The physics and geometry of knot homologies

Piotr Sułkowski

Notes by Severin Barmeier*

Knots, quantization, knot homologies \& super-A-polynomials

Knot invariants \& Chern-Simons theory

Pictured are the unknot $\left(0_{1}\right)$, the trefoil knot $\left(3_{1}\right)$, and the figure- 8 knot $\left(4_{1}\right)$ with zero, three, and four crossings, respectively.

Reidemeister moves

[^0]
Polynomial knot invariants

- Alexander (1928) \longrightarrow Alexander polynomial $\Delta(q)$
- Jones $(1984) \longrightarrow$ Jones polynomial $J(K ; q)$, satisfying the skein relations

$$
\begin{aligned}
q^{-1} J(\nwarrow ᄌ)-q J\left(\nwarrow^{\boldsymbol{K}}\right) & =\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J(\Im \widetilde{ }) \\
J(\bigcirc ; q) & =1 .
\end{aligned}
$$

- HOMFLY (1985) \longrightarrow HOMFLY polynomial $P(a, q), a=q^{2}$. Another normalization of the unknot

$$
\begin{aligned}
& P(\bigcirc ; a, q)=\frac{a^{\frac{1}{2}}-a^{-\frac{1}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}} \\
& q^{-1} J(\circlearrowleft)-q J(\Omega)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J(\circlearrowleft \circlearrowleft) \\
& q^{-1} J(\circlearrowleft)-q J(\circlearrowleft)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J(\circlearrowleft) \\
& q^{-1} J(\circlearrowleft)-q J(\circlearrowleft)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J(\bigcirc \bigcirc) \\
& J(\bigcirc \bigcirc)=q^{-1}-q \\
& q^{\frac{1}{2}}-q^{-\frac{1}{2}} \\
& J(\circlearrowleft ; q)=q+q^{3}-q^{4}
\end{aligned}
$$

Puzzles

1. What is the 3 -dimensional origin of these knot invariants?
2. Why do knot polynomials have integer coefficients?

For (1), there is Chern-Simons theory (Witten 1989).

$$
S_{\mathrm{CS}}=\int_{M}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right),
$$

where M is a 3 -manifold.
QFT

$$
Z_{M}^{G}(q)=\int D A \mathrm{e}^{\frac{k i}{4 \pi} S_{\mathrm{CS}}},
$$

partition function $q=\mathrm{e}^{\frac{2 \pi i}{k+c_{2}(G)}}$.
Wilson loops

$$
\left\langle\operatorname{Tr}_{R} \mathcal{P} \mathrm{e}^{\oint_{K} A}\right\rangle=\int D A\left(\operatorname{Tr}_{R} \mathcal{P} \mathrm{e}^{\oint_{K} A}\right) \mathrm{e}^{\frac{k i}{4 \pi} S_{\mathrm{CS}}}
$$

and

$$
J(K ; q)=\frac{\left\langle\operatorname{Tr}_{R=\square} \mathcal{P e}^{\oint_{K} A}\right\rangle_{G=\mathrm{SU}(2), M=S^{3}}}{\left\langle\operatorname{Tr}_{R=\square} \mathcal{P}^{\oint_{K} A}\right\rangle_{G=\mathrm{SU}(2), M=S^{3}}}
$$

If $M=S^{3}$, then

- $G=\mathrm{SU}(2), R=\square$ gives the Jones polynomial
- $G=\mathrm{SU}(2), R=\square$ gives the HOMFLY polynomial P, where

$$
P=P\left(q^{N}, q\right)=P(a, q)
$$

and $a=q^{N}$.

- $G=\mathrm{SO}$ or Sp give the Kaufmann polynomial

$$
J(\boldsymbol{B} ; q)=q+q^{3}-q^{4}
$$

Coloured Jones polynomials

$R=S^{3}=\square \square \cdots$

$$
\begin{aligned}
J_{R=\square}(\mathcal{G} ; q) & =q^{2}+q^{5}-q^{7}+q^{8}-q^{9}-q^{10}+q^{11} \\
J_{R=\square}(\mathcal{B} ; q) & =\text { more and more complicated }
\end{aligned}
$$

The coloured polynomials are stronger than $R=\square$, but not strong enough. For example, they don't distinguish mutant knots.

Non-perturbative methods

How to obtain Z from "surgeries".

Wave-functional

$$
\psi_{M, \bigcirc}(\mathcal{A})=\left\langle\mathcal{A} \mid \psi_{M, \bigcirc}\right\rangle=\int_{\left.A\right|_{\Sigma}=\mathcal{A}} D A e^{\frac{k i}{4 \pi} S_{\mathrm{CS}}}
$$

$\left|\psi_{M, O}\right\rangle \in \mathcal{H}_{\Sigma}$, where \mathcal{H}_{Σ} is the Hilbert space that arises from canonical quantization of the Chern-Simons $\Sigma \times \mathbb{R}$, i.e.
$\mathcal{H}_{\Sigma}=$ space of conformal blocks in the WZW model with G level k, where G is compact. We have that $\operatorname{dim} \mathcal{H}_{\Sigma}<\infty$, e.g.

- If $\Sigma=S^{2}$, then $\operatorname{dim} \mathcal{H}_{\Sigma}=1$.
- If $\Sigma=T^{2}$, then $\mathcal{H}_{\Sigma}=\left\{\right.$ integrable representations of $\left.\widehat{\mathfrak{s u}}(N)_{k}\right\}$, where by "integrable representations" we mean labelled Young diagrams.
where $\partial M_{1}=\partial M_{2}=\Sigma=T^{2}$.
In quantum theory $f \longmapsto \widehat{f}$ acting on \mathcal{H}_{Σ} via $Z=\left\langle\psi_{M_{1}, \mathcal{O}_{1}}\right| \widehat{f}\left|\psi_{M_{2}, \mathcal{O}_{2}}\right\rangle$.
Consider $\mathrm{SL}_{2} \mathbb{Z}$, generated by

$$
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad S=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Then $T, S \longmapsto \widehat{T}, \widehat{S}$.

$$
Z\left(S^{2} \times S^{1}\right)=\langle 0| 1|0\rangle=\langle 0 \mid 0\rangle=1
$$

M_{1} and M_{2} are "solid tori", i.e. $S^{1} \times$ disk. Glue using $f=1$.

$$
Z\left(S^{3}\right)=\langle 0| \widehat{S}|0\rangle=S_{00}=\frac{1}{(k+N)^{\frac{N}{2}}} \prod_{j=1}^{N-1}\left(2 \sin \left(\frac{\pi_{j}}{k+N}\right)\right)^{N-j}
$$

If $\theta=\operatorname{Tr}_{R} \mathcal{P} \mathrm{e}^{\oint A}$, then $\left|\psi_{\theta}\right\rangle=|R\rangle$. What is the unknot polynomial in S^{3} ?

$$
\langle\bigcirc\rangle=\langle 0| \widehat{S}|R\rangle=S_{0 R}=\operatorname{dim}_{q} R=s_{R}
$$

Then $R=$implies

$$
\operatorname{dim}_{q} \square=s_{\square}\left(x_{i}\right)=\sum_{i=1}^{N} x_{i}=\frac{q^{\frac{N}{2}}-q^{-\frac{N}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}=\frac{a^{\frac{1}{2}}-a^{-\frac{1}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}
$$

A-polynomial, volume conjecture \& quantization

Knot complement $M=S^{3} \backslash K$, where the complement is to be taken of a tubular neighbourhood of the knot. The knot group is $\pi_{1}(M)$. For example, the knot group of the trefoil knot $\mathscr{E}\left(3_{1}\right)$ is

$$
\langle a, b \mid a b a=b a b\rangle
$$

Consider a representation $\rho: \pi_{1}(M) \longrightarrow \mathrm{SL}_{2} \mathbb{C}$
Let m denote the meridian and l the longitude, as shown in the figure. Then

$$
\rho(m) \cong\left(\begin{array}{cc}
x & * \\
0 & x^{-1}
\end{array}\right), \quad \rho(l) \cong\left(\begin{array}{cc}
y & * \\
0 & y^{-1}
\end{array}\right)
$$

so that

$$
\rho \longmapsto(x, y) \in \mathbb{C}^{2}
$$

with $(A$-)polynomial relation $A(x, y)=0$.
For example, $A_{\odot}(x, y)=y-1$ and $\rho(l)=1$ implies that $y=1$.
The properties of the A-polynomial are

- $A(x, y)=(y-1)(\cdots)$
- $A(x, y)=($ monomial $) A\left(\frac{1}{x}, \frac{1}{y}\right)$

- detects mirror knots (that is, knot with opposite orientation) in that $A_{\text {Х }}(x, y)=($ monomial $) A_{K}(x, y)$, where X is the mirror knot of K.
- tempered: from a Newton polygon construct face polynomials.

$$
\begin{aligned}
A(x, y) & =\sum c_{i j} x^{i} y^{j} \\
A_{3_{1}}(x, y) & =(y-1)\left(y+x^{3}\right)
\end{aligned}
$$

and $f(z)=\sum c_{k} z^{k}$, where the roots of f are roots of unity.

Volume conjecture (Kashaev '97). If K is a hyperbolic knot, then

$$
\lim _{n \longrightarrow \infty} \frac{1}{2} \ln \left|J_{n}\left(K ; \mathrm{e}^{\frac{2 \pi i}{n}}\right)\right|=\operatorname{Vol}\left(S^{3} \backslash K\right),
$$

where $J_{n}=J_{\square \square \square}$ is the Jones polynomial.

General volume conjecture (Gukov '03).

$$
J_{n}\left(K ; q=\mathrm{e}^{\hbar}\right) \simeq \mathrm{e}^{\frac{1}{\hbar} s_{0}(x)+s_{1}(x)+\hbar s_{2}(x)+\cdots}
$$

as $n \longrightarrow \infty$ and $\hbar \longrightarrow 0$, where $x=\mathrm{e}^{n \hbar}=q^{n}$ and $s_{0}(x)=\int_{x_{*}}^{x} \ln y \frac{\mathrm{~d} x^{\prime}}{x^{\prime}}$.

Quantum volume conjecture (AJ-conjecture).

$$
\widehat{A} J_{*}=0
$$

Weyl algebra:

$$
\begin{aligned}
\widehat{y} \widehat{x} & =q \widehat{x} \widehat{y} \\
\widehat{x} J_{n} & =x J_{n} \\
\widehat{y} J_{n} & =J_{n+1} \\
\exists \widehat{A}(\widehat{x}, \widehat{y} ; q) J_{*} & =0 \\
a_{k} J_{n+k}+\cdots+a_{1} J_{n+1}+a_{0} J_{n} & =0,
\end{aligned}
$$

where $a_{i}=a_{i}(\widehat{x}, q)$. Then

$$
\widehat{A}(\widehat{x}, \widehat{y} ; q) \longrightarrow A(x, y)
$$

as $q \longrightarrow 1$ and $\hbar \longrightarrow 0$.

How does this relate to physics \& quantization?

$$
S_{\mathrm{CS}}=\int A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A
$$

$M, \partial M=\Sigma$.

$$
\delta S_{\mathrm{CS}}=0 \Longrightarrow \mathrm{~d} A+A \wedge A=0 \text { (flat connection) }
$$

Classical phase space $\mathcal{M}(G, \Sigma)$, the moduli space of flat connections. We have the embedding

$$
\mathcal{M}(G, M) \hookrightarrow \mathcal{M}(G, \Sigma)
$$

whose image is a Lagrangian submanifold of $\mathcal{M}(G, \Sigma)$.
For example, let $M=S^{3} \backslash K$ and $G=\mathrm{SL}_{2} \mathbb{C}$ and consider CS on M. Then flat connections are in 1-to-1 correspondence and labelled by

$$
C=\operatorname{Hom}\left(\pi_{1}(M), \mathrm{SL}_{2} \mathbb{C}\right) / \text { conj.. }
$$

Baby example. Each hyperbolic space can be decomposed into "fundamental" tetrahedra.

$$
\begin{aligned}
Z(x) & =\prod_{i=0}^{\infty}\left(1-x q^{i}\right)^{-1} \\
\widehat{y} Z(x) & =\prod_{i=1}^{\infty}\left(1-x q^{i}\right)^{-1}=(1-x) Z(x)
\end{aligned}
$$

and $\widehat{A}=\widehat{y}+\widehat{x}-1$ shows that $A(x, y)=x+y+1$.

$$
Z(x)=\prod_{i=0}^{\infty}\left(1-x q^{i}\right)^{-1}=\mathrm{e}^{-\frac{1}{\hbar} L_{i_{2}}(x)+\cdots}
$$

where $L_{i_{k}}(x)=\sum_{i=1}^{\infty} \frac{x^{i}}{i^{k}}$ and $L_{i_{1}}=-\ln (1-x)$. But then

$$
s_{0}(x)=-L_{i_{2}}(x)=\int \ln y \frac{\mathrm{~d} x}{x}
$$

implies that

$$
y=\mathrm{e}^{x \frac{\partial s_{0}}{\partial x}}=\mathrm{e}^{x \frac{\partial\left(-L_{i_{2}}(x)\right)}{\partial x}}=\mathrm{e}^{x \frac{\ln (1-x)}{x}}=1-x .
$$

Example for 3_{1}.

$$
\widehat{A}=\alpha \widehat{y}^{-1}+\beta+\gamma \widehat{y},
$$

where

$$
\begin{aligned}
\alpha & =\frac{x^{2}(x-q)}{x^{2}-q} \\
\beta & =q\left(1+\frac{1}{x}-x+\frac{q-x}{x^{2}-q}-\frac{x-1}{x^{2} q-1}\right) \\
\gamma & =\frac{q-\frac{1}{x}}{1-q x^{2}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& Z_{1}=q+q^{3}-q^{4} \\
& Z_{2}=q^{2}+q^{5}-q^{7}+q^{8}-q^{9}-q^{10}+q^{11} .
\end{aligned}
$$

$A_{3_{1}}=(y-1)\left(y+x^{3}\right)$ may be related to \widehat{A} via random matrix theory.

Knot homologies \& super- A-polynomial

Super- A-polynomial

The super- A-polynomial $A(x, y ; a, t)=0$ is a new knot invariant that is related to 3 -dimensional SUSY Gauge theories and Seiberg-Witten curves via $3 \mathrm{~d}-3 \mathrm{~d}$ duality.

There is also the quantum super- A-polynomial $\widehat{A}(\widehat{x}, \widehat{y} ; a, q, t)$.

Why knot polynomials have integer coefficients

A knot polynomial gives rise to a vector space $\mathcal{H}_{*, *}$. Calculating the Euler characteristic gives

$$
J(q)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j},
$$

where

$$
\operatorname{Kh}(q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} \mathcal{H}_{i, j},
$$

e.g. $\mathrm{Kh}_{3_{1}}(q, t)=q+q^{3} t^{2}+q^{4} t^{3}$ and $t=-1$ gives $J=q+q^{3}-q^{4}$.

$$
\Delta(q) \longrightarrow \mathrm{HFK}_{*, *} \longrightarrow \operatorname{HFK}(q, t) .
$$

The HOMFLY polynomial is given by

$$
P(a, q)=\sum_{i, j, k} a^{i} q^{j} t^{k} \operatorname{dim} \mathcal{H}_{i, j, k}
$$

giving the superpolynomial $\mathcal{P}(a, q, t)$.
The coloured homfly polynomial is given by

$$
P_{R}(a, q)=\sum_{i, j, k} a^{i} q^{j} t^{k} \operatorname{dim} \mathcal{H}_{i, j, k}^{p}
$$

giving the coloured superpolynomial $\mathcal{P}_{R}(a, q, t)$.
For 3_{1} we have

$$
\begin{aligned}
P(a, q) & =\frac{a}{q}+a q-a^{2} \\
\mathcal{P}_{R=\square}(a, q, t) & =\frac{a}{q}+a q t^{2}+a^{2} t^{3}
\end{aligned}
$$

and $a=q^{2}$ gives the Jones polynomial J.
How do we get $\mathcal{P}_{n}(a, q, t)$? Refined Chern-Simons theory for $q \longrightarrow(q, t)$ (Aganagic \& Shakirov).

$$
\begin{gathered}
\langle\circlearrowleft\rangle_{R}=\operatorname{dim}_{q} R=S_{R}(\cdot, q) \longrightarrow M_{R}(\cdot, q, t) \\
S, T \longrightarrow(S T)^{3}=1, S^{2}=C \\
Z(a, q) \longrightarrow Z(a, q, t)
\end{gathered}
$$

Then

$$
\mathcal{H}_{*, *}=\mathcal{H}_{\mathrm{BPS}} .
$$

With this

$$
\mathcal{P}_{n}(\mathcal{B} ; a, q, t)=\sum_{k=0}^{n-1} a^{n-1} t^{2 k} q^{n(k-1)+1} \frac{\left(q^{n-1}, q^{-1}\right)_{k}\left(-a t q^{-1}, q\right)_{k}}{(q, q)_{k}},
$$

where $(x, q)_{k}$ is the q-Pochhammer

$$
(x, q)_{k}=\prod_{i=0}^{k-1}\left(1-x q^{i}\right)
$$

Super- A-polynomial

$$
\mathcal{P}_{n}(a, q, t) \longrightarrow \mathrm{e}^{\frac{1}{\hbar} s_{0}(x ; a, t)+\cdots}
$$

as $n \longrightarrow \infty$ and $\hbar \longrightarrow 0$, where $x=q^{n}$ and a, t are fixed.

Claims.

1. For $s_{0}(x, a, t)=\int \ln y \frac{\mathrm{~d} x}{x}$ we have that $A^{\text {super }}(x, y ; a, t)=0$.
2. $\widehat{A}^{\text {super }}(\widehat{x}, \widehat{y} ; a, t) \mathcal{P}_{*}=0$.
3. $\widehat{A}^{\text {super }}$ gives $A^{\text {super }}$ when $q=1$.

In fact, we have

[^0]: *who assumes full responsibility for all errors that remain in this document.

