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Linear Codes

@ We shall take, as an alphabet A, a finite field F.
@ In this case, F" is an n-dimensional vector space over F.

o We shall take, as codes, subespaces of F” of dimensién m < n.

A code C as above is called a linear code over F.

If d the minimum distance of C, we shall call it a (n,m,d)-code.




Definition

A linear code C C [F" is called a cyclic code if for every vector
(a0, a1,-..,an—2,an—1) in the code, we have that also the vector
(an—1, a0, a1, .. .,an—2) is in the code.




Definition
A linear code C C [F" is called a cyclic code if for every vector

(a0, a1,-..,an—2,an—1) in the code, we have that also the vector
(an—1, a0, a1, .. .,an—2) is in the code.
Notice that the definition implies that if (ag, a1, ...,dn—2,3,-1) is in the

code, then all the vectors obtained from this one by a cyclic permutation

of its coordinates are also in the code.
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We shall denote by [f] the class of the polynomial f € F[X] in R,.
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R = xn =1y

We shall denote by [f] the class of the polynomial f € F[X] in R,.
The mapping:
FiX]

F" = ——
' (X =1)

(a0, a1, -+, ap—2,3,—1) € F[X] = lao + a1 X + ...+ ap2X" 7% + 2,1 X" 1.



Let

_ FIX]
= B0 -1y

We shall denote by [f] the class of the polynomial f € F[X] in R,.
The mapping:

FIX
o F" — —[ ]
X0 —1)
(a0, a1 -+, ap—2,3,—1) € F[X] — lao + a1 X + ...+ ap_2 X" + a1 X"

 is an isomorphism of F-vector spaces. Hence A code C C F" is
cyclic if and only if ¢(C) is an ideal of R .



In the case when C, = (a|a" =1) = {1,a,2%,...,a" '} isa
cyclic group of order n, and F is a field, the elements of FC, are of
the form:

a=qop+ara—+ a232 + -+ Oénflan_l-
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In the case when C, = (a|a" =1) = {1,a,2%,...,a" '} isa
cyclic group of order n, and F is a field, the elements of FC, are of
the form:

a=qop+ara—+ a232 + -+ Oénflan_l-

It is easy to show that

F[X]

IFCn = n= 7o 1.1
B = —1)

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FC,,.
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Definition
A group code is an ideal of a finite group algebra.




Definition
A group code is an ideal of a finite group algebra.

In what follows, we shall always assume that char(K) y |G| so all
group algebras considered here will be semisimple and thus, all
ideals of FG are of the form | = FGe, where e € FG is an
idempotent element.



Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) J |G|. The element

1
H= =3 h
I 2

is an idempotent of the group algebra FG, called the idempotent
determined by H.



Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) J |G|. The element

. 1
H:WZh

heH

is an idempotent of the group algebra FG, called the idempotent
determined by H.

H is central if and only if H is normal in G.



Essential idempotents
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Let H be a normal subgroup of G. Then, H is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.
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Let H be a normal subgroup of G. Then, H is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG. Then:
o If e is not a constituent of H we have that eH = 0.

o If e is a constituent of H we have that eH = e.

In this last case, we have that FG - e C FG - H.



Denote by T a transversal of H in G. Then, an element
a € FG - e can be written in the form

a = Z Ozl,l/ffl.



Denote by T a transversal of H in G. Then, an element
a € FG - e can be written in the form

a = Z al,ylfl.

If we denote T = {t1,t2,...,tq} and H={hy, ha,..., hpy}, the
explicit expression of « is

a=artithi+astohi+- - Fagtghi+- - Fartihm+aotohp+- - +agtghm.



Denote by T a transversal of H in G. Then, an element
a € FG - e can be written in the form

a = Z al,VI-AI.

If we denote T = {t1,t2,...,tq} and H={hy, ha,..., hpy}, the
explicit expression of « is

a=aitih+astrhi+- - Fagtgh+- - +artihmtastohm+- - +agtghm,.

The sequence of coefficients of o, when written in this order, is
formed by d repetitions of the subsequence a1, az, - ag. In terms
of coding theory, this means that the code given by the minimal
ideal FGe is a repetition code. We shall be interested in
idempotents that are not of this type.



Definition

A primitive idempotent e in the group algebra FG, is an essential
idempotent if e- H = 0, for every subgroup H # (1) in G.

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.
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generated by an essential idempotent.

Lemma

| \

Let e € FG be a primitive central idempotent. Then e is essential
if and only if the map 7 : G — Ge, is a group isomorphism.




Definition

A primitive idempotent e in the group algebra FG, is an essential
idempotent if e- H = 0, for every subgroup H # (1) in G.

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.

Lemma

Let e € FG be a primitive central idempotent. Then e is essential
if and only if the map 7 : G — Ge, is a group isomorphism.

| A\

Corollary

If G is abelian and FG contains an essential idempotent, then G is
cyclic.

\




Assume that G is cyclic of order n = pi* - -- p*. Then, G can be
written as a direct product G = G x - -+ x G, where C; is cyclic,
of order p", 1 < i <t.
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order p; in C; and denote by a; a generator of this subgroup,

1<i<t Set . .
e=(1-Ki) - (1-Kp)

Then e is a non-zero central idempotent.



Assume that G is cyclic of order n = pi* - -- p*. Then, G can be

written as a direct product G = G x - -+ x G, where C; is cyclic,

of order p", 1 < i <t.

Let K; be the minimal subgroup of C;; i.e. the unique subgroup of

order p; in C; and denote by a; a generator of this subgroup,

1<i<t Set . .
e=(1-Ki) - (1-Kp)

Then e is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent e € FG is
essential if and only if e- ey = e.
Moreover, eg is the sum of all essential idempotents of FG.
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Let ¥, denote a finite field with g elements, C = C, the cyclic of
order n, with generator g such that (g,n) = 1. Let m be the
multiplicative order of G in the unit group U(Z,). Then
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(i) If e is an essential idempotent, then the dimension of F,C - e is
precisely m.
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Let ¥, denote a finite field with g elements, C = C, the cyclic of
order n, with generator g such that (g,n) = 1. Let m be the
multiplicative order of G in the unit group U(Z,). Then

(i) If e is an essential idempotent, then the dimension of F,C - e is
precisely m.

(i) dim(FqCpn)eg = (n) where ¢ denotes Euler’'s Totient function.




Proposition

Let ¥, denote a finite field with g elements, C = C, the cyclic of
order n, with generator g such that (g,n) = 1. Let m be the
multiplicative order of g in the unit group U(Z,). Then

(i) If e is an essential idempotent, then the dimension of F,C - e is
precisely m.

(i) dim(FqCpn)eg = (n) where ¢ denotes Euler’'s Totient function.

(iii) There exist precisely ¢(n)/m essential idempotents in F,C.

v




Applications

Definition (Sabin and Lomonaco (1995))

Let G; and G; denote two finite groups of the same order and let
F be a field. Two ideals (codes) 1 C FGy and l, C FG; are said to
be combinatorially equivalent if there exists a bijection

v : G — Gp whose linear extension 7 : FG; — F Gy is such that
¥(h) = k. The map 7 is called a combinatorial equivalence
between /1 and b.




Applications

Definition (Sabin and Lomonaco (1995))

Let G; and G; denote two finite groups of the same order and let
F be a field. Two ideals (codes) 1 C FGy and l, C FG; are said to
be combinatorially equivalent if there exists a bijection

v : G — Gp whose linear extension 7 : FG; — F Gy is such that
¥(h) = k. The map 7 is called a combinatorial equivalence
between /1 and b.

Theorem (Chalom, Ferraz and PM (2017))

Every minimal ideal in the group algebra of a finite abelian group is
combinatorially equivalent to a minimal ideal in the group algebra
of a cyclic group of the same order.




Applications

Recall that a binary linear code of dimension k and length n is
called simplex if a generating matrix for the code contains all
possible non zero columns of length k. Since these are 2K — 1 in
number, this matrix must be of size k x (2 — 1) so, we must have
n=2k_1.



Applications

Recall that a binary linear code of dimension k and length n is
called simplex if a generating matrix for the code contains all
possible non zero columns of length k. Since these are 2K — 1 in
number, this matrix must be of size k x (2 — 1) so, we must have
n=2k_1.

Theorem (Chalom, Ferraz and PM (2017))

Let C be a binary linear code of dimension k and length
n =2k —1. Then C is a simplex code if and only if it is essencial.




Applications

Let C = {v1,...,Vvm} be a linear code, whose elements we write as
Vi = (V,'71,V,'72,...V,'7,7), 1<i<k—-1,1<i<k—1. Wesay that
C contains no zero column if, for each index j, 1 < j < n, there
exists at least one vector v; € C such that v;; # 0.



Applications

Let C = {v1,...,Vvm} be a linear code, whose elements we write as
Vi = (V,'71,V,'72,...V,'7,7), 1<i<k—-1,1<i<k—1. Wesay that
C contains no zero column if, for each index j, 1 < j < n, there
exists at least one vector v; € C such that v;; # 0.

Theorem (Chalom, Ferraz and PM (2018))

Let C be a binary linear code of constant weight, without zero
columns. Then C is equivalent to a cyclic code which is either
essencial or a repetition code of an essencial one.




Twisted Group Algebra
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Definition

Let G be a group and R a commutative ring whose set of
invertible elements we denote by U(R). Consider a set of symbols
G = {g | g € G}. The twisted group algebra of G over R with
twisting t, denoted R!G, is the set of finite sums

R'G = {gezgagg| ag € R}

where addition is defined componentwise and multiplication is
given by the following rules
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invertible elements we denote by U(R). Consider a set of symbols
G = {g | g € G}. The twisted group algebra of G over R with
twisting t, denoted R!G, is the set of finite sums
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where addition is defined componentwise and multiplication is
given by the following rules

Xy = t(x,y)xy for all x,y € G,
Xa = ax forall x € G and a € R,

extended linearly.




Definition

Let G be a group and R a commutative ring whose set of

invertible elements we denote by U(R). Consider a set of symbols

G = {g | g € G}. The twisted group algebra of G over R with
twisting t, denoted R!G, is the set of finite sums

= {Zag§|ag€R}
geiG

where addition is defined componentwise and multiplication is
given by the following rules

Xy = t(x,y)xy for all x,y € G,
Xa = ax forall x € G and a € R,

extended linearly. Here, the map t: G x G — U(R) is called a
twisting or a factor set if, for x, y,z € G we have that

t(g, h).t(gh,t) = t(h,£0).t(g, ht).




There is a close connection between factor sets and 2-cocycles as
used in cohomology, actually both concepts coincide (see, for
example Lectures in Abstract Algebra - Jacobson).
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concepts but presently we shall use only classical ring theory.
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There is a close connection between factor sets and 2-cocycles as
used in cohomology, actually both concepts coincide (see, for
example Lectures in Abstract Algebra - Jacobson).

Several results in this area can be proved via cohomological
concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.

Let C = (g) be a cyclic group of order n and let A be an invertible
element in R. Then, the map ty : C x C — U(R) given by

P 1 ifi+j<n
iy — )
tg'g') {A if i+ > n.

is a twisting.



Theorem

Let C = (g) be a cyclic group of order n and let R*C be its
twisted group algebra over a commutative ring R. Set

n—1
A=] t(e. &)
/=1l

Then RtC = R™ C where t) is as above.
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Let C = (g) be a cyclic group of order n and let R*C be its
twisted group algebra over a commutative ring R. Set

n—1

A=] t(e. &)

(=1

Then RtC = R™ C where t) is as above.

The proof actually shows that R*C and R™ C are the same as sets,
with the same operations, though constructed from different bases.



Theorem

Let C = (g) be a cyclic group of order n and let R*C be its
twisted group algebra over a commutative ring R. Set

n—1

A=] t(e. &)

(=1

Then RtC = R™ C where t) is as above.

The proof actually shows that R*C and R™ C are the same as sets,
with the same operations, though constructed from different bases.

The twisted group algebra of a cyclic group over a commutative
ring is commutative.
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Given a finite Abelian group A, written as a direct product
A= Cp, X - X Cp,, where Cp,, = (gj) is cyclic of order m;, and
invertible elements \; € R, 1 < i <s, set

1, forj+ k< m,
)\iv forj+k2mir

t>\,-(g,jagik) = {

which is a twisting of C,, = (gi) over R.



Twistings for Abelian groups can be studied in a similar way.
Given a finite Abelian group A, written as a direct product
A= Cp, X - X Cp,, where Cp,, = (gj) is cyclic of order m;, and

invertible elements \; € R, 1 < i <s, set

1, forj+ k< m,
)\iv forj+k2mir

t)x,'(gljagik) = {
which is a twisting of C,, = (gi) over R.

We denote by tp the twisting of A defined as follows. Given
a:gil...gsis’ b=gf' --g¥ € Awe set:

s
t/\(av b) = t/\(g]l_l o 'gslsvg‘]l_1 o gés) = H t)\k(g;(kag'/l(k)'
k=1

where A = (Mg, ..., As).
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Then, R*A= R™A for some twisting tp as defined above.
Conversely, a twisted group algebra of the form R®™A is
commutative.
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to coding theory.



Proposition

Let t be a twisting of A over F such that R!A is commutative.
Then, R*A= R™A for some twisting tp as defined above.
Conversely, a twisted group algebra of the form R®™A is
commutative.

The next elementary result is of interest to establish a connection
to coding theory.

Proposition

Let C = (g) be a cyclic group of order n, R a commutative ring
and X an invertible element in R. Let R™ C be the corresponding
twisted group algebra. Then

RIX]

ROC~_ Y1
=X
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We wish to study subgroup idempotents as in group algebras;
however their definition needs to be modified to adapt it to
products with a twisting.
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Proposition

Let C = (g) be a cyclic group of order n and t = ty, with A in a
field F, a twisting of C over F. Given a root o € K, X" — X\ where
K denotes the splitting field of X" — X, we set

I
=

~ 12 o
G=-) a’g.
n-<

[
Il
o

Then, 6a is an idempotent of the twisted group algebra F* C.




We wish to study subgroup idempotents as in group algebras;
however their definition needs to be modified to adapt it to
products with a twisting.

Proposition

Let C = (g) be a cyclic group of order n and t = ty, with A in a
field F, a twisting of C over F. Given a root o € K, X" — X\ where
K denotes the splitting field of X" — X, we set

I
=

~ 12 o
G=-) a’g.
n-<

[
Il
o

Then, 6a is an idempotent of the twisted group aIge/tgra/\I[*“'fA C.
Moreover, if 3 # o is another root of X" — A, then C,C3 = 0.




Lemma

Let KfC be the twisted group algebra of a cyclic group C = (g),
of order n, and K algebraically closed field such that char(K) 1 |G]|.
Set \ as needed and let {a;}i1<i<n be the set of all roots of the
polynomial X" — X\ in K. Then

{Co |1<i<n},

is the set of all primitive idempotents of F*C.




Lemma

Let KfC be the twisted group algebra of a cyclic group C = (g),
of order n, and K algebraically closed field such that char(K) 1 |G]|.
Set \ as needed and let {a;}i1<i<n be the set of all roots of the
polynomial X" — X\ in K. Then

{Co |1<i<n},

is the set of all primitive idempotents of F*C.

As before, this result can be extended to finite Abelian groups.



Theorem

Let A be a finite Abelian group written as a direct product

A= Cp, X+ X Cn,, where Cp,, = (g;) is cyclic of order m;, and ¥
a finite field. Assume that the twisted group algebra F*A is
endowed with a twisting tp as defined above, with

NEF, 1<i<s.

Let K be the splitting field of the polynomial £ = [Ti_,(X™ — \;),
and let R; = {cjj |1 < j < m;} be the set of all roots of the
polynomial X™ — X;, 1 < i < m; in K. For each subset of roots
a=(oj,...,as) €R, we set:

€q = (le)aljl 500 (CmS)asjs’

Then
{ea | € R}

is the set of primitive idempotents of KA.




