Essential Idempotents in Algebras and Coding Theory

César Polcino Milies

Instituto de Matemática e Estatística
Universidade de São Paulo

Encontro de Códigos, Reticulados e Informação
IMECC - UNICAMP
2023

Linear Codes

- We shall take, as an alphabet A, a finite field \mathbb{F}.

Linear Codes

- We shall take, as an alphabet A, a finite field \mathbb{F}.
- In this case, \mathbb{F}^{n} is an n-dimensional vector space over \mathbb{F}.

Linear Codes

- We shall take, as an alphabet A, a finite field \mathbb{F}.
- In this case, \mathbb{F}^{n} is an n-dimensional vector space over \mathbb{F}.
- We shall take, as codes, subespaces of \mathbb{F}^{n} of dimensión $m<n$.

Linear Codes

- We shall take, as an alphabet A, a finite field \mathbb{F}.
- In this case, \mathbb{F}^{n} is an n-dimensional vector space over \mathbb{F}.
- We shall take, as codes, subespaces of \mathbb{F}^{n} of dimensión $m<n$.

Definition

A code \mathcal{C} as above is called a linear code over \mathbb{F}.

If d the minimum distance of \mathcal{C}, we shall call it a $(\mathbf{n}, \mathrm{m}, \mathrm{d})$-code.

Definition

A linear code $\mathcal{C} \subset \mathbb{F}^{n}$ is called a cyclic code if for every vector ($a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}$) in the code, we have that also the vector $\left(a_{n-1}, a_{0}, a_{1}, \ldots, a_{n-2}\right)$ is in the code.

Definition

A linear code $\mathcal{C} \subset \mathbb{F}^{n}$ is called a cyclic code if for every vector $\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right)$ in the code, we have that also the vector $\left(a_{n-1}, a_{0}, a_{1}, \ldots, a_{n-2}\right)$ is in the code.

Notice that the definition implies that if $\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right)$ is in the code, then all the vectors obtained from this one by a cyclic permutation of its coordinates are also in the code.

Let

$$
\mathcal{R}_{n}=\frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle}
$$

We shall denote by $[f]$ the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_{n}.

Let

$$
\mathcal{R}_{n}=\frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle}
$$

We shall denote by $[f]$ the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_{n}. The mapping:

$$
\varphi: \mathbb{F}^{n} \rightarrow \frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle}
$$

$$
\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right) \in \mathbb{F}[X] \quad \mapsto \quad\left[a_{0}+a_{1} X+\ldots+a_{n-2} x^{n-2}+a_{n-1} x^{n-1}\right] .
$$

Let

$$
\mathcal{R}_{n}=\frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle}
$$

We shall denote by $[f]$ the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_{n}. The mapping:

$$
\begin{aligned}
\varphi: \mathbb{F}^{n} & \rightarrow \frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle} \\
\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right) \in \mathbb{F}[X] & \rightarrow\left[a_{0}+a_{1} x+\ldots+a_{n-2} x^{n-2}+a_{n-1} x^{n-1}\right] .
\end{aligned}
$$

φ is an isomorphism of \mathbb{F}-vector spaces. Hence A code $\mathcal{C} \subset \mathbb{F}^{n}$ is cyclic if and only if $\varphi(\mathcal{C})$ is an ideal of \mathcal{R}_{n}.

In the case when $C_{n}=\left\langle a \mid a^{n}=1\right\rangle=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ is a cyclic group of order n, and \mathbb{F} is a field, the elements of $\mathbb{F} C_{n}$ are of the form:

$$
\alpha=\alpha_{0}+\alpha_{1} a+\alpha_{2} a^{2}+\cdots+\alpha_{n-1} a^{n-1} .
$$

In the case when $C_{n}=\left\langle a \mid a^{n}=1\right\rangle=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ is a cyclic group of order n, and \mathbb{F} is a field, the elements of $\mathbb{F} C_{n}$ are of the form:

$$
\alpha=\alpha_{0}+\alpha_{1} a+\alpha_{2} a^{2}+\cdots+\alpha_{n-1} a^{n-1} .
$$

It is easy to show that

$$
\mathbb{F} C_{n} \cong \mathcal{R}_{n}=\frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle}
$$

In the case when $C_{n}=\left\langle a \mid a^{n}=1\right\rangle=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ is a cyclic group of order n, and \mathbb{F} is a field, the elements of $\mathbb{F} C_{n}$ are of the form:

$$
\alpha=\alpha_{0}+\alpha_{1} a+\alpha_{2} a^{2}+\cdots+\alpha_{n-1} a^{n-1}
$$

It is easy to show that

$$
\mathbb{F} C_{n} \cong \mathcal{R}_{n}=\frac{\mathbb{F}[X]}{\left\langle X^{n}-1\right\rangle}
$$

Hence, to study cyclic codes is equivalent to study ideals of a group algebra of the form $\mathbb{F} C_{n}$.

Group Codes

Definition

A group code is an ideal of a finite group algebra.

Definition

A group code is an ideal of a finite group algebra.

In what follows, we shall always assume that $\operatorname{char}(K) \nmid|G|$ so all group algebras considered here will be semisimple and thus, all ideals of $\mathbb{F} G$ are of the form $I=\mathbb{F} G e$, where $e \in \mathbb{F} G$ is an idempotent element.

Idempotents from subgroups

Let H be a subgroup of a finite group G and let \mathbb{F} be a field such that $\operatorname{car}(\mathbb{F}) \nmid|G|$. The element

$$
\widehat{H}=\frac{1}{|H|} \sum_{h \in H} h
$$

is an idempotent of the group algebra $\mathbb{F} G$, called the idempotent determined by H.

Idempotents from subgroups

Let H be a subgroup of a finite group G and let \mathbb{F} be a field such that $\operatorname{car}(\mathbb{F}) \nmid|G|$. The element

$$
\widehat{H}=\frac{1}{|H|} \sum_{h \in H} h
$$

is an idempotent of the group algebra $\mathbb{F} G$, called the idempotent determined by H.
\widehat{H} is central if and only if H is normal in G.

Essential idempotents

Let H be a normal subgroup of G. Then, \widehat{H} is a central idempotent and, as such, a sum of primitive central idempotents called its constituents.

Let H be a normal subgroup of G. Then, \widehat{H} is a central idempotent and, as such, a sum of primitive central idempotents called its constituents.

Let e be a primitive central idempotent of $\mathbb{F} G$. Then:

- If e is not a constituent of \widehat{H} we have that $e \widehat{H}=0$.

Let H be a normal subgroup of G. Then, \widehat{H} is a central idempotent and, as such, a sum of primitive central idempotents called its constituents.

Let e be a primitive central idempotent of $\mathbb{F} G$. Then:

- If e is not a constituent of \widehat{H} we have that $e \widehat{H}=0$.
- If e is a constituent of \widehat{H} we have that $e \widehat{H}=e$.

Let H be a normal subgroup of G. Then, \widehat{H} is a central idempotent and, as such, a sum of primitive central idempotents called its constituents.

Let e be a primitive central idempotent of $\mathbb{F} G$. Then:

- If e is not a constituent of \widehat{H} we have that $e \widehat{H}=0$.
- If e is a constituent of \widehat{H} we have that $e \widehat{H}=e$.

In this last case, we have that $\mathbb{F} G \cdot e \subset \mathbb{F} G \cdot \widehat{H}$.

Denote by T a transversal of H in G. Then, an element $\alpha \in \mathbb{F} G \cdot e$ can be written in the form

$$
\alpha=\sum_{\nu \in T} \alpha_{\nu} \nu \hat{H}
$$

Denote by T a transversal of H in G. Then, an element $\alpha \in \mathbb{F} G \cdot e$ can be written in the form

$$
\alpha=\sum_{\nu \in T} \alpha_{\nu} \nu \hat{H}
$$

If we denote $T=\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$ and $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, the explicit expression of α is
$\alpha=\alpha_{1} t_{1} h_{1}+\alpha_{2} t_{2} h_{1}+\cdots+\alpha_{d} t_{d} h_{1}+\cdots+\alpha_{1} t_{1} h_{m}+\alpha_{2} t_{2} h_{m}+\cdots+\alpha_{d} t_{d} h_{m}$.

Denote by T a transversal of H in G. Then, an element $\alpha \in \mathbb{F} G \cdot e$ can be written in the form

$$
\alpha=\sum_{\nu \in T} \alpha_{\nu} \nu \hat{H}
$$

If we denote $T=\left\{t_{1}, t_{2}, \ldots, t_{d}\right\}$ and $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, the explicit expression of α is
$\alpha=\alpha_{1} t_{1} h_{1}+\alpha_{2} t_{2} h_{1}+\cdots+\alpha_{d} t_{d} h_{1}+\cdots+\alpha_{1} t_{1} h_{m}+\alpha_{2} t_{2} h_{m}+\cdots+\alpha_{d} t_{d} h_{m}$.
The sequence of coefficients of α, when written in this order, is formed by d repetitions of the subsequence $\alpha_{1}, \alpha_{2}, \cdots \alpha_{d}$. In terms of coding theory, this means that the code given by the minimal ideal $\mathbb{F G e}$ is a repetition code. We shall be interested in idempotents that are not of this type.

Definition

A primitive idempotent e in the group algebra $\mathbb{F} G$, is an essential idempotent if $e \cdot \widehat{H}=0$, for every subgroup $H \neq(1)$ in G.

A minimal ideal of $\mathbb{F} G$ will be called essential ideal if it is generated by an essential idempotent.

Definition

A primitive idempotent e in the group algebra $\mathbb{F} G$, is an essential idempotent if $e \cdot \widehat{H}=0$, for every subgroup $H \neq(1)$ in G.

A minimal ideal of $\mathbb{F} G$ will be called essential ideal if it is generated by an essential idempotent.

Lemma
Let $e \in \mathbb{F} G$ be a primitive central idempotent. Then e is essential if and only if the map $\pi: G \rightarrow G e$, is a group isomorphism.

Definition

A primitive idempotent e in the group algebra $\mathbb{F} G$, is an essential idempotent if $e \cdot \widehat{H}=0$, for every subgroup $H \neq(1)$ in G.

A minimal ideal of $\mathbb{F} G$ will be called essential ideal if it is generated by an essential idempotent.

Lemma

Let $e \in \mathbb{F} G$ be a primitive central idempotent. Then e is essential if and only if the map $\pi: G \rightarrow G e$, is a group isomorphism.

Corollary

If G is abelian and $\mathbb{F} G$ contains an essential idempotent, then G is cyclic.

Assume that G is cyclic of order $n=p_{1}^{n_{1}} \cdots p_{t}^{n_{t}}$. Then, G can be written as a direct product $G=C_{1} \times \cdots \times C_{t}$, where C_{i} is cyclic, of order $p_{i}^{n_{i}}, 1 \leq i \leq t$.

Assume that G is cyclic of order $n=p_{1}^{n_{1}} \cdots p_{t}^{n_{t}}$. Then, G can be written as a direct product $G=C_{1} \times \cdots \times C_{t}$, where C_{i} is cyclic, of order $p_{i}^{n_{i}}, 1 \leq i \leq t$.
Let K_{i} be the minimal subgroup of C_{i}; i.e. the unique subgroup of order p_{i} in C_{i} and denote by a_{i} a generator of this subgroup,
$1 \leq i \leq t$. Set

$$
e_{0}=\left(1-\widehat{K_{1}}\right) \cdots\left(1-\widehat{K_{t}}\right)
$$

Then e_{0} is a non-zero central idempotent.

Assume that G is cyclic of order $n=p_{1}^{n_{1}} \cdots p_{t}^{n_{t}}$. Then, G can be written as a direct product $G=C_{1} \times \cdots \times C_{t}$, where C_{i} is cyclic, of order $p_{i}^{n_{i}}, 1 \leq i \leq t$.
Let K_{i} be the minimal subgroup of C_{i}; i.e. the unique subgroup of order p_{i} in C_{i} and denote by a_{i} a generator of this subgroup, $1 \leq i \leq t$. Set

$$
e_{0}=\left(1-\widehat{K_{1}}\right) \cdots\left(1-\widehat{K_{t}}\right)
$$

Then e_{0} is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent $e \in \mathbb{F} G$ is essential if and only if $e \cdot e_{0}=e$.
Moreover, e_{0} is the sum of all essential idempotents of $\mathbb{F} G$.

Proposition

Let \mathbb{F}_{q} denote a finite field with q elements, $C=C_{n}$ the cyclic of order n, with generator g such that $(q, n)=1$. Let m be the multiplicative order of \bar{q} in the unit group $U\left(\mathbb{Z}_{n}\right)$. Then

Proposition

Let \mathbb{F}_{q} denote a finite field with q elements, $C=C_{n}$ the cyclic of order n, with generator g such that $(q, n)=1$. Let m be the multiplicative order of \bar{q} in the unit group $U\left(\mathbb{Z}_{n}\right)$. Then
(i) If e is an essential idempotent, then the dimension of $\mathbb{F}_{q} C \cdot e$ is precisely m.

Proposition

Let \mathbb{F}_{q} denote a finite field with q elements, $C=C_{n}$ the cyclic of order n, with generator g such that $(q, n)=1$. Let m be the multiplicative order of \bar{q} in the unit group $U\left(\mathbb{Z}_{n}\right)$. Then
(i) If e is an essential idempotent, then the dimension of $\mathbb{F}_{q} C \cdot e$ is precisely m.
(ii) $\operatorname{dim}\left(\mathbb{F}_{q} C_{n}\right) e_{0}=\varphi(n)$ where φ denotes Euler's Totient function.

Proposition

Let \mathbb{F}_{q} denote a finite field with q elements, $C=C_{n}$ the cyclic of order n, with generator g such that $(q, n)=1$. Let m be the multiplicative order of \bar{q} in the unit group $U\left(\mathbb{Z}_{n}\right)$. Then
(i) If e is an essential idempotent, then the dimension of $\mathbb{F}_{q} C \cdot e$ is precisely m.
(ii) $\operatorname{dim}\left(\mathbb{F}_{q} C_{n}\right) e_{0}=\varphi(n)$ where φ denotes Euler's Totient function.
(iii) There exist precisely $\varphi(n) / m$ essential idempotents in $\mathbb{F}_{q} C$.

Applications

Definition (Sabin and Lomonaco (1995))

Let G_{1} and G_{2} denote two finite groups of the same order and let \mathbb{F} be a field. Two ideals (codes) $I_{1} \subset \mathbb{F} G_{1}$ and $I_{2} \subset \mathbb{F} G_{2}$ are said to be combinatorially equivalent if there exists a bijection $\gamma: G_{1} \rightarrow G_{2}$ whose linear extension $\bar{\gamma}: \mathbb{F} G_{1} \rightarrow \mathbb{F} G_{2}$ is such that $\bar{\gamma}\left(I_{1}\right)=I_{2}$. The map $\bar{\gamma}$ is called a combinatorial equivalence between I_{1} and I_{2}.

Applications

Definition (Sabin and Lomonaco (1995))

Let G_{1} and G_{2} denote two finite groups of the same order and let \mathbb{F} be a field. Two ideals (codes) $I_{1} \subset \mathbb{F} G_{1}$ and $I_{2} \subset \mathbb{F} G_{2}$ are said to be combinatorially equivalent if there exists a bijection $\gamma: G_{1} \rightarrow G_{2}$ whose linear extension $\bar{\gamma}: \mathbb{F} G_{1} \rightarrow \mathbb{F} G_{2}$ is such that $\bar{\gamma}\left(I_{1}\right)=I_{2}$. The map $\bar{\gamma}$ is called a combinatorial equivalence between I_{1} and I_{2}.

Theorem (Chalom, Ferraz and PM (2017))

Every minimal ideal in the group algebra of a finite abelian group is combinatorially equivalent to a minimal ideal in the group algebra of a cyclic group of the same order.

Applications

Recall that a binary linear code of dimension k and length n is called simplex if a generating matrix for the code contains all possible non zero columns of length k. Since these are $2^{k}-1$ in number, this matrix must be of size $k \times\left(2^{k}-1\right)$ so, we must have $n=2^{k}-1$.

Applications

Recall that a binary linear code of dimension k and length n is called simplex if a generating matrix for the code contains all possible non zero columns of length k. Since these are $2^{k}-1$ in number, this matrix must be of size $k \times\left(2^{k}-1\right)$ so, we must have $n=2^{k}-1$.

Theorem (Chalom, Ferraz and PM (2017))

Let \mathcal{C} be a binary linear code of dimension k and length $n=2^{k}-1$. Then \mathcal{C} is a simplex code if and only if it is essencial.

Applications

Let $\mathcal{C}=\left\{v_{1}, \ldots, v_{m}\right\}$ be a linear code, whose elements we write as $v_{i}=\left(v_{i, 1}, v_{i, 2}, \ldots v_{i, n}\right), 1 \leq i \leq k-1,1 \leq i \leq k-1$. We say that \mathcal{C} contains no zero column if, for each index $j, 1 \leq j \leq n$, there exists at least one vector $v_{i} \in \mathcal{C}$ such that $v_{i, j} \neq 0$.

Applications

Let $\mathcal{C}=\left\{v_{1}, \ldots, v_{m}\right\}$ be a linear code, whose elements we write as $v_{i}=\left(v_{i, 1}, v_{i, 2}, \ldots v_{i, n}\right), 1 \leq i \leq k-1,1 \leq i \leq k-1$. We say that \mathcal{C} contains no zero column if, for each index $j, 1 \leq j \leq n$, there exists at least one vector $v_{i} \in \mathcal{C}$ such that $v_{i, j} \neq 0$.

Theorem (Chalom, Ferraz and PM (2018))

Let \mathcal{C} be a binary linear code of constant weight, without zero columns. Then \mathcal{C} is equivalent to a cyclic code which is either essencial or a repetition code of an essencial one.

Twisted Group Algebra

Definition

Let G be a group and R a commutative ring whose set of invertible elements we denote by $U(R)$. Consider a set of symbols $\bar{G}=\{\bar{g} \mid g \in G\}$. The twisted group algebra of G over R with twisting t, denoted $R^{t} G$, is the set of finite sums

$$
R^{t} G=\left\{\sum_{g \in G} a_{g} \bar{g} \mid a_{g} \in R\right\}
$$

where addition is defined componentwise and multiplication is given by the following rules

Definition

Let G be a group and R a commutative ring whose set of invertible elements we denote by $U(R)$. Consider a set of symbols $\bar{G}=\{\bar{g} \mid g \in G\}$. The twisted group algebra of G over R with twisting t, denoted $R^{t} G$, is the set of finite sums

$$
R^{t} G=\left\{\sum_{g \in G} a_{g} \bar{g} \mid a_{g} \in R\right\}
$$

where addition is defined componentwise and multiplication is given by the following rules

$$
\begin{aligned}
\bar{x} \cdot \bar{y} & =t(x, y) \overline{x y} \quad \text { for all } x, y \in G, \\
\bar{x} a & =a \bar{x} \quad \text { for all } x \in G \text { and } a \in R,
\end{aligned}
$$

extended linearly.

Definition

Let G be a group and R a commutative ring whose set of invertible elements we denote by $U(R)$. Consider a set of symbols $\bar{G}=\{\bar{g} \mid g \in G\}$. The twisted group algebra of G over R with twisting t, denoted $R^{t} G$, is the set of finite sums

$$
R^{t} G=\left\{\sum_{g \in G} a_{g} \bar{g} \mid a_{g} \in R\right\}
$$

where addition is defined componentwise and multiplication is given by the following rules

$$
\begin{aligned}
\bar{x} \cdot \bar{y} & =t(x, y) \overline{x y} \quad \text { for all } x, y \in G, \\
\bar{x} a & =a \bar{x} \quad \text { for all } x \in G \text { and } a \in R,
\end{aligned}
$$

extended linearly. Here, the map $t: G \times G \rightarrow U(R)$ is called a twisting or a factor set if, for $x, y, z \in G$ we have that

$$
t(g, h) \cdot t(g h, \ell)=t(h, \ell) \cdot t(g, h \ell)
$$

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson).

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson).
Several results in this area can be proved via cohomological concepts but presently we shall use only classical ring theory.

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson).
Several results in this area can be proved via cohomological concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.

There is a close connection between factor sets and 2-cocycles as used in cohomology, actually both concepts coincide (see, for example Lectures in Abstract Algebra - Jacobson).
Several results in this area can be proved via cohomological concepts but presently we shall use only classical ring theory.

We begin with a very special example of twisting.
Let $C=\langle g\rangle$ be a cyclic group of order n and let λ be an invertible element in R. Then, the map $t_{\lambda}: C \times C \rightarrow U(R)$ given by

$$
t_{\lambda}\left(g^{i}, g^{j}\right)= \begin{cases}1 & \text { if } i+j<n \\ \lambda & \text { if } i+j \geq n\end{cases}
$$

is a twisting.

Theorem

Let $C=\langle g\rangle$ be a cyclic group of order n and let $R^{t} C$ be its twisted group algebra over a commutative ring R. Set

$$
\lambda=\prod_{\ell=1}^{n-1} t\left(g, g^{\ell}\right)
$$

Then $R^{t} C \cong R^{t_{\lambda}} C$ where t_{λ} is as above.

Theorem

Let $C=\langle g\rangle$ be a cyclic group of order n and let $R^{t} C$ be its twisted group algebra over a commutative ring R. Set

$$
\lambda=\prod_{\ell=1}^{n-1} t\left(g, g^{\ell}\right)
$$

Then $R^{t} C \cong R^{t_{\lambda}} C$ where t_{λ} is as above.

The proof actually shows that $R^{t} C$ and $R^{t_{\lambda}} C$ are the same as sets, with the same operations, though constructed from different bases.

Theorem

Let $C=\langle g\rangle$ be a cyclic group of order n and let $R^{t} C$ be its twisted group algebra over a commutative ring R. Set

$$
\lambda=\prod_{\ell=1}^{n-1} t\left(g, g^{\ell}\right)
$$

Then $R^{t} C \cong R^{t_{\lambda}} C$ where t_{λ} is as above.

The proof actually shows that $R^{t} C$ and $R^{t_{\lambda}} C$ are the same as sets, with the same operations, though constructed from different bases.

Corollary

The twisted group algebra of a cyclic group over a commutative ring is commutative.

Twistings for Abelian groups can be studied in a similar way.

Twistings for Abelian groups can be studied in a similar way.
Given a finite Abelian group A, written as a direct product $A=C_{m_{1}} \times \cdots \times C_{m_{s}}$, where $C_{m_{i}}=\left\langle g_{i}\right\rangle$ is cyclic of order m_{i}, and invertible elements $\lambda_{i} \in R, 1 \leq i \leq s$, set

$$
t_{\lambda_{i}}\left(g_{i}^{j}, g_{i}^{k}\right)= \begin{cases}1, & \text { for } j+k<m_{i} \\ \lambda_{i}, & \text { for } j+k \geq m_{i}\end{cases}
$$

which is a twisting of $C_{m_{i}}=\left\langle g_{i}\right\rangle$ over R.

Twistings for Abelian groups can be studied in a similar way.
Given a finite Abelian group A, written as a direct product $A=C_{m_{1}} \times \cdots \times C_{m_{s}}$, where $C_{m_{i}}=\left\langle g_{i}\right\rangle$ is cyclic of order m_{i}, and invertible elements $\lambda_{i} \in R, 1 \leq i \leq s$, set

$$
t_{\lambda_{i}}\left(g_{i}^{j}, g_{i}^{k}\right)= \begin{cases}1, & \text { for } j+k<m_{i} \\ \lambda_{i}, & \text { for } j+k \geq m_{i}\end{cases}
$$

which is a twisting of $C_{m_{i}}=\left\langle g_{i}\right\rangle$ over R.
We denote by t_{Λ} the twisting of A defined as follows. Given $a=g_{1}^{i_{1}} \cdots g_{s}^{i_{s}}, \quad b=g_{1}^{j_{1}} \cdots g_{s}^{j_{s}} \in A$ we set:

$$
t_{\Lambda}(a, b)=t_{\Lambda}\left(g_{1}^{i_{1}} \cdots g_{s}^{i_{s}}, g_{1}^{j_{1}} \cdots g_{s}^{j_{s}}\right)=\prod_{k=1}^{s} t_{\lambda_{k}}\left(g_{k}^{i_{k}}, g_{k}^{j_{k}}\right)
$$

where $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$.

Proposition

Let t be a twisting of A over \mathbb{F} such that $R^{t} A$ is commutative. Then, $R^{t} A \cong R^{t_{\Lambda}} A$ for some twisting t_{Λ} as defined above.
Conversely, a twisted group algebra of the form $R^{t_{\Lambda}} A$ is commutative.

Proposition

Let t be a twisting of A over \mathbb{F} such that $R^{t} A$ is commutative. Then, $R^{t} A \cong R^{t_{\Lambda}} A$ for some twisting t_{Λ} as defined above. Conversely, a twisted group algebra of the form $R^{t_{\Lambda}} A$ is commutative.

The next elementary result is of interest to establish a connection to coding theory.

Proposition

Let t be a twisting of A over \mathbb{F} such that $R^{t} A$ is commutative. Then, $R^{t} A \cong R^{t_{\Lambda}} A$ for some twisting t_{Λ} as defined above.
Conversely, a twisted group algebra of the form $R^{t_{\Lambda}} A$ is commutative.

The next elementary result is of interest to establish a connection to coding theory.

Proposition

Let $C=\langle g\rangle$ be a cyclic group of order n, R a commutative ring and λ an invertible element in R. Let $R^{t_{\lambda}} C$ be the corresponding twisted group algebra. Then

$$
R^{t_{\lambda}} C \cong \frac{R[X]}{\left(X^{n}-\lambda\right)}
$$

We wish to study subgroup idempotents as in group algebras; however their definition needs to be modified to adapt it to products with a twisting.

We wish to study subgroup idempotents as in group algebras; however their definition needs to be modified to adapt it to products with a twisting.

Proposition

Let $C=\langle g\rangle$ be a cyclic group of order n and $t=t_{\lambda}$, with λ in a field \mathbb{F}, a twisting of C over \mathbb{F}. Given a root $\alpha \in \mathbb{K}, X^{n}-\lambda$ where \mathbb{K} denotes the splitting field of $X^{n}-\lambda$, we set

$$
\widehat{C}_{\alpha}=\frac{1}{n} \sum_{j=0}^{n-1} \alpha^{-j} \bar{g}^{j}
$$

Then, \widehat{C}_{α} is an idempotent of the twisted group algebra $\mathbb{F}^{t_{\lambda}} C$.

We wish to study subgroup idempotents as in group algebras; however their definition needs to be modified to adapt it to products with a twisting.

Proposition

Let $C=\langle g\rangle$ be a cyclic group of order n and $t=t_{\lambda}$, with λ in a field \mathbb{F}, a twisting of C over \mathbb{F}. Given a root $\alpha \in \mathbb{K}, X^{n}-\lambda$ where \mathbb{K} denotes the splitting field of $X^{n}-\lambda$, we set

$$
\widehat{C}_{\alpha}=\frac{1}{n} \sum_{j=0}^{n-1} \alpha^{-j} \bar{g}^{j}
$$

Then, \widehat{C}_{α} is an idempotent of the twisted group algebra $\mathbb{F}^{t_{\lambda}} C$. Moreover, if $\beta \neq \alpha$ is another root of $X^{n}-\lambda$, then $\widehat{C}_{\alpha} \widehat{C}_{\beta}=0$.

Lemma

Let $\mathbb{K}^{t} C$ be the twisted group algebra of a cyclic group $C=\langle g\rangle$, of order n, and \mathbb{K} algebraically closed field such that $\operatorname{char}(K) \nmid|G|$. Set λ as needed and let $\left\{\alpha_{i}\right\}_{1 \leq i \leq n}$ be the set of all roots of the polynomial $X^{n}-\lambda$ in \mathbb{K}. Then

$$
\left\{\widehat{C}_{\alpha_{i}} \mid 1 \leq i \leq n\right\}
$$

is the set of all primitive idempotents of $\mathbb{F}^{t} C$.

Lemma

Let $\mathbb{K}^{t} C$ be the twisted group algebra of a cyclic group $C=\langle g\rangle$, of order n, and \mathbb{K} algebraically closed field such that $\operatorname{char}(K) \nmid|G|$. Set λ as needed and let $\left\{\alpha_{i}\right\}_{1 \leq i \leq n}$ be the set of all roots of the polynomial $X^{n}-\lambda$ in \mathbb{K}. Then

$$
\left\{\widehat{C}_{\alpha_{i}} \mid 1 \leq i \leq n\right\}
$$

is the set of all primitive idempotents of $\mathbb{F}^{t} C$.
As before, this result can be extended to finite Abelian groups.

Theorem

Let A be a finite Abelian group written as a direct product $A=C_{m_{1}} \times \cdots \times C_{m_{s}}$, where $C_{m_{i}}=\left\langle g_{i}\right\rangle$ is cyclic of order m_{i}, and \mathbb{F} a finite field. Assume that the twisted group algebra $\mathbb{F}^{t} A$ is endowed with a twisting t_{Λ} as defined above, with $\lambda_{i} \in F, 1 \leq i \leq s$.
Let \mathbb{K} be the splitting field of the polynomial $f=\prod_{i=1}^{t}\left(X^{m_{i}}-\lambda_{i}\right)$, and let $\mathcal{R}_{i}=\left\{\alpha_{i j} \mid 1 \leq j \leq m_{i}\right\}$ be the set of all roots of the polynomial $X^{m_{i}}-\lambda_{i}, 1 \leq i \leq m_{i}$ in \mathbb{K}. For each subset of roots $\alpha=\left(\alpha_{1 j_{1}}, \ldots, \alpha_{j_{j_{s}}}\right) \in \mathcal{R}$, we set:

$$
e_{\alpha}={\widehat{\left(C_{m_{1}}\right)}}_{\alpha_{1_{1}}} \cdots{\widehat{\left(C_{m_{s}}\right)}}_{\alpha_{s_{j}}},
$$

Then

$$
\left\{e_{\alpha} \mid \alpha \in \mathcal{R}\right\}
$$

is the set of primitive idempotents of $\mathbb{K}^{t} A$.

