+\mu_{3} \gamma_{3} \alpha_{3}+\mu_{4} \gamma_{4} \alpha_{4}\right) \bmod 15 \mathcal{H}$
- Therefore,

$$
\begin{aligned}
\Psi^{-1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left[(5-5 \mathbf{i}+10 \mathbf{j}) \alpha_{1}+(-10+5 \mathbf{i}+5 \mathbf{j}+15 \mathbf{k}) \alpha_{2}+\right. \\
\left.+(18+9 \mathbf{i}) \alpha_{3}+(-12-9 \mathbf{i}-15 \mathbf{j}-15 \mathbf{k}) \alpha_{4}\right] \bmod 15 \mathcal{H}
\end{aligned}
$$

Multilevel Decoder

- The received point $y \in \mathbb{R}^{N}$ at the receiver is given by

$$
y=x+n
$$

where $x \in \Lambda_{\pi_{A}}(\mathcal{C})$ and $n \in \mathbb{R}^{N}$ is the noise.

- As x belongs to Construction π_{A} lattice, it can be decomposed as

$$
x=\left(x_{1} m_{1} c_{1}+x_{2} m_{2} c_{2}+\ldots+x_{k} m_{k} c_{k}\right) \quad \bmod q+q \tilde{z}
$$

where $c_{i}=G_{i} u_{i}$, for $i=1, \ldots, k$ and $q=\prod_{j=1}^{k} p_{j}$.

Multilevel Decoder

Usefulness of Construction π_{A} over Hurwitz quaternions

p	Code Size	Time using Construction A decoder	Time using Construction π_{A} decoder
3	81	0.05159	0.00504
5	625	5.86613	0.00511
7	2401	105.209	0.00516
11	14641	4054.63	0.00548

Table 1: Time comparison using decoding algorithm in Construction A and Construction π_{A} for codes of the same size, the time was measured in seconds. The Construction A lattice uses a linear code over \mathbb{Z}_{p}^{4} while the Construction π_{A} lattice uses a code over $p \mathcal{H}$.

Usefulness of Construction π_{A} over Hurwitz quaternions

References

圊 S．Costa，F．Oggier et al．，Lattices Applied to Coding for Realiable and Secure Communications．Springer， 2017.
國 Y．－C．Huang and K．R．Narayanan，＂Construction π_{A} and π_{D} lattices：Construction，goodness，and decoding algorithms，＂ IEEE Transactions on Information Theory，vol．63，no．9，pp． 5718－5733， 2017.
䡒 J．Voight，Quaternion algebras．Springer Nature， 2021.
囦 A．Hurwitz，Vorlesungen über die Zahlentheorie der Quaternionen．Springer， 1919.
固 I．Reiner，Maximal Orders．Academic Press London， 1975.

Thank you for your attention!

