Weierstrass semigroups, Pure gaps, and Codes on Function Fields

Erik A. R. Mendoza

IMECC - UNICAMP

June 16, 2023

Joint work with Alonso S. Castellanos and Luciane Quoos

EnCoRI 2023 - Encontro de Códigos Reticulados e Informação

Notation and preliminaries

- $\blacksquare \mathbb{F}_q$: finite field with q elements.
- K: algebraic closure of \mathbb{F}_q .
- F/\mathbb{F}_q : function field with full constant field \mathbb{F}_q of genus g.
- $ightharpoonup P_1, \ldots, P_N$: pairwise distinct rational places in F/\mathbb{F}_q .
- $D := P_1 + \cdots + P_N.$
- G: divisor of F such that $\operatorname{Supp}(D) \cap \operatorname{Supp}(G) = \emptyset$.

Algebraic Geometry Codes

Linear AG code:

$$C_{\mathcal{L}}(D,G) = \{(f(P_1),\ldots,f(P_N)): f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_q^N.$$

Differential AG code:

$$C_{\Omega}(D,G) = \{(\operatorname{res}_{P_1}(\omega),\ldots,\operatorname{res}_{P_N}(\omega)) : \omega \in \Omega(G-D)\} \subseteq \mathbb{F}_q^N.$$

Algebraic Geometry Codes

Linear AG code:

$$C_{\mathcal{L}}(D,G) = \{(f(P_1),\ldots,f(P_N)): f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_q^N.$$

Differential AG code:

$$C_{\Omega}(D,G) = \{(\operatorname{res}_{P_1}(\omega),\ldots,\operatorname{res}_{P_N}(\omega)) : \omega \in \Omega(G-D)\} \subseteq \mathbb{F}_q^N.$$

- The parameters of these codes are: N is the length of the code, k is its dimension over \mathbb{F}_q , and d is its minimum distance. We say that the code is an [N, k, d]-code.
- If $C_{\mathcal{L}}(D,G)$ (resp. $C_{\Omega}(D,G)$) is an [N,k,d]-code (resp. an $[N,k_{\Omega},d_{\Omega}]$ -code) then

$$d \geq N - \deg(G)$$
 and $d_{\Omega} \geq \deg(G) - (2g - 2)$.

Weierstrass Semigroups and Pure Gaps

Definition

For a rational place P in F, the Weierstrass semigroup at P is defined by

$$H(P) = \{ s \in \mathbb{N} : (z)_{\infty} = sP \text{ for some } z \in F \}.$$

The complement set $G(P) := \mathbb{N} \setminus H(P)$ is called the gap set at P.

Weierstrass Semigroups and Pure Gaps

Definition

For a rational place P in F, the Weierstrass semigroup at P is defined by

$$H(P) = \{ s \in \mathbb{N} : (z)_{\infty} = sP \text{ for some } z \in F \}.$$

The complement set $G(P) := \mathbb{N} \setminus H(P)$ is called the gap set at P.

Analogously, the Weierstrass semigroup at two distinct rational places P_1, P_2 in F is defined by

$$H(P_1, P_2) = \{(s_1, s_2) \in \mathbb{N}^2 : (z)_{\infty} = s_1 P_1 + s_2 P_2 \text{ for some } z \in F\}.$$

Weierstrass Semigroups and Pure Gaps

Definition

For a rational place P in F, the Weierstrass semigroup at P is defined by

$$H(P) = \{ s \in \mathbb{N} : (z)_{\infty} = sP \text{ for some } z \in F \}.$$

The complement set $G(P) := \mathbb{N} \setminus H(P)$ is called the gap set at P.

Analogously, the Weierstrass semigroup at two distinct rational places P_1, P_2 in F is defined by

$$H(P_1, P_2) = \{(s_1, s_2) \in \mathbb{N}^2 : (z)_{\infty} = s_1 P_1 + s_2 P_2 \text{ for some } z \in F\}.$$

The elements of the gap set $G(P_1, P_2) := \mathbb{N}^2 \setminus H(P_1, P_2)$ can be characterized as follows:

$$(s_1, s_2) \in G(P_1, P_2) \Leftrightarrow \ell(s_1P_1 + s_2P_2) = \ell(s_1P_1 + s_2P_2 - P_j) \text{ for some } j \in \{1, 2\}.$$

Definition

A pair $(s_1, s_2) \in G(P_1, P_2)$ is called a pure gap at P_1, P_2 if

$$\ell(s_1P_1 + s_2P_2) = \ell(s_1P_1 + s_2P_2 - P_j)$$
 for each $j \in \{1, 2\}$.

The set of pure gaps at P_1, P_2 is denoted by $G_0(P_1, P_2)$.

Definition

A pair $(s_1,s_2)\in G(P_1,P_2)$ is called a pure gap at P_1,P_2 if

$$\ell(s_1P_1 + s_2P_2) = \ell(s_1P_1 + s_2P_2 - P_j)$$
 for each $j \in \{1, 2\}$.

The set of pure gaps at P_1, P_2 is denoted by $G_0(P_1, P_2)$.

Consider the bijective map

$$\tau_{P_1,P_2}: G(P_1) \rightarrow G(P_2)$$

$$\beta \mapsto \min\{\gamma \in \mathbb{N}_0 : (\beta,\gamma) \in H(P_1,P_2)\}$$

The graph of τ_{P_1,P_2} given by

$$\Gamma(P_1, P_2) := \{ (\beta, \tau_{P_1, P_2}(\beta)) : \beta \in G(P_1) \}$$

is called the minimal generating set of $H(P_1, P_2)$.

For
$$\mathbf{x} = (x_1, x_2)$$
 and $\mathbf{y} = (y_1, y_2)$, define

$$lub(\mathbf{x}, \mathbf{y}) = (\max\{x_1, y_1\}, \max\{x_2, y_2\})$$
 and $glb(\mathbf{x}, \mathbf{y}) = (\min\{x_1, y_1\}, \min\{x_2, y_2\}).$

For
$$\mathbf{x} = (x_1, x_2)$$
 and $\mathbf{y} = (y_1, y_2)$, define

$$\mathrm{lub}(\mathbf{x},\mathbf{y}) = (\max\{x_1,y_1\},\max\{x_2,y_2\}) \quad \text{and} \quad \mathrm{glb}(\mathbf{x},\mathbf{y}) = (\min\{x_1,y_1\},\min\{x_2,y_2\}).$$

Lemma [Kim (1994)]

Let P_1 and P_2 be two distinct rational places in F. Then

$$H(P_1, P_2) = \{ \text{lub}(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in \Gamma(P_1, P_2) \cup (H(P_1) \times \{0\}) \cup (\{0\} \times H(P_2)) \}.$$

For
$$\mathbf{x} = (x_1, x_2)$$
 and $\mathbf{y} = (y_1, y_2)$, define

$$lub(\mathbf{x}, \mathbf{y}) = (\max\{x_1, y_1\}, \max\{x_2, y_2\})$$
 and $glb(\mathbf{x}, \mathbf{y}) = (\min\{x_1, y_1\}, \min\{x_2, y_2\}).$

Lemma [Kim (1994)]

Let P_1 and P_2 be two distinct rational places in F. Then

$$H(P_1, P_2) = {\{ lub(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in \Gamma(P_1, P_2) \cup (H(P_1) \times \{0\}) \cup (\{0\} \times H(P_2)) \}}.$$

Proposition [Castellanos, -, and Quoos (2023)]

Let P_1 and P_2 be two distinct rational places in F. Then

$$G_0(P_1, P_2) = {\operatorname{glb}(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in \Gamma(P_1, P_2)} \setminus \Gamma(P_1, P_2).$$

Example: Hermitian curve $y^6 = x^5 + x$.

Theorem [García, Kim, and Lax (1993)]

Suppose that $\gamma-t, \gamma-t+1, \ldots, \gamma-1, \gamma$ is a sequence of t+1 consecutive gaps at a rational place Q. Let $G=\gamma Q$ and $D=P_1+P_2+\cdots+P_N$, where P_i is a rational place not in the support of G for each $i=1,\ldots,N$. If the code $\mathcal{C}_{\mathcal{L}}(D,G)$ has positive dimension, then

$$d \geq N - \deg(G) + t + 1.$$

Theorem [García, Kim, and Lax (1993)]

Suppose that $\gamma-t, \gamma-t+1, \ldots, \gamma-1, \gamma$ is a sequence of t+1 consecutive gaps at a rational place Q. Let $G=\gamma Q$ and $D=P_1+P_2+\cdots+P_N$, where P_i is a rational place not in the support of G for each $i=1,\ldots,N$. If the code $\mathcal{C}_{\mathcal{L}}(D,G)$ has positive dimension, then

$$d \geq N - \deg(G) + t + 1.$$

Theorem [Homma and Kim (2001)]

Let P_1,\ldots,P_N,Q_1,Q_2 be pairwise distinct rational places on F/\mathbb{F}_q . Let $(\alpha_1,\alpha_2),(\beta_1,\beta_2)$ in \mathbb{N}^2 be such that $\alpha_i\leq\beta_i$ for i=1,2. Suppose each pair (γ_1,γ_2) with $\alpha_i\leq\gamma_i\leq\beta_i$ for i=1,2 is a pure gap at Q_1,Q_2 . Consider the divisors $D=P_1+\cdots+P_N$ and $G=\sum_{i=1}^2(\alpha_i+\beta_i-1)Q_i$. Then the minimum distance d_Ω of the code $C_\Omega(D,G)$ satisfies

$$d_{\Omega} \geq \deg(G) - (2g-2) + \sum_{i=1}^{2} (\beta_i - \alpha_i) + 2.$$

Kummer extensions

Consider the curve ${\mathcal X}$ defined by the affine equation

$$\mathcal{X}: \quad y^m = \prod_{i=1}^r (x - \alpha_i)^{\lambda_i}, \quad \lambda_i \in \mathbb{N}, \quad 1 \leq \lambda_i < m \quad \text{and} \quad p \nmid m,$$

where $m \geq 2$, $\alpha_1, \ldots, \alpha_r \in K$ are pairwise distinct elements, $\lambda_0 := \sum_{i=1}^r \lambda_i$, and $(m, \lambda_0) = 1$. Let $K(\mathcal{X})$ be its function field. Then $K(\mathcal{X})/K(x)$ is a Kummer extension with one place at infinity Q_{∞} . If $(m, \lambda_i) = 1$, we denote by Q_i the only place in $K(\mathcal{X})$ corresponding to $x = \alpha_i$.

Kummer extensions

Consider the curve ${\mathcal X}$ defined by the affine equation

$$\mathcal{X}: \quad y^m = \prod_{i=1}^r (x - \alpha_i)^{\lambda_i}, \quad \lambda_i \in \mathbb{N}, \quad 1 \leq \lambda_i < m \quad \text{and} \quad p \nmid m,$$

where $m \geq 2$, $\alpha_1, \ldots, \alpha_r \in K$ are pairwise distinct elements, $\lambda_0 := \sum_{i=1}^r \lambda_i$, and $(m, \lambda_0) = 1$. Let $K(\mathcal{X})$ be its function field. Then $K(\mathcal{X})/K(x)$ is a Kummer extension with one place at infinity Q_{∞} . If $(m, \lambda_i) = 1$, we denote by Q_i the only place in $K(\mathcal{X})$ corresponding to $x = \alpha_i$.

Proposition

Suppose that $\lambda_1 = \lambda_2 = \cdots = \lambda_r$ and let Q be a totally ramified place in $K(\mathcal{X})/K(x)$ such that $Q \neq Q_{\infty}$. Then

$$G(Q) = \left\{ mj - i : 1 \leq j \leq r - 1, \left| \frac{jm}{r} \right| + 1 \leq i \leq m - 1 \right\}.$$

◆ロ > ◆ □ > ◆ 恵 > ◆ 恵 > ・ 恵 ・ 夕 ♀

Proposition

Suppose that $\lambda_{\ell_1}=\lambda_{\ell_2}$ and $(m,\lambda_{\ell_1})=1$ for some $1\leq \ell_1,\ell_2\leq r$. Let λ be the inverse of λ_{ℓ_1} modulo m. Then

$$\Gamma(Q_{\ell_1},Q_{\ell_2}) = \left\{ (i+mj_1,i+mj_2) : 1 \leq i < m, j_1,j_2 \geq 0, j_1+j_2 = \sum_{k=1}^r \left\lceil \frac{i\lambda\lambda_k}{m} \right\rceil - \left\lceil \frac{i\lambda\lambda_0}{m} \right\rceil - 1 \right\}.$$

Proposition

Suppose that $\lambda_\ell=1$ for some $1\leq \ell\leq r$. Then

$$\Gamma(Q_{\infty},Q_{\ell}) = \left\{ (mj_1 - i\lambda_0, i + mj_2) : 1 \leq i < m, j_1 \geq \left\lceil \frac{i\lambda_0}{m} \right\rceil, j_2 \geq 0, j_1 + j_2 = \sum_{k=1}^r \left\lceil \frac{i\lambda_k}{m} \right\rceil - 1 \right\}.$$

One-point AG codes

Theorem [Castellanos, -, and Quoos (2023)]

Suppose that $\lambda_1=\dots=\lambda_r$ and let Q be a totally ramified place in the extension $\mathbb{F}_q(\mathcal{X})/\mathbb{F}_q(x)$ such that $Q\neq Q_\infty$. For $a\in\{1,\dots,r-1\}$, define the divisors

$$G_a := (am - \lfloor am/r \rfloor - 1) Q$$
 and $D := \sum_{Q' \in \mathcal{X}(\mathbb{F}_q), Q'
eq Q'} Q'$

and assume that $\deg(G_a) < \mathcal{N} := \deg(D)$. Then the AG code $\mathcal{C}_{\mathcal{L}}(D,G_a)$ has parameters

$$\left[N, a + \sum_{i=1}^{a-1} \left\lfloor \frac{im}{r} \right\rfloor, d \geq N - m(a-1)\right].$$

Also, if $\#\{\gamma \in \mathbb{F}_q : P_\gamma \text{ splits completely in } \mathbb{F}_q(\mathcal{X})/\mathbb{F}_q(x)\} > a$, then d = N - m(a-1).

Examples:

Let n be an odd integer. Consider the $\mathbb{F}_{q^{2n}}$ -maximal curve $y^{q^n+1}=x^q+x$. For $1\leq a\leq q-1$, we have one-point AG codes over $\mathbb{F}_{q^{2n}}$ with parameters

$$\left[q^{2n+1}, a + \frac{a(a-1)q^{n-1}}{2}, q^{2n+1} - (q^n+1)(a-1)\right].$$

Examples:

Let n be an odd integer. Consider the $\mathbb{F}_{q^{2n}}$ -maximal curve $y^{q^n+1}=x^q+x$. For $1\leq a\leq q-1$, we have one-point AG codes over $\mathbb{F}_{q^{2n}}$ with parameters

$$\left[q^{2n+1}, a + \frac{a(a-1)q^{n-1}}{2}, q^{2n+1} - (q^n+1)(a-1)\right].$$

■ For $n \ge 2$, consider the Norm-Trace curve $y^{\frac{q^n-1}{q-1}} = x^{q^{n-1}} + x^{q^{n-2}} + \cdots + x$. For each $1 \le a \le q^{n-1} - 1$, we obtain one-point AG codes over \mathbb{F}_{q^n} with parameters

$$\left[q^{2n-1}, \frac{a(a+1)}{2} + \sum_{i=1}^{a-1} \left\lfloor \frac{i(q^{n-1}-1)}{q^{n-1}(q-1)} \right\rfloor, q^{2n-1} - \frac{(a-1)(q^n-1)}{q-1} \right].$$

Two-point AG Codes

Example: For $q \ge 4$ even and $n \ge 3$ odd, consider the subcover of the BM curve given by

$$\mathcal{Y}_{q^n+1}: \quad y^{q^n+1} = x(x+1) \left(\frac{x^{q-1}+1}{x+1}\right)^{q+1}.$$

Let Q be a totally ramified place such that $Q \neq Q_{\infty}$. By previous results, we can determine the sets $\Gamma(Q_{\infty}, Q)$ and $G_0(Q_{\infty}, Q)$. Using Homma and Kim's theorem we get:

Two-point AG Codes

Example: For $q \ge 4$ even and $n \ge 3$ odd, consider the subcover of the BM curve given by

$$\mathcal{Y}_{q^n+1}: \quad y^{q^n+1} = x(x+1) \left(\frac{x^{q-1}+1}{x+1} \right)^{q+1}.$$

Let Q be a totally ramified place such that $Q \neq Q_{\infty}$. By previous results, we can determine the sets $\Gamma(Q_{\infty}, Q)$ and $G_0(Q_{\infty}, Q)$. Using Homma and Kim's theorem we get:

Proposition

For $\lfloor (q^{n+2}-2q^{n+1}-q^3+q^2+1)/(2q^3-3q-1) \rfloor +1 \leq a \leq (q^n-2q-1)/(q+1)$ it exists a $\lceil N,k,d \rceil$ -code over $\mathbb{F}_{q^{2n}}$ with

$$\begin{split} N &= q^{2n+1} - q^{n+2} + 2q^{n+1} - 1, \\ k &= q^{2n+1} - q^{n+2} + (5q^{n+2} + q^n - q^3 + q^2 - 2q + 2)/(2q + 2) - a(2q^2 - 2q - 1), \text{ and } \\ d &\geq 2a(q^2 - q - 1) - q^2(q^n - 2q^{n-1} - q^{n-2} - q + 1)/(q + 1). \end{split}$$

References

- Goppa, V. D. (1977). Codes associated with divisors. Problemy Peredachi Informatsii, 13(1), 33-39.
- Garcia, A., Kim, S. J., & Lax, R. F. (1993). Consecutive Weierstrass gaps and minimum distance of Goppa codes. Journal of pure and applied algebra, 84(2), 199-207.
- Kim, S. J. (1994). On the index of the Weierstrass semigroup of a pair of points on a curve. Archiv der Mathematik, 62(1), 73-82.
- Homma, M., & Kim, S. J. (2001). Goppa codes with Weierstrass pairs. Journal of Pure and Applied Algebra, 162(2-3), 273-290.
- Castellanos, A. S., Mendoza, E. A., & Quoos, L. (2023). Weierstrass Semigroup, Pure Gaps and Codes on Function Fields. ArXiv:2304.02128.