Differential Capacity of Gaussian Channels

> Max H. M. Costa FEEC - Unicamp

15/06/2023

Based on joint work with Chandra Nair (CUHK)

IMECC - Unicamp

Summary

- Gaussian Channel (Discrete time AWGN)
- Gaussian Channel (Continuous time, band limited)
- Gaussian Multiple Access Channel
- Gaussian Broadcast Channel
- Gaussian Interference Channel standard form
- Model 1: Z-Interference Channel
- Model 2: Symmetric Interference Channel

The Gaussian Channel Problem:

W ε {1,2,...,2^{nR}} = message set of rate R
 X = (x₁ x₂ ... x_n) = codeword input to channel
 Y = (y₁ y₂ ... y_n) = codeword output from channel
 W = decoded message
 P(error) = P{W ≠ W}

□ Using the channel n times:

$$\Box Capacity \qquad C = \max_{f(x): EX^2 \le P} I(X;Y)$$

$$I(X;Y) = h(Y) - h(Y|X) = h(Y) - h(X + Z|X)$$

$$= h(Y) - h(Z) \le \frac{1}{2} \log 2\pi e(P + N) - \frac{1}{2} \log 2\pi eN$$

$$= \frac{1}{2} \log \left(1 + \frac{P}{N}\right) \text{ bits/transmission}$$

The capacity of the discrete time additive Gaussian channel:

$$C = \frac{1}{2} \log \left(1 + \frac{P}{N} \right)$$
 bits/transmission

achieved with $X \sim N(0, P)$.

Bandlimited Gaussian Channel

- □ Consider the channel with continuous waveform inputs x(t)with power constraint $(\frac{1}{T}\int_{0}^{T}x^{2}(t)dt \leq P)$ and Bandwidth limited to W. The channel has white Gaussian noise with power spectral density $N_{0}/2$ watt/Hz.
- □ In the interval (0,T) we can specify the code waveform by 2WT samples (Nyquist criterion). We can transmit these samples over discrete time Gaussian channels with noise variance $N_0/2$. This gives

$$C = W \log(1 + \frac{P}{N_0 W})$$
 bit/second

Bandlimited Gaussian Channel

$$C = W \log(1 + \frac{P}{N_0 W})$$
 bit/second

Note: If
$$W \rightarrow \infty$$

we have
$$C = \frac{P}{N_0} \log_2 e$$
 bits/second.

Bandlimited Gaussian Channel

- □ Let $\frac{R}{W}$ be the spectral density v in bits per second per Hertz. Also let $P = E_b R$ where E_b is the available energy per information bit.
- □ We get □ $\frac{R}{W} \le \frac{C}{W} = \log(1 + \frac{E_b R}{N_0 W})$ bit/second.

Thus

$$\frac{E_b}{N_0} \ge \frac{2^{\mathcal{V}} - 1}{\mathcal{V}}$$

This relation defines the so called Shannon Bound.

The Shannon Bound

Shannon's Water Filling Solution

Parallel Gaussian Channels

Example of Water Filling

- \Box Channels with noise levels 2, 1 and 3.
- \Box Available power = 2

$$\Box \text{ Capacity} = \frac{1}{2} \log \left(1 + \frac{0.5}{2}\right) + \frac{1}{2} \log \left(1 + \frac{1.5}{1}\right) + \frac{1}{2} \log \left(1 + \frac{0}{3}\right)$$

Level of noise + signal power = 2.5
 No power allocated to the third channel.

Parallel Gaussian Channels

Differential capacity

Discrete time channel seen as a unit band contínuous time channel

Multiplex strategies (TDMA, FDMA)

$$C = \iint d^2 C = \frac{\lambda}{2} \log \left(1 + \frac{P}{N} \right)$$

Aggregate capacity: $\sum C_j = \frac{1}{2}\log(1 + \frac{P}{N})$

Multiplex strategies (non-orthonal CDMA)

Aggregate capacity:

$$\sum_{j=1}^{M} C_j = \frac{1}{2} \log(1 + \frac{MP}{N})$$

TDMA or FDMA versus CDMA

Multiple User Information Theory

Some building blocks:

- Multiple Access Channels (MACs)
- Broadcast Channels (BCs)
- Interference Channels (IFCs)
- Relay Channels (RCs)

Note: These channels have their discrete time and continuous time versions.

Multiple Access Channel

Gaussian Broadcast Channel

$$C_{BC} \{R_1, R_2\}: \qquad 0 \le R_1 \le \frac{1}{2} \log(1 + \alpha P)$$

$$0 \le \alpha \le 1 \qquad 0 \le R_2 \le \frac{1}{2} \log\left(1 + \frac{(1 - \alpha)P}{1 + N_2 + \alpha P}\right)$$

Superposition coding

Superposition coding

Discrete Memoryless Interference Channel

Standard Gaussian Interference Channel

Symmetric Gaussian Interference Channel

Z-Gaussian Interference Channel

The possibilities:

Things that we can do with interference:

- 1. Ignore (take interference as noise (IAN)
- 2. Avoid (divide the signal space (TDM/FDM))
- 3. Partially decode both interfering signals
- 4. Partially decode one, fully decode the other
- 5. Fully decode both (only good for strong interference, $a \ge 1$)

Brief history

□ Carleial (1975): Very strong interference does not reduce capacity ($a^2 \ge 1+P$)

□ Sato (1981), Han and Kobayashi (1981): Strong interference (a² ≥ 1): IFC behaves like 2 MACs

 Motahari, Khandani (2009), Shang, Kramer and Chen (2009), Annapureddy, Veeravalli (2009): Very weak interference (2a(1+a²P) ≤ 1):
 ☑ Treat interference as noise (IAN)

History (continued)

Sason (2004): Symmetrical superposition to beat
 TDM – found part of optimal choice for α

Etkin, Tse, Wang (2008): capacity to within 1 bit, good heuristical choice of $\alpha P = 1/a^2$

R2 < I (X2; Y2 | U1,Q)R1 + R2 < I(X1,U2;Y1|Q) + I(X2;Y2|U1,U2,Q)R1 + R2 < I(X2,U1;Y2|Q) + I(X1;Y1|U1,U2,Q)R1 + R2 < I(X1,U2;Y1|U1,Q) + I(X2,U1;Y2|U2,Q)2R1 + R2 < I(X1,U2;Y1|Q) + I(X1;Y1|U1,U2,Q) + I(X2,U1;Y2|U2,Q)R1 + 2R2 < I(X2,U1;Y2|Q) + I(X2;Y2|U1,U2,Q) + I(X1,U2;Y1|U1,Q) \Box for some p(q) p(u1,x1|q) p(u2,x2|q)

Han and Kobayashi Region

 \square R1 < I (X1;Y1 | U2,Q)

Model 1: Z interference Channels

Z-Gaussian Interference Channel as a degraded interference channel

Discrete Time Channel as a band limited channel

- Multiplex Region: growing Noisebergs
- Overflow Region: back to superposition

Degraded Gaussian Interference Channel

Degraded Interference ChannelOne Extreme Point (Sato's point)

Degraded Interference Channel - Another Extreme Point

Intermediary Points (Multiplex Region)

Admissible region for (λ , h)

Intermediary Point (Overflow Region)

Admissible region

The Z-Gaussian Interference Channel Rate Region

Admissible region

The Z-Gaussian Interference Channel Rate Region

 This is Han-Kobayashi region for Gaussian signaling (ISIT, 2023)

□ Simple 2-D parameter space: (λ , h)

 Need entropy power-like inequality to establish capacity region

Model 2: Symmetric Gaussian Interference Channel

Symmetric Interference Channels

 Discrete time channel seen as a band limited channel – differential capacity

Concave envelopes

Symmetric and Asymmetric Superposition

Phase transitions in parameter space

Differential capacity

Discrete time channel seen as a band limited channel

Interference channel: Spectra at Y₁ and Y₂

IAN: $R_1 + R_2 \le \log(1 + \frac{P}{1 + a^2 P})$

Interference Channel: TDM/FDM:

 $R_1 + R_2 \le \frac{1}{2} \log(1 + 2P)$

Concave Envelope IAN vs TDM/FDM, a²=0.25

Multiplex domination IAN vs TDM/FDM, $a^2=0.5$

No intersection beyond $a^2=0.5$

Interference as Noise and TDM/FDM

Rate Sum for IAN and TDM/FDM

Superposition: partially decoding

At Y₁ At Y_2 U_{2} (1- α)P U_1 (1- α)P $U_1 \quad a^2(1-\alpha)P$ $U_{2} = a^{2}(1-\alpha)P$ V_1 αP V_2 αP V_2 a²αP a²αP V_1 Noise Noise

$$R_1 + R_2 \le \log(\frac{1 + P + a^2 P}{\frac{1 - a^2}{a^2} + a^2(1 + a^2 P)})$$
, Sason (2004)

Point where Symmetric Superposition starts beating TDM/FDM P=50

Rate Sum, $a^2=0.05$: Need convexification

Power P

Rate sum for P=1000, $0 \le a^2 \le 1$

Symmetric superposition:

Symmetric Superposition (continued):

□ Optimal choice for
$$\alpha = \alpha_1 = \alpha_2$$
:
□ Case 1:
□ If $\frac{(1-a^2)}{a^4} \le P \le \frac{(1-a^6)}{a^6(1-a^2)}$ (Sason's Band)
then set $\propto P = a^2(1+a^2P) - 1$;

□ Case 2:
□ If
$$P \ge \frac{(1-a^6)}{a^6(1-a^2)}$$
 (Above Sason's Band)
then set $\propto P = \frac{(1-a^2)}{a^2(1+a^2)}$. Note: Invariant with 2

Symmetric Superposition (continued):

$$R_1 + R_2 \le \log\left(\frac{a^2(1+P+a^2P)}{1-a^2+a^4(1+a^2P)}\right)$$

Above Sason's Band:

$$R_1 + R_2 \le \frac{1}{2} \log \left(\frac{(1+a^2)^2 (1+P+a^2P)}{4a^2} \right)$$

The hummingbird function:

The shroud function

Min (hummingbird, shroud)

Flapping wings

Asymmetric-Superposition vs TDM/FDM

Phase Transitions in Weak Interference

Note: Transitional regions due to convexification along P not included.

Pairwise Phase Transitions

A pleasant resemblance

Asymptotically as $P \rightarrow \infty$

$0 < a^2 < 0.087$ -- symmetric superposition is best

$0.087 < a^2 < 1$ – asymmetric superposition is best

As before: Need convexification along P

Final remarks

Powerful tool: Concave envelopes to transition from
 one mode to another: time sharing between modes

Shown a full taxonomy of phase transitions in (a², P) parameter space with 0< a² <1, P>0:
 4 pure modes (IAN, TDM, Symmetric Superposition, and Asymmetric Superposition) and
 4 transitional regions (IAN vs. TDM, TDM vs. Sym-Sup, TDM vs. Asym-Sup, and Sym-Sup vs. Asym-Sup)

□ Find the full capacity region

Show Gaussian signalling is best

 \Box Consider channels with parameters (P₁, P₂, a, b)

Interference Channel is still an open problem
Contatos são bem vindos.

max@fee.unicamp.br