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Constacyclic codes

Let R be a finite commutative chain ring with pm elements and C

be a linear code over R and let λ a unit element of R. We say that

C is λ-constacyclic code if

(c0, c1, · · · , cn−1) ∈ C =⇒ (λcn−1, c0, · · · , cn−2) ∈ C

for all (c0, c1, · · · , cn−1) ∈ C.
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Constacyclic codes

When λ = 1, we have so called cyclic codes and, when λ = −1, we

have negacyclic codes. Thus, constacyclic codes are generalization

of cyclic and negacyclic codes. Also, constacyclic code can be

realized as ideals in polinomial factor ring
R[x ]

⟨xn − λ⟩
.
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Twisted group algebra

Let R be a commutative ring and G be a group. The twisted

group ring RγG of G over R is the associative R-algebra with basis

G = {g , g ∈ G}, which is a copy of G , and the multiplication is

defined on the basis as

g · h = γ(g , h)gh

where γ(g , h) is an element of U(R), the group of units of R.
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Twisted group algebra

The mapping γ : G × G −→ U(R) is called twisting and there are

many different possibilities for RγG depending on the choice of the

twisting. For instance, the group ring RG of G over R is a twisted

group ring with γ(g , h) = 1. Furthermore, the associative

condition on the multiplication implies that

γ(g , h)γ(gh, k) = γ(h, k)γ(g , hk)

and, for this reason, γ is a 2-cocycle.
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Twisted group algebra

It is possible make a diagonal change of basis by replacing each g

by g̃ = δ(g)g for some δ(g) ∈ U(R) and, with this change of

basis, RγG is realized in a second way as a twisted group ring of G

over R with twisting

γ̃(g , h) = δ(g)δ(h)δ(gh)−1γ(g , h).

In this case, we say that γ and γ̃ are cohomologous.
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Constacyclic codes as ideals in twisted group algebras

Theorem

Let R be a finite field , Cn = ⟨g | gn = 1⟩ a cyclic group of order n

and C be a linear code over Rn. Consider the linear mapping

φ : Rn −→ RγCn given by

φ(c0, c1, · · · , cn−1) = c01 + c1g + · · ·+ cn−1gn−1. Then, C is a

λ-constacyclic code if and only if φ(C) is an ideal of Fγ
qCn where

γλ(g
j , gk) =

 λ, if j + k ≥ n

1, if j + k < n.
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Twisted group algebras of cyclic groups

Let Cn = ⟨g | gn = 1⟩ be a cyclic group of order n, F be a field

and RγCn the twisted group algebra with

γλ(g
j , gk) =

 λ, if j + k ≥ n

1, if j + k < n

where λ is a unit element of R. Thus, g2 = g · g = γ(g , g)g2, so

we can make a diagonal change of basis and replace gk by gk , for

all k , 1 ≤ k ≤ n. Thus, there exists a non-zero element a ∈ F such

that gn = a · 1 which implies that RγCn is a commutative ring.
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Galois form

Let R be a finite commutative ring with pm elements, G be a finite

group and RγG the twisted group ring of G over R. Given

α =
∑
g∈G

αgg , β =
∑
g∈G

βgg two elements of RγG , for each k,

0 ≤ k < m, we define the k-Galois form on RγG as

[α, β]k =
∑
g∈G

αgβ
pk
g .
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Galois form

It is not difficult to see that k-Galois form is just the Euclidean

inner product if k = 0. Thus, given a twisted group code C, we

can define the k-Galois dual code of C as

C⊥k = {β ∈ RγG | [α, β]k = 0, ∀α ∈ C}.
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k-Galois dual code

Proposition

Let R be a finite commutative ring with pm elements,

Cn = ⟨g , gn = 1⟩ be a cyclic group of order n and RγλCn the

twisted group algebra of Cn over R where

γλ(g
j , gk) =

 λ, if j + k ≥ n

1, if j + k < n.

Then, if C is a λ-constacyclic code, its k-Galois dual C⊥k is a

λ−pm−k
-constacyclic code.
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k-Galois LCD codes

Definition

Let C be a constacyclic code over a finite commutative ring R. We

say that C is a linear complementary k-Galois dual code (k-Galois

LCD code for shorty) if C ∩ C⊥k = {0}.

Proposition

If λ1+pm−k ̸= 1, then any λ-constacyclic code C over R is a

k-Galois LCD code.
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The classical involution

Definition

Let R be a commutative ring with identity and let G be a group.

The mapping ∗ : RγG −→ RγG given by∑
g∈G

αgg

∗

=
∑
g∈G

αgg
−1 is called the classical involution of

RγG .
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k-Galois LCD codes

Lemma

Let R be a finite commutative with pm elements,

Cn = ⟨g , gn = 1⟩ be a cyclic group of order n and Fγλ
q Cn the

twisted group algebra of Cn over R where

Given two arbitrary elements α =
n−1∑
i=0

αig
i and β =

n−1∑
i=0

βig
i of

RγλCn, let us denote by β(pk ) the element
n−1∑
i=0

βpk

i g i . If

α
(
β(pk )

)∗
= 0, then [α, β]k = 0.
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Euclidean Constacyclic LCD codes

Proposition

Let R be a finite commutative ring, Cn = ⟨g , gn = 1⟩ be a cyclic

group of order n and RγλCn the twisted group algebra of Cn over

R where

γλ(g
j , gk) =

 λ, if j + k ≥ n

1, if j + k < n.

for some unit λ ∈ R. If λ2 = 1, then C is a λ-constacyclic LCD

code if, and only if, C is generated by an idempontent e such that

e = e∗.
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k-Galois constacyclic LCD code

Proposition

Let R be a finite commutative ring with pm elements,

Cn = ⟨g , gn = 1⟩ be a cyclic group of order n and RγλCn the

twisted group algebra of Cn over R where

γλ(g
j , gk) =

 λ, if j + k ≥ n

1, if j + k < n.

If λ2 = 1, C is a λ-constacyclic code generated by an idempontent

e such that e = e(e(p
k ))∗ if and only if C is k-Galois LCD code.
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An example

R = Z8

C3

λ = 3

e = 3g2 + g + 3

C = (Z8C3) e

dimC = 1

w(C) = 3

C LCD MDS code.
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Thank you for your attention!!!!!
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