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Encontro de Códigos, Reticulados e Informação

IMECC - UNICAMP
2023



Linear Codes

We shall take, as an alphabet A, a finite field F.

In this case, Fn is an n-dimensional vector space over F.

We shall take, as codes, subespaces of Fn of dimensión m < n.

Definition

A code C as above is called a linear code over F.

If d the minimum distance of C, we shall call it a (n,m,d)-code.
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Definition

A linear code C ⊂ Fn is called a cyclic code if for every vector
(a0, a1, . . . , an−2, an−1) in the code, we have that also the vector
(an−1, a0, a1, . . . , an−2) is in the code.

Notice that the definition implies that if (a0, a1, . . . , an−2, an−1) is in the

code, then all the vectors obtained from this one by a cyclic permutation

of its coordinates are also in the code.
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Let

Rn =
F[X ]

〈X n − 1〉
;

We shall denote by [f ] the class of the polynomial f ∈ F[X ] in Rn.

The mapping:

ϕ : Fn → F[X ]

〈X n − 1〉
(a0, a1, . . . , an−2, an−1) ∈ F[X ] 7→ [a0 + a1X + . . . + an−2X

n−2 + an−1X
n−1].

ϕ is an isomorphism of F-vector spaces. Hence A code C ⊂ Fn is
cyclic if and only if ϕ(C) is an ideal of Rn.
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In the case when Cn = 〈a | an = 1〉 = {1, a, a2, . . . , an−1} is a
cyclic group of order n, and F is a field, the elements of FCn are of
the form:

α = α0 + α1a + α2a
2 + · · ·+ αn−1a

n−1.

It is easy to show that

FCn
∼= Rn =

F[X ]

〈X n − 1〉
;

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FCn.
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Group Codes



Definition

A group code is an ideal of a finite group algebra.

In what follows, we shall always assume that char(K ) |6 |G | so all
group algebras considered here will be semisimple and thus, all
ideals of FG are of the form I = FGe, where e ∈ FG is an
idempotent element.
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Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) |6 |G |. The element

Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.

Ĥ is central if and only if H is normal in G .
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Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.
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Let H be a normal subgroup of G . Then, Ĥ is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG . Then:

If e is not a constituent of Ĥ we have that eĤ = 0.

If e is a constituent of Ĥ we have that eĤ = e.

In this last case, we have that FG · e ⊂ FG · Ĥ.
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Denote by T a transversal of H in G . Then, an element
α ∈ FG · e can be written in the form

α =
∑
ν∈T

αννĤ.

If we denote T = {t1, t2, . . . , td} and H = {h1, h2, . . . , hm}, the
explicit expression of α is

α = α1t1h1+α2t2h1+· · ·+αd tdh1+· · ·+α1t1hm+α2t2hm+· · ·+αd tdhm.

The sequence of coefficients of α, when written in this order, is
formed by d repetitions of the subsequence α1, α2, · · ·αd . In terms
of coding theory, this means that the code given by the minimal
ideal FGe is a repetition code. We shall be interested in
idempotents that are not of this type.
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Definition

A primitive idempotent e in the group algebra FG , is an essential
idempotent if e · Ĥ = 0, for every subgroup H 6= (1) in G .

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.

Lemma

Let e ∈ FG be a primitive central idempotent. Then e is essential
if and only if the map π : G → Ge, is a group isomorphism.

Corollary

If G is abelian and FG contains an essential idempotent, then G is
cyclic.
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Assume that G is cyclic of order n = pn1
1 · · · p

nt
t . Then, G can be

written as a direct product G = C1 × · · · × Ct , where Ci is cyclic,
of order pnii , 1 ≤ i ≤ t.

Let Ki be the minimal subgroup of Ci ; i.e. the unique subgroup of
order pi in Ci and denote by ai a generator of this subgroup,
1 ≤ i ≤ t. Set

e0 = (1− K̂1) · · · (1− K̂t)

Then e0 is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent e ∈ FG is
essential if and only if e · e0 = e.
Moreover, e0 is the sum of all essential idempotents of FG .
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Proposition

Let Fq denote a finite field with q elements, C = Cn the cyclic of
order n, with generator g such that (q, n) = 1. Let m be the
multiplicative order of q in the unit group U(Zn). Then

(i) If e is an essential idempotent, then the dimension of FqC · e is
precisely m.

(ii) dim(FqCn)e0 = ϕ(n) where ϕ denotes Euler’s Totient function.

(iii) There exist precisely ϕ(n)/m essential idempotents in FqC .



Proposition

Let Fq denote a finite field with q elements, C = Cn the cyclic of
order n, with generator g such that (q, n) = 1. Let m be the
multiplicative order of q in the unit group U(Zn). Then

(i) If e is an essential idempotent, then the dimension of FqC · e is
precisely m.

(ii) dim(FqCn)e0 = ϕ(n) where ϕ denotes Euler’s Totient function.

(iii) There exist precisely ϕ(n)/m essential idempotents in FqC .



Proposition

Let Fq denote a finite field with q elements, C = Cn the cyclic of
order n, with generator g such that (q, n) = 1. Let m be the
multiplicative order of q in the unit group U(Zn). Then

(i) If e is an essential idempotent, then the dimension of FqC · e is
precisely m.

(ii) dim(FqCn)e0 = ϕ(n) where ϕ denotes Euler’s Totient function.

(iii) There exist precisely ϕ(n)/m essential idempotents in FqC .



Proposition

Let Fq denote a finite field with q elements, C = Cn the cyclic of
order n, with generator g such that (q, n) = 1. Let m be the
multiplicative order of q in the unit group U(Zn). Then

(i) If e is an essential idempotent, then the dimension of FqC · e is
precisely m.

(ii) dim(FqCn)e0 = ϕ(n) where ϕ denotes Euler’s Totient function.

(iii) There exist precisely ϕ(n)/m essential idempotents in FqC .



Applications

Definition (Sabin and Lomonaco (1995))

Let G1 and G2 denote two finite groups of the same order and let
F be a field. Two ideals (codes) I1 ⊂ FG1 and I2 ⊂ FG2 are said to
be combinatorially equivalent if there exists a bijection
γ : G1 → G2 whose linear extension γ : FG1 → FG2 is such that
γ(I1) = I2. The map γ is called a combinatorial equivalence
between I1 and I2.

Theorem (Chalom, Ferraz and PM (2017))

Every minimal ideal in the group algebra of a finite abelian group is
combinatorially equivalent to a minimal ideal in the group algebra
of a cyclic group of the same order.
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Applications

Recall that a binary linear code of dimension k and length n is
called simplex if a generating matrix for the code contains all
possible non zero columns of length k. Since these are 2k − 1 in
number, this matrix must be of size k × (2k − 1) so, we must have
n = 2k − 1.

Theorem (Chalom, Ferraz and PM (2017))

Let C be a binary linear code of dimension k and length
n = 2k − 1. Then C is a simplex code if and only if it is essencial.
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Applications

Let C = {v1, . . . , vm} be a linear code, whose elements we write as
vi = (vi ,1, vi ,2, . . . vi ,n), 1 ≤ i ≤ k − 1, 1 ≤ i ≤ k − 1. We say that
C contains no zero column if, for each index j , 1 ≤ j ≤ n, there
exists at least one vector vi ∈ C such that vi ,j 6= 0.

Theorem (Chalom, Ferraz and PM (2018))

Let C be a binary linear code of constant weight, without zero
columns. Then C is equivalent to a cyclic code which is either
essencial or a repetition code of an essencial one.
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Twisted Group Algebra



Definition

Let G be a group and R a commutative ring whose set of
invertible elements we denote by U(R). Consider a set of symbols
G = {g | g ∈ G}. The twisted group algebra of G over R with
twisting t, denoted RtG , is the set of finite sums

RtG =
{∑

g∈G
agg | ag ∈ R

}
where addition is defined componentwise and multiplication is
given by the following rules

x̄ .ȳ = t(x , y)xy for all x , y ∈ G ,

x̄a = ax̄ for all x ∈ G and a ∈ R,

extended linearly. Here, the map t : G × G → U(R) is called a
twisting or a factor set if, for x , y , z ∈ G we have that

t(g , h).t(gh, `) = t(h, `).t(g , h`).

If also
t(g , 1) = t(1, g) = 1,

the twisting is called normalized.
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There is a close connection between factor sets and 2-cocycles as
used in cohomology, actually both concepts coincide (see, for
example Lectures in Abstract Algebra - Jacobson).

Several results in this area can be proved via cohomological
concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.

Let C = 〈g〉 be a cyclic group of order n and let λ be an invertible
element in R. Then, the map tλ : C × C → U(R) given by

tλ(g i , g j) =

{
1 if i + j < n,
λ if i + j ≥ n.

is a twisting.
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Theorem

Let C = 〈g〉 be a cyclic group of order n and let RtC be its
twisted group algebra over a commutative ring R. Set

λ =
n−1∏
`=1

t(g , g `).

Then RtC ∼= RtλC where tλ is as above.

The proof actually shows that RtC and RtλC are the same as sets,
with the same operations, though constructed from different bases.

Corollary

The twisted group algebra of a cyclic group over a commutative
ring is commutative.
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Twistings for Abelian groups can be studied in a similar way.

Given a finite Abelian group A, written as a direct product
A = Cm1 × · · · × Cms , where Cmi = 〈gi 〉 is cyclic of order mi , and
invertible elements λi ∈ R, 1 ≤ i ≤ s, set

tλi (g
j
i , g

k
i ) =

{
1, for j + k < mi ,

λi , for j + k ≥ mi ,

which is a twisting of Cmi = 〈gi 〉 over R.

We denote by tΛ the twisting of A defined as follows. Given
a = g i1

1 · · · g is
s , b = g j1

1 · · · g
js
s ∈ A we set:

tΛ(a, b) = tΛ(g i1
1 · · · g

is
s , g

j1
1 · · · g

js
s ) =

s∏
k=1

tλk (g ik
k , g

jk
k ).

where Λ = (λ1, . . . , λs).
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Proposition

Let t be a twisting of A over F such that R tA is commutative.
Then, R tA ∼= R tΛA for some twisting tΛ as defined above.
Conversely, a twisted group algebra of the form R tΛA is
commutative.

The next elementary result is of interest to establish a connection
to coding theory.

Proposition

Let C = 〈g〉 be a cyclic group of order n, R a commutative ring
and λ an invertible element in R. Let RtλC be the corresponding
twisted group algebra. Then

RtλC ∼=
R[X ]

(X n − λ)
.
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We wish to study subgroup idempotents as in group algebras;
however their definition needs to be modified to adapt it to
products with a twisting.

Proposition

Let C = 〈g〉 be a cyclic group of order n and t = tλ, with λ in a
field F, a twisting of C over F. Given a root α ∈ K, X n − λ where
K denotes the splitting field of X n − λ, we set

Ĉα =
1

n

n−1∑
j=0

α−j ḡ j .

Then, Ĉα is an idempotent of the twisted group algebra FtλC .
Moreover, if β 6= α is another root of X n − λ, then ĈαĈβ = 0.
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Lemma

Let KtC be the twisted group algebra of a cyclic group C = 〈g〉,
of order n, and K algebraically closed field such that char(K ) - |G |.
Set λ as needed and let {αi}1≤i≤n be the set of all roots of the
polynomial X n − λ in K. Then

{Ĉαi | 1 ≤ i ≤ n},

is the set of all primitive idempotents of FtC .

As before, this result can be extended to finite Abelian groups.
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Theorem

Let A be a finite Abelian group written as a direct product
A = Cm1 × · · · ×Cms , where Cmi = 〈gi 〉 is cyclic of order mi , and F
a finite field. Assume that the twisted group algebra FtA is
endowed with a twisting tΛ as defined above, with
λi ∈ F , 1 ≤ i ≤ s.
Let K be the splitting field of the polynomial f =

∏t
i=1(Xmi − λi ),

and let Ri = {αij | 1 ≤ j ≤ mi} be the set of all roots of the
polynomial Xmi − λi , 1 ≤ i ≤ mi in K. For each subset of roots
α = (α1j1 , . . . , αsjs ) ∈ R, we set:

eα = (̂Cm1)α1j1
· · · (̂Cms )αsjs

,

Then
{eα | α ∈ R}

is the set of primitive idempotents of KtA.


