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Introduction

In this presentation, we explore the Gröbner basis theory for modules with the pri-
mary intention of presenting some results and conjectures involving quasi-cyclic
codes.

After that, we introduce QC-LDPC codes, giving a possible way to connect general
Gröbner basis theory for modules to such class of codes.

Finally, as perspectives of study for the current work, we establish another possible
relations comprehending Gröbner basis theory, coding/decoding and lattices from
codes.
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Gröbner bases for modules

Set R = K[x1, · · · , xn], a polynomial ring.

Definition 2.1
Let M ⊆ Rm be a submodule, let ≥ be a monomial order and let 〈LT (M)〉 ⊆ R be
the monomial submodule generated by the leading terms of all f ∈ M with respect
to ≥. A finite set G = {g1, · · · , gs} ⊆ M is a Gröbner basis of M if we have
〈LT (M)〉 = 〈LT (g1), · · · , LT (gs)〉.
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Gröbner bases for modules

One important reference for the verification if a module basis is a Gröbner basis is
the S-element.

Definition 2.2
Let ≥ be a monomial order in Rm, f, g ∈ Rm and m = MMC(LT (f), LT (g)). Then, the
S-element of f and g, denoted by S(f, g), is given by

S(f, g) =
m

LT (f)
f − m

LT (g)
g.

Theorem 2.1 (Buchberger’s Criterion for submodules [4])
Let G = {g1, · · · , gs} ⊆ Rm and M = 〈g1, · · · , gs〉. Then, G is a Gröbner basis if,
and only if, the remainder of the division of S(gi , gj ) by G is 0 for all i , j .

By the Buchberger’s Criterion, we can establish an algorithm that allows us to build,
starting from a submodule basis, a Gröbner basis for the same submodule in Rm -
the Buchberger’s Algorithm for submodules.
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Gröbner bases for modules

Definition 2.3
Let G ⊆ Rm be a Gröbner basis of a submodule M ⊆ Rm. G is minimal if

◦ LC(g) = 1 ∀ g ∈ G;

◦ ∀ g ∈ G, LT (g) /∈ 〈LT (G − {g})〉.

Moreover, if

◦ LM(g) divides no monomial of any element of G − {g},

then G is a reduced Gröbner basis of M.
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Quasi-cyclic codes
Introduction and relation to modules

Quasi-cyclic codes can be seen as generalizations of cyclic codes in the sense they

can be associated to submodules of R l
m, with Rm :=

Fq [x ]
〈xm − 1〉 .

Definition 3.1 (Classic)
A linear code C of length n = ml in Fq is named quasi-cyclic of index l if, for each
c ∈ C,

c = (c0, · · · , cn−1) ∈ C =⇒ c′ = (cn−l , · · · , c0, · · · , cn−l−1) ∈ C.
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Quasi-cyclic codes
Introduction and relation to modules

If
c = (a11a12 · · · a1l a21a22 · · · a2l · · · am1am2 · · · aml ) ∈ Fn

q

is a generating vector for a quasi-cyclic code C of index l , then, taking all possible
vectors after shifting l coordinates, we obtain a generator matrix

G =


a11a12 · · · a1l a21a22 · · · a2l · · · am1am2 · · · aml

am1am2 · · · aml a11a12 · · · a1l · · · a(m−1)1a(m−1)2 · · · a(m−1)l
...

...
. . .

...
a21a22 · · · a2l a31a32 · · · a3l · · · a11a12 · · · a1l

 ∈ Mm×lm(Fq)

for C.
It is always possible to permutate the columns of C in order to find a generator
matrix G1, of an equivalent code to C, formed by l circulant blocks:

G1 =
[
C1 C2 · · · Cl

]
,

such that each Ci ∈ Mm(Fq), 1 ≤ i ≤ l , is a circulant matrix obtained by the vector
(a0i a1i · · · a(m−1)i ) ∈ Fm

q .
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Quasi-cyclic codes
Introduction and relation to modules

Therefore, if a quasi-cyclic code has k generators, we can exhibit a generator matrix
for an equivalent code (after a l-shift in its columns) in the form

G2 =


C11 C12 · · · C1l

C21 C22 · · · C2l
...

...
. . .

...
Ck1 Ck2 · · · Ckl

 ∈ Mml×mk (Fq). (1)

Remark 3.1
It is not guaranteed that G2 has n = ml linearly independent rows.

Definition 3.2 (Equivalent)
A linear code having an equivalent code with generator matrix as in (1) is called
quasi-cyclic code.

Since each Cij is generated by a polynomial aij (x) = a0ij + a1ijx + · · · + a(m−1)ijx
m−1,

then Cij is isomorphic to an ideal of Rm; this gives

Flm
q ' R l

m =⇒ C is a Rm-submodule of the module R l
m.
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Quasi-cyclic codes
Introduction and relation to modules

Let
ϕ : (Fq [x ])l → R l

m

(p1(x), · · · , pl (x)) 7→ ([p1(x)], · · · , [pl (x)])

be a map which has kernel K̃ = 〈(xm − 1)ei , 1 ≤ i ≤ l〉 ({ei/1 ≤ i ≤ l} canonical
basis of (Fq [x ])l ).

By the First Isomorphism Theorem, there exists the correspondence

C ⇐⇒ C̃ (preimages of (Fq [x ])l containing K̃ ).
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Quasi-cyclic codes
Introduction and relation to modules

Consider a k -generator (linear) quasi-cyclic code C = 〈r1, · · · , rk 〉, in Fq , q prime,
with ri = (ri1, · · · , ril ).

Then,

C̃ = 〈r1, · · · , rk , (xm − 1)ej〉

is a module which has a minimal Gröbner basis G̃ with respect to an order.

Also, there will exist a reduced Gröbner basis G̃1, obtained from G̃, that is unique -
its structure is given by the following Theorem:
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Quasi-cyclic codes
Introduction and relation to modules
Theorem 3.1 ([7])
Let C̃ be a submodule of (Fq [x ])l containing K̃ = 〈(xm − 1)ei , 1 ≤ i ≤ l〉. Then, C̃
has a reduced Gröbner basis with respect to ≥POT and presented in the form

G̃ =


g1
g2
...

gl

 =


g11 g12 · · · g1l

0 g22 · · · g2l
...

...
. . .

...
0 0 · · · gll

 , (2)

gii 6= 0 ∀ i ∈ {1, · · · , l} and

1. gii |xm − 1 and if f ∈ C̃ has leading monomial in the i-th position, then giiei

divides LM(f);
2. deg(gji ) < deg(gii ) ≤ m ∀ j < i ;

3. If gii = xm − 1, then gi = (xm − 1)ei ;

4. The dimension of
(Fq [x ])l

C̃
in Fq is

∑l
i=1 deg(gii ).

Proposition 3.1 ([7])
The dimension t of C, which has preimage C̃ by ϕ with Gröbner basis as in (2), is

t = lm −
∑l

i=1 deg(gii ).
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Quasi-cyclic codes
Finding sparse generator matrices

We recall the correspondence

C quasi-cyclic code

m

C̃ module

m

G̃ Reduced Gröbner basis wrt the order ≥POT and presented as in (2).

This helps to prove the following Proposition:
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Quasi-cyclic codes
Finding sparse generator matrices

Proposition 3.2
Let C be a k -generator quasi-cyclic code with matrix generator G and an equivalent
code given by the generator matrix G2 as in (1). Let C̃ be its associated module
with reduced Gröbner basis G̃ as in (2) which, in turn, has a matrix representation
with entries gij = a0ij + a1ijx + · · · + a(m−1)ijx

m−1 (mod (xm − 1)), 1 ≤ i , j ≤ l . Let GB

be the block matrix formed by the circulant blocks Gij ∈ Mm(Fq) corresponding to
the generator polynomials gij (as of cyclic codes) and finally define GS as the matrix
obtained from GB after applying in its columns the inverse permutation of the one
applied in the columns of G to get G2. Then, GS is a generator matrix for C.

By Proposition 3.2, we find k "new" generators for the quasi-cyclic code C. We
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Quasi-cyclic codes
A conjecture

Conjecture 3.1
Let C be a 1-generator quasi-cyclic code generated by a vector v ∈ Fn

2 with Ham-
ming weight m such that n > m ≥

⌈n
2

⌉
. Then, there exists a vector v ∈ Fn

2, having
Hamming weight min{m, n − m}, that generates C.

3. Quasi-cyclic codes 17/27



Quasi-cyclic codes
A conjecture

Conjecture 3.1
Let C be a 1-generator quasi-cyclic code generated by a vector v ∈ Fn

2 with Ham-
ming weight m such that n > m ≥

⌈n
2

⌉
. Then, there exists a vector v ∈ Fn

2, having
Hamming weight min{m, n − m}, that generates C.

3. Quasi-cyclic codes 17/27



Contents

1. Introduction

2. Gröbner bases for modules

3. Quasi-cyclic codes
Introduction and relation to modules
Finding sparse generator matrices

4. QC-LDPC codes

5. Perspectives

4. QC-LDPC codes 18/27



QC-LDPC codes

Low-Density Parity Check codes are usually defined via parity-check matrices H
which, in turn, are usually associated with Tanner graphs. In general, a linear code
is an LDPC code if it is given by a sparse parity-check matrix H ∈ Mm×n(Fq).

We
use a characterization in order to define QC-LDPC (quasi-cyclic LDPC) codes ([3]):

Definition 4.1
A linear code C is a QC-LDPC code of circulant size z if it is defined by a parity-
check matrix H constituted by square blocks z×z which are or circulant permutation
matrices (CPM) or the null matrix.

In such case, if H ∈ Mm×n(Fq) (usually q = 2), then we have length n = znb and
redudancy m = zmb. It gives

H =


Pb(0,0) Pb(0,1) · · · Pb(0,nb−1)

Pb(1,0) Pb(1,1) · · · Pb(1,nb−1)
...

...
. . .

...
Pb(mb−1,0) Pb(mb−1,1) · · · Pb(mb−1,nb−1)

 ,

in which each block Pb(i ,j) is either a z × z CPM or the null matrix.

4. QC-LDPC codes 19/27



QC-LDPC codes

Low-Density Parity Check codes are usually defined via parity-check matrices H
which, in turn, are usually associated with Tanner graphs. In general, a linear code
is an LDPC code if it is given by a sparse parity-check matrix H ∈ Mm×n(Fq). We
use a characterization in order to define QC-LDPC (quasi-cyclic LDPC) codes ([3]):

Definition 4.1
A linear code C is a QC-LDPC code of circulant size z if it is defined by a parity-
check matrix H constituted by square blocks z×z which are or circulant permutation
matrices (CPM) or the null matrix.

In such case, if H ∈ Mm×n(Fq) (usually q = 2), then we have length n = znb and
redudancy m = zmb. It gives

H =


Pb(0,0) Pb(0,1) · · · Pb(0,nb−1)

Pb(1,0) Pb(1,1) · · · Pb(1,nb−1)
...

...
. . .

...
Pb(mb−1,0) Pb(mb−1,1) · · · Pb(mb−1,nb−1)

 ,

in which each block Pb(i ,j) is either a z × z CPM or the null matrix.

4. QC-LDPC codes 19/27



QC-LDPC codes

Low-Density Parity Check codes are usually defined via parity-check matrices H
which, in turn, are usually associated with Tanner graphs. In general, a linear code
is an LDPC code if it is given by a sparse parity-check matrix H ∈ Mm×n(Fq). We
use a characterization in order to define QC-LDPC (quasi-cyclic LDPC) codes ([3]):

Definition 4.1
A linear code C is a QC-LDPC code of circulant size z if it is defined by a parity-
check matrix H constituted by square blocks z×z which are or circulant permutation
matrices (CPM) or the null matrix.

In such case, if H ∈ Mm×n(Fq) (usually q = 2), then we have length n = znb and
redudancy m = zmb. It gives

H =


Pb(0,0) Pb(0,1) · · · Pb(0,nb−1)

Pb(1,0) Pb(1,1) · · · Pb(1,nb−1)
...

...
. . .

...
Pb(mb−1,0) Pb(mb−1,1) · · · Pb(mb−1,nb−1)

 ,

in which each block Pb(i ,j) is either a z × z CPM or the null matrix.

4. QC-LDPC codes 19/27



QC-LDPC codes

Low-Density Parity Check codes are usually defined via parity-check matrices H
which, in turn, are usually associated with Tanner graphs. In general, a linear code
is an LDPC code if it is given by a sparse parity-check matrix H ∈ Mm×n(Fq). We
use a characterization in order to define QC-LDPC (quasi-cyclic LDPC) codes ([3]):

Definition 4.1
A linear code C is a QC-LDPC code of circulant size z if it is defined by a parity-
check matrix H constituted by square blocks z×z which are or circulant permutation
matrices (CPM) or the null matrix.

In such case, if H ∈ Mm×n(Fq) (usually q = 2), then we have length n = znb and
redudancy m = zmb. It gives

H =


Pb(0,0) Pb(0,1) · · · Pb(0,nb−1)

Pb(1,0) Pb(1,1) · · · Pb(1,nb−1)
...

...
. . .

...
Pb(mb−1,0) Pb(mb−1,1) · · · Pb(mb−1,nb−1)

 ,

in which each block Pb(i ,j) is either a z × z CPM or the null matrix.

4. QC-LDPC codes 19/27



QC-LDPC codes

Example 4.1
Let C be the "minimal" QC code of index l = 2 in F8

2 generated by (11111100).

First, we find a generator matrix for C given by

G =


1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 0 0 1 1

 .

Permutating the columns of G conveniently, one obtains the matrix

G2 =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

 :=
[

C11 C12
]

,

in which each Cij are circulant matrices with generating polynomials given by
c11(x) = c12(x) = 1 + x + x2, respectively.
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QC-LDPC codes
Therefore, the associated module C̃ is given by

C̃ =
〈[

1 + x + x2

1 + x + x2

]
,
[
x4 − 1

0

]
,
[

0
x4 − 1

]〉
.

Via Buchberger’s Algorithm, one finds the Gröbner basis

G̃ =
{[

1 + x + x2

1 + x + x2

]
,
[
x4 − 1

0

]
,
[

0
x4 − 1

]
,
[

1 + x
x + x4

]
,
[

1
1 + x + x5

]}
for C̃.
Whence, its reduced Gröbner basis is given by

G̃R =
{[

0
x4 − 1

]
,
[
1
1

]}
.

It follows that the rows of the matrix

G̃R =
[
g11 g12

0 g22

]
=
[
1 1
0 x4 − 1

]
generate C̃.
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QC-LDPC codes

By Proposition 3.1, dim C = 4 in F8
2. Furthermore, via Proposition 3.2, one obtains

the generator matrix

GS =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


for C.

Permutating conveniently the columns of GS , we get the matrix

G′
S =

[
I4 I4

]
,

which generates an equivalent code to C, say C′.
In such case, the associated parity-check matrix H ′

S of C′ is

H ′
S =

[
I8−4 IT

4

]
=
[

I4 I4
]

,

which follows Definition 4.1.

Conclusion: C has an equivalent QC-LDPC code.
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QC-LDPC codes

Our goal in this work (in progress) is to establish a parallel with the Gröbner basis
theory for modules in order to provide conditions and/or algorithms allowing us to
verify if a quasi-cyclic code, given its generator(s),

◦ has an equivalent LDPC code or is itself an LDPC code.

◦ has an equivalent code generated by a vector having minimal Hamming
weight.
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Perspectives

We also intend to extend Conjecture 3.1 (in the case it is true) and to link the Gröbner
basis theory for modules (or even for ideals) to

◦ Code-based Cryptography;

◦ Coding and/or decoding of quasi-cyclic codes ([2]);

◦ Lattices from codes ([3], [1]).
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