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Summary

 Gaussian Channel (Discrete time AWGN)

 Gaussian Channel (Continuous time, band limited)

 Gaussian Multiple Access Channel

 Gaussian Broadcast Channel

 Gaussian Interference Channel - standard form

 Model 1:   Z-Interference Channel

 Model 2:   Symmetric Interference Channel



The Gaussian Channel

 The Gaussian Channel Problem:

 W  {1,2,…,2𝑛𝑅} = message set of rate R

 X = (x1 x2 … xn) = codeword input to channel

 Y = (y1 y2 … yn) = codeword output from channel


𝑊= decoded message              P(error) = P{W  𝑊}

𝑊W
X Y

Channel 

Encoder

Channel 

Decoder

Z~N (0, N I)

+

Power constraint: EX2≤P



The Gaussian Channel

𝑊W X YChannel  

Encoder

Channel  

Decoder

Z~N (0, N I)

+

Power Constraint:  EX2≤P



The Gaussian Channel

 Using the channel n times:

Xn Yn
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The Gaussian Channel



 C𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶 = max 𝐼(𝑋; 𝑌)

 𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑌 𝑋 = ℎ 𝑌 − ℎ 𝑋 + 𝑍|𝑋

 = ℎ 𝑌 − ℎ 𝑍 ≤
1

2
log 2πe 𝑃 + 𝑁 −

1

2
log 2πe𝑁

 =
1

2
log 1 +

𝑃

𝑁
bits/transmission

f(x): EX2≤P



The Gaussian Channel



 The capacity of the discrete time additive

Gaussian channel:

 𝐶 =
1

2
log 1 +

𝑃

𝑁
bits/transmission

 achieved with X ~ N(0 , P).



Bandlimited Gaussian Channel

 Consider the channel with continuous waveform  inputs x(t)

with power constraint (
1

𝑇
0
𝑇
𝑥2 𝑡 𝑑𝑡 ≤ 𝑃) and Bandwidth 

limited to W. The channel has white Gaussian noise with 

power spectral density N0/2 watt/Hz.

 In the interval (0,T) we can specify the code waveform by 

2WT samples (Nyquist criterion). We can transmit these 

samples over discrete time Gaussian channels with noise 

variance N0/2. This gives

 𝐶 = 𝑊 log(1+ 
𝑃

𝑁0𝑊
)  bit/second



Bandlimited Gaussian Channel



 𝐶 = 𝑊 log(1+ 
𝑃

𝑁0𝑊
)  bit/second

 Note: If W→ 

 we have C = 
𝑃

𝑁0
𝑙𝑜𝑔2𝑒 bits/second.



Bandlimited Gaussian Channel

 Let 
𝑅

𝑊
be the spectral density  in bits per second 

per Hertz. Also let 𝑃 = 𝐸𝑏𝑅 where 𝐸𝑏 is the 

available energy per information bit.

 We get 



𝑅

𝑊
≤

𝐶

𝑊
= log(1+ 

𝐸𝑏𝑅

𝑁0𝑊
)  bit/second.

 Thus 



𝐸𝑏

𝑁0
≥

2−1


This relation defines the so called Shannon Bound.



The Shannon Bound



𝐸𝑏

𝑁0
≥

2−1


𝐸𝑏
𝑁0

𝐸𝑏

𝑁0
(dB)

→0 0.69 -1.59

0.1 0.718 -1.44

0.25 0.757 -1.21

0.5 0.828 -0.82

1 1 0

2 1.5 1.76

4 3.75 5.74

8 31.87 15.03
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Shannon’s Water Filling Solution



Parallel Gaussian Channels



2.5

3

2

1



Example of Water Filling

 Channels with noise levels 2, 1 and 3.

 Available power = 2

 Capacity= 
1

2
log (1+

0.5

2
) + 

1

2
log (1+

1.5

1
) + 

1

2
log (1+

0

3
) 

 Level of noise + signal power = 2.5

 No power allocated to the third channel.



Parallel Gaussian Channels
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Differential capacity

Discrete time channel seen as a 

unit band contínuous time channel



Multiplex strategies (TDMA, FDMA)

j



P

j


σ𝐶𝑗 = 
1

2
log(1 +

𝑃

𝑁
)Aggregate capacity::



Multiplex strategies (non-orthonal CDMA)

Discrete memoryless channel as a band limited channel

j

P

j
1

2
log(1 +

𝑃

𝑁+ 𝑗−1 𝑃
)

σ𝐶𝑗 = 
1

2
log(1 +

𝑀𝑃

𝑁
)

j=1

M

Aggregate capacity::



TDMA or FDMA   versus   CDMA



Number of 

Users

Aggregate Power

Bandwidth limitation (2WT dimensions)

Non-orthogonal CDMA (log has no cap)

Orthogonal schemes:



Multiple User Information Theory

 Some building blocks:

 Multiple Access Channels (MACs)

 Broadcast Channels (BCs)

 Interference Channels (IFCs)

 Relay Channels (RCs)

 Note: These channels have their discrete time and
continuous time versions. 



Multiple Access Channel



Gaussian Broadcast Channel



Superposition coding

N2

(1-)P

P

1

P



Superposition coding

N2

(1-)P

P

1

P



Discrete Memoryless Interference Channel

 Two-user case:

Encoder 1 Decoder 1

Encoder 2 Decoder 2

M1

X2M2

X1 Y1

Y2

P(y1,y2|x1,x2)

M1

M2

^

^



Standard Gaussian Interference Channel

Power P1

Power P2

a

b

W1

W2

W1

W2

^

^ 



Symmetric Gaussian Interference Channel

Power P

Power P



Z-Gaussian Interference Channel



The possibilities:

Things that we can do with interference:

1. Ignore (take interference as noise (IAN)

2. Avoid (divide the signal space (TDM/FDM))

3. Partially decode both interfering signals

4. Partially decode one, fully decode the other

5. Fully decode both (only good for strong inter-
ference, a≥1)



Brief history

 Carleial (1975): Very strong interference does not

reduce capacity (a2 ≥ 1+P)

 Sato (1981), Han and Kobayashi (1981): Strong 

interference (a2 ≥ 1) :  IFC behaves like 2 MACs

 Motahari, Khandani (2009), Shang, Kramer and

Chen (2009), Annapureddy, Veeravalli (2009): 

Very weak interference (2a(1+a2P) ≤ 1) :

Treat interference as noise (IAN)



History (continued)

 Sason (2004): Symmetrical superposition to beat 

TDM – found part of optimal choice for α

 Etkin, Tse, Wang (2008): capacity to within 1 bit,  

good heuristical choice of αP=1/a2



Han and Kobayashi Region

 R1 <  I (X1 ;Y1 | U2,Q)

 R2 <  I (X2 ;Y2 | U1,Q)

 R1 + R2 <  I (X1,U2;Y1|Q)+ I(X2;Y2|U1,U2,Q)

 R1 + R2 <  I (X2,U1;Y2|Q)+ I(X1;Y1|U1,U2,Q)

 R1 + R2 <  I (X1,U2;Y1|U1,Q)+ I(X2,U1;Y2|U2,Q)

 2R1+ R2 < I (X1,U2;Y1|Q)+I(X1;Y1|U1,U2,Q)+I(X2,U1;Y2|U2,Q)

 R1+ 2R2 < I (X2,U1;Y2|Q)+I(X2;Y2|U1,U2,Q)+I(X1,U2;Y1|U1,Q)

 for some p(q) p(u1,x1|q) p(u2,x2|q)



Model 1: Z interference Channels

❑ Z-Gaussian Interference Channel as a degraded

interference channel

❑ Discrete Time Channel as a band limited channel

❑ Multiplex Region: growing Noisebergs

❑ Overflow Region: back to superposition



Degraded Gaussian Interference Channel



Degraded Interference Channel

- One Extreme Point  (Sato’s point)



Degraded Interference Channel

- Another Extreme Point



Intermediary Points (Multiplex Region) 



Admissible region for (, h)



Intermediary Point (Overflow Region)



Admissible region

Q1=1

Q2 = 1

a =  0.5

N2 = 3



h



The Z-Gaussian Interference Channel Rate Region

Q1=1

Q2 = 1

a =  0.5

N2 = 3

R2 

R1 



Admissible region

Q1=1

Q2 = 1

a =  0.99

N2 = 0.02



h



Q1=1

Q2 = 1

a =  0.99

N2 = 0.02

The Z-Gaussian Interference Channel Rate Region

R2 

R1 



Remarks

❑ This is Han-Kobayashi region for Gaussian 

signaling (ISIT, 2023)

❑ Simple 2-D parameter space: (, h)

❑ Need entropy power-like inequality to 

establish capacity region 



Model 2: Symmetric Gaussian Interference Channel

Power P

Power P



Symmetric Interference Channels

 Discrete time channel seen as a band limited

channel – differential capacity

❑ Concave envelopes

❑ Symmetric and Asymmetric Superposition

❑ Phase transitions in parameter space



Differential capacity

Discrete time channel seen as a band limited channel



Interference channel: Spectra at Y1 and Y2

 At Y1 At Y2

Power P Power P

Interference a2P Interference a2P

Noise Noise

R1+R2 ≤log (1+ 
𝑃

1+𝑎2𝑃
)IAN:



Interference Channel: TDM/FDM:

Signal

P

Signal

P

At Y1
At Y2

R1+R2≤
1

2
log(1 + 2𝑃)

Noise Noise

a2P a2P



Concave Envelope

IAN vs TDM/FDM, a2=0.25

Tangent points TDM

IAN

IAN

TDM

Power P

Rate Sum



Multiplex domination

IAN vs TDM/FDM, a2=0.5

Power P

IAN

TDM

No intersection beyond a2=0.5

Rate Sum



Interference as Noise and TDM/FDM

IAN

TDM

Superposition prone region

a2+a4 P >1



Rate Sum for IAN and TDM/FDM

 Insert 3D plot

IAN

TDM/FDM



Superposition: partially decoding

 At Y1 At Y2

Noise Noise

V1 αP

V1 a2αPV2 a2αP

V2 αP

U1 (1-α)P

U1 a2(1-α)P

U2 (1-α)P

U2 a2(1-α)P

R1+R2 ≤ log(
1+𝑃+𝑎2𝑃

1−𝑎2

𝑎2
+𝑎2(1+𝑎2𝑃)

) , Sason (2004)



Point where Symmetric Superposition

starts beating TDM/FDM

P=50

TDM/FDM

IAN
Symmetric-Superposition (Sason,2004)

a2

Rate Sum



Rate Sum, a2=0.05: Need convexification

Sason

TDM/FDM

IAN

IAN

Power P

Rate sum



Rate sum for P=1000, 0≤a2≤1

IAN

TDM

Symmetric superposition

Asymmetric superposition

Rate sum values before convexification along P

a2

R1+R2



Symmetric superposition:

P

a2

Sason’s Band

Above Sason’s Band

Below Sason’s band



Symmetric Superposition (continued):

Optimal choice for α = α1 = α2 : 

 Case 1:

 If
1−𝑎2

𝑎4
≤ 𝑃 ≤

1−𝑎6

𝑎6 1−𝑎2
(𝑆𝑎𝑠𝑜𝑛′𝑠 𝐵𝑎𝑛𝑑)

then set ∝ 𝑃 = 𝑎2 1 + 𝑎2𝑃 − 1;

 Case 2:

 If  𝑃 ≥
1−𝑎6

𝑎6 1−𝑎2
(𝐴𝑏𝑜𝑣𝑒 𝑆𝑎𝑠𝑜𝑛′𝑠 𝐵𝑎𝑛𝑑)

then set ∝ 𝑃 =
1−𝑎2

𝑎2 1+𝑎2
. Note: Invariant with P



Symmetric Superposition (continued):

 In Sason’s Band:

 𝑅1+𝑅2 ≤ log
𝑎2 1+𝑃+𝑎2𝑃

1−𝑎2+𝑎4(1+𝑎2𝑃)

 Above Sason’s Band:

 𝑅1+𝑅2 ≤
1

2
log

1+𝑎2
2
1+𝑃+𝑎2𝑃

4𝑎2



The hummingbird function:

α1
α2

Rate Sum



The shroud function

α1
α2

Rate Sum



Min (hummingbird, shroud)

α1
α2

Rate Sum



Flapping wings

α1
α2

Rate Sum



Asymmetric-Superposition vs TDM/FDM

a2

P

TDM/FDM

Asym. Sup.



Phase Transitions in Weak Interference

Symmetric Superposition

Asymmetric Superposition

TDM/F

DM

TDM/FDM

P

a2

Note: Transitional regions due to convexification along P not included.



Pairwise Phase Transitions

Sym-Sup vs. TDM

Asym-sup vs. TDM

Sym-sup vs. Asym-sup

Sason’s band

lower limit
Sason’s band upper limit

P

a2



A pleasant resemblance



Asymptotically as P → ∞

0 < a2 < 0.087  -- symmetric superposition is best

0.087 < a2 < 1 – asymmetric superposition is best



As before: Need convexification along P



Final remarks

 Powerful tool: Concave envelopes to transition from

one mode to another: time sharing between modes

❑ Shown a full taxonomy of phase transitions in (a2, P)

parameter space with 0< a2 <1, P>0: 

❑ 4 pure modes (IAN, TDM, Symmetric Superposition,

and Asymmetric Superposition)  and

❑ 4 transitional regions (IAN vs. TDM, TDM vs. Sym-Sup,

TDM vs. Asym-Sup, and Sym-Sup vs. Asym-Sup)



Challenges

 Find the full capacity region

 Show Gaussian signalling is best

 Consider channels with parameters (P1, P2, a, b)

 Interference Channel is still an open problem



Contatos são bem vindos.

 max@fee.unicamp.br


