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Summary

 Gaussian Channel (Discrete time AWGN)

 Gaussian Channel (Continuous time, band limited)

 Gaussian Multiple Access Channel

 Gaussian Broadcast Channel

 Gaussian Interference Channel - standard form

 Model 1:   Z-Interference Channel

 Model 2:   Symmetric Interference Channel



The Gaussian Channel

 The Gaussian Channel Problem:

 W  {1,2,…,2𝑛𝑅} = message set of rate R

 X = (x1 x2 … xn) = codeword input to channel

 Y = (y1 y2 … yn) = codeword output from channel


෡𝑊= decoded message              P(error) = P{W  ෢𝑊}

෡𝑊W
X Y

Channel 

Encoder

Channel 

Decoder

Z~N (0, N I)

+

Power constraint: EX2≤P



The Gaussian Channel
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The Gaussian Channel

 Using the channel n times:

Xn Yn

•
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•
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The Gaussian Channel



 C𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶 = max 𝐼(𝑋; 𝑌)

 𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑌 𝑋 = ℎ 𝑌 − ℎ 𝑋 + 𝑍|𝑋

 = ℎ 𝑌 − ℎ 𝑍 ≤
1

2
log 2πe 𝑃 + 𝑁 −

1

2
log 2πe𝑁

 =
1

2
log 1 +

𝑃

𝑁
bits/transmission

f(x): EX2≤P



The Gaussian Channel



 The capacity of the discrete time additive

Gaussian channel:

 𝐶 =
1

2
log 1 +

𝑃

𝑁
bits/transmission

 achieved with X ~ N(0 , P).



Bandlimited Gaussian Channel

 Consider the channel with continuous waveform  inputs x(t)

with power constraint (
1

𝑇
0׬
𝑇
𝑥2 𝑡 𝑑𝑡 ≤ 𝑃) and Bandwidth 

limited to W. The channel has white Gaussian noise with 

power spectral density N0/2 watt/Hz.

 In the interval (0,T) we can specify the code waveform by 

2WT samples (Nyquist criterion). We can transmit these 

samples over discrete time Gaussian channels with noise 

variance N0/2. This gives

 𝐶 = 𝑊 log(1+ 
𝑃

𝑁0𝑊
)  bit/second



Bandlimited Gaussian Channel



 𝐶 = 𝑊 log(1+ 
𝑃

𝑁0𝑊
)  bit/second

 Note: If W→ 

 we have C = 
𝑃

𝑁0
𝑙𝑜𝑔2𝑒 bits/second.



Bandlimited Gaussian Channel

 Let 
𝑅

𝑊
be the spectral density  in bits per second 

per Hertz. Also let 𝑃 = 𝐸𝑏𝑅 where 𝐸𝑏 is the 

available energy per information bit.

 We get 



𝑅

𝑊
≤

𝐶

𝑊
= log(1+ 

𝐸𝑏𝑅

𝑁0𝑊
)  bit/second.

 Thus 



𝐸𝑏

𝑁0
≥

2−1


This relation defines the so called Shannon Bound.



The Shannon Bound



𝐸𝑏

𝑁0
≥

2−1


𝐸𝑏
𝑁0

𝐸𝑏

𝑁0
(dB)

→0 0.69 -1.59

0.1 0.718 -1.44

0.25 0.757 -1.21

0.5 0.828 -0.82

1 1 0

2 1.5 1.76

4 3.75 5.74

8 31.87 15.03
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•
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–

–

–
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Shannon’s Water Filling Solution



Parallel Gaussian Channels



2.5

3
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Example of Water Filling

 Channels with noise levels 2, 1 and 3.

 Available power = 2

 Capacity= 
1

2
log (1+

0.5

2
) + 

1

2
log (1+

1.5

1
) + 

1

2
log (1+

0

3
) 

 Level of noise + signal power = 2.5

 No power allocated to the third channel.



Parallel Gaussian Channels


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2
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Differential capacity

Discrete time channel seen as a 

unit band contínuous time channel



Multiplex strategies (TDMA, FDMA)

j



P

j


σ𝐶𝑗 = 
1

2
log(1 +

𝑃

𝑁
)Aggregate capacity::



Multiplex strategies (non-orthonal CDMA)

Discrete memoryless channel as a band limited channel

j

P

j
1

2
log(1 +

𝑃

𝑁+ 𝑗−1 𝑃
)

σ𝐶𝑗 = 
1

2
log(1 +

𝑀𝑃

𝑁
)

j=1

M

Aggregate capacity::



TDMA or FDMA   versus   CDMA



Number of 

Users

Aggregate Power

Bandwidth limitation (2WT dimensions)

Non-orthogonal CDMA (log has no cap)

Orthogonal schemes:



Multiple User Information Theory

 Some building blocks:

 Multiple Access Channels (MACs)

 Broadcast Channels (BCs)

 Interference Channels (IFCs)

 Relay Channels (RCs)

 Note: These channels have their discrete time and
continuous time versions. 



Multiple Access Channel



Gaussian Broadcast Channel



Superposition coding

N2

(1-)P

P

1

P



Superposition coding

N2

(1-)P

P
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P



Discrete Memoryless Interference Channel

 Two-user case:

Encoder 1 Decoder 1

Encoder 2 Decoder 2

M1

X2M2

X1 Y1

Y2

P(y1,y2|x1,x2)

M1

M2

^

^



Standard Gaussian Interference Channel

Power P1

Power P2

a

b

W1

W2

W1

W2

^

^ 



Symmetric Gaussian Interference Channel

Power P

Power P



Z-Gaussian Interference Channel



The possibilities:

Things that we can do with interference:

1. Ignore (take interference as noise (IAN)

2. Avoid (divide the signal space (TDM/FDM))

3. Partially decode both interfering signals

4. Partially decode one, fully decode the other

5. Fully decode both (only good for strong inter-
ference, a≥1)



Brief history

 Carleial (1975): Very strong interference does not

reduce capacity (a2 ≥ 1+P)

 Sato (1981), Han and Kobayashi (1981): Strong 

interference (a2 ≥ 1) :  IFC behaves like 2 MACs

 Motahari, Khandani (2009), Shang, Kramer and

Chen (2009), Annapureddy, Veeravalli (2009): 

Very weak interference (2a(1+a2P) ≤ 1) :

Treat interference as noise (IAN)



History (continued)

 Sason (2004): Symmetrical superposition to beat 

TDM – found part of optimal choice for α

 Etkin, Tse, Wang (2008): capacity to within 1 bit,  

good heuristical choice of αP=1/a2



Han and Kobayashi Region

 R1 <  I (X1 ;Y1 | U2,Q)

 R2 <  I (X2 ;Y2 | U1,Q)

 R1 + R2 <  I (X1,U2;Y1|Q)+ I(X2;Y2|U1,U2,Q)

 R1 + R2 <  I (X2,U1;Y2|Q)+ I(X1;Y1|U1,U2,Q)

 R1 + R2 <  I (X1,U2;Y1|U1,Q)+ I(X2,U1;Y2|U2,Q)

 2R1+ R2 < I (X1,U2;Y1|Q)+I(X1;Y1|U1,U2,Q)+I(X2,U1;Y2|U2,Q)

 R1+ 2R2 < I (X2,U1;Y2|Q)+I(X2;Y2|U1,U2,Q)+I(X1,U2;Y1|U1,Q)

 for some p(q) p(u1,x1|q) p(u2,x2|q)



Model 1: Z interference Channels

❑ Z-Gaussian Interference Channel as a degraded

interference channel

❑ Discrete Time Channel as a band limited channel

❑ Multiplex Region: growing Noisebergs

❑ Overflow Region: back to superposition



Degraded Gaussian Interference Channel



Degraded Interference Channel

- One Extreme Point  (Sato’s point)



Degraded Interference Channel

- Another Extreme Point



Intermediary Points (Multiplex Region) 



Admissible region for (, h)



Intermediary Point (Overflow Region)



Admissible region

Q1=1

Q2 = 1

a =  0.5

N2 = 3



h



The Z-Gaussian Interference Channel Rate Region

Q1=1

Q2 = 1

a =  0.5

N2 = 3

R2 

R1 



Admissible region

Q1=1

Q2 = 1

a =  0.99

N2 = 0.02



h



Q1=1

Q2 = 1

a =  0.99

N2 = 0.02

The Z-Gaussian Interference Channel Rate Region

R2 

R1 



Remarks

❑ This is Han-Kobayashi region for Gaussian 

signaling (ISIT, 2023)

❑ Simple 2-D parameter space: (, h)

❑ Need entropy power-like inequality to 

establish capacity region 



Model 2: Symmetric Gaussian Interference Channel

Power P

Power P



Symmetric Interference Channels

 Discrete time channel seen as a band limited

channel – differential capacity

❑ Concave envelopes

❑ Symmetric and Asymmetric Superposition

❑ Phase transitions in parameter space



Differential capacity

Discrete time channel seen as a band limited channel



Interference channel: Spectra at Y1 and Y2

 At Y1 At Y2

Power P Power P

Interference a2P Interference a2P

Noise Noise

R1+R2 ≤log (1+ 
𝑃

1+𝑎2𝑃
)IAN:



Interference Channel: TDM/FDM:

Signal

P

Signal

P

At Y1
At Y2

R1+R2≤
1

2
log(1 + 2𝑃)

Noise Noise

a2P a2P



Concave Envelope

IAN vs TDM/FDM, a2=0.25

Tangent points TDM

IAN

IAN

TDM

Power P

Rate Sum



Multiplex domination

IAN vs TDM/FDM, a2=0.5

Power P

IAN

TDM

No intersection beyond a2=0.5

Rate Sum



Interference as Noise and TDM/FDM

IAN

TDM

Superposition prone region

a2+a4 P >1



Rate Sum for IAN and TDM/FDM

 Insert 3D plot

IAN

TDM/FDM



Superposition: partially decoding

 At Y1 At Y2

Noise Noise

V1 αP

V1 a2αPV2 a2αP

V2 αP

U1 (1-α)P

U1 a2(1-α)P

U2 (1-α)P

U2 a2(1-α)P

R1+R2 ≤ log(
1+𝑃+𝑎2𝑃

1−𝑎2

𝑎2
+𝑎2(1+𝑎2𝑃)

) , Sason (2004)



Point where Symmetric Superposition

starts beating TDM/FDM

P=50

TDM/FDM

IAN
Symmetric-Superposition (Sason,2004)

a2

Rate Sum



Rate Sum, a2=0.05: Need convexification

Sason

TDM/FDM

IAN

IAN

Power P

Rate sum



Rate sum for P=1000, 0≤a2≤1

IAN

TDM

Symmetric superposition

Asymmetric superposition

Rate sum values before convexification along P

a2

R1+R2



Symmetric superposition:

P

a2

Sason’s Band

Above Sason’s Band

Below Sason’s band



Symmetric Superposition (continued):

Optimal choice for α = α1 = α2 : 

 Case 1:

 If
1−𝑎2

𝑎4
≤ 𝑃 ≤

1−𝑎6

𝑎6 1−𝑎2
(𝑆𝑎𝑠𝑜𝑛′𝑠 𝐵𝑎𝑛𝑑)

then set ∝ 𝑃 = 𝑎2 1 + 𝑎2𝑃 − 1;

 Case 2:

 If  𝑃 ≥
1−𝑎6

𝑎6 1−𝑎2
(𝐴𝑏𝑜𝑣𝑒 𝑆𝑎𝑠𝑜𝑛′𝑠 𝐵𝑎𝑛𝑑)

then set ∝ 𝑃 =
1−𝑎2

𝑎2 1+𝑎2
. Note: Invariant with P



Symmetric Superposition (continued):

 In Sason’s Band:

 𝑅1+𝑅2 ≤ log
𝑎2 1+𝑃+𝑎2𝑃

1−𝑎2+𝑎4(1+𝑎2𝑃)

 Above Sason’s Band:

 𝑅1+𝑅2 ≤
1

2
log

1+𝑎2
2
1+𝑃+𝑎2𝑃

4𝑎2



The hummingbird function:

α1
α2

Rate Sum



The shroud function

α1
α2

Rate Sum



Min (hummingbird, shroud)

α1
α2

Rate Sum



Flapping wings

α1
α2

Rate Sum



Asymmetric-Superposition vs TDM/FDM

a2

P

TDM/FDM

Asym. Sup.



Phase Transitions in Weak Interference

Symmetric Superposition

Asymmetric Superposition

TDM/F

DM

TDM/FDM

P

a2

Note: Transitional regions due to convexification along P not included.



Pairwise Phase Transitions

Sym-Sup vs. TDM

Asym-sup vs. TDM

Sym-sup vs. Asym-sup

Sason’s band

lower limit
Sason’s band upper limit

P

a2



A pleasant resemblance



Asymptotically as P → ∞

0 < a2 < 0.087  -- symmetric superposition is best

0.087 < a2 < 1 – asymmetric superposition is best



As before: Need convexification along P



Final remarks

 Powerful tool: Concave envelopes to transition from

one mode to another: time sharing between modes

❑ Shown a full taxonomy of phase transitions in (a2, P)

parameter space with 0< a2 <1, P>0: 

❑ 4 pure modes (IAN, TDM, Symmetric Superposition,

and Asymmetric Superposition)  and

❑ 4 transitional regions (IAN vs. TDM, TDM vs. Sym-Sup,

TDM vs. Asym-Sup, and Sym-Sup vs. Asym-Sup)



Challenges

 Find the full capacity region

 Show Gaussian signalling is best

 Consider channels with parameters (P1, P2, a, b)

 Interference Channel is still an open problem



Contatos são bem vindos.

 max@fee.unicamp.br


