The physics and geometry of knot homologies

Piotr Sutkowski

Notes by Severin Barmeier*

Knots, quantization, knot homologies & super-
A-polynomials

Knot invariants & Chern—Simons theory
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Pictured are the unknot (0), the trefoil knot (3;), and the figure-8 knot
(41) with zero, three, and four crossmgs respectlvely
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*who assumes full responsibility for all errors that remain in this document.



Polynomial knot invariants

e Alexander (1928) — Alexander polynomial A(q)

e Jones (1984) — Jones polynomial J(K;q), satisfying the skein rela-
tions

g1 ICR) — qJ(X) = (g2 — ¢ 2)JO0)
J((O;q) =1.

e HOMFLY (1985) — HOMFLY polynomial P(a,q), a = ¢*>. Another
normalization of the unknot

1
a2
P(O;a,q) = ——

¢ I(&) — ¢ J(&) = (a7 — ¢ ) J ()
g (D) — 4 (D) = (¢ — ¢ 2)J(@)
@) - (@) = (¢2 — ") IO O)
JOoo) =41
qz —q 2
J(&iq) =q+¢*—¢*

Puzzles

1. What is the 3-dimensional origin of these knot invariants?

2. Why do knot polynomials have integer coefficients?

For (1), there is Chern—Simons theory (Witten 1989).
Scs :/ (ANAA+ZANANA),
M

where M is a 3-manifold.

QFT
Z8(q) = / D AetnScs,
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partition function ¢ = eFFes(@)
Wilson loops
<TrR77e9gKA> = /DA(TrRPe§KA)eﬁSCS
and

<TI'R:[]P€§K A>
J(K;q) =
( ) Q) <TI'R:D7)€§K A>

G=SU(2), M=S3

G=SU(2), M=53
If M = S3, then
e G =SU(2), R= [ gives the Jones polynomial
e G =SU(2), R =0 gives the HOMFLY polynomial P, where
P =P(¢",q) = P(a.q)
and a = ¢".

e G = SO or Sp give the Kaufmann polynomial

J(&q)=q+¢ —¢*

Coloured Jones polynomials

R=S*=0[11---0
Jr=cr(&; ¢) = more and more complicated

The coloured polynomials are stronger than R = [, but not strong enough.
For example, they don’t distinguish mutant knots.

Non-perturbative methods

How to obtain Z from “surgeries”.



M, M;

Wave-functional

aro(A) = (A | daro) = / D Aok s

Alg=A

|Ymo) € Hy, where Hy, is the Hilbert space that arises from canonical
quantization of the Chern-Simons ¥ x R, i.e.

‘Hy. = space of conformal blocks in the WZW model with G level &,

where G is compact. We have that dim Hy, < oo, e.g.

o If ¥ = S2 then dimHy, = 1.

o If ¥ = T? then Hy = {integrable representations of su(N);}, where
by “integrable representations” we mean labelled Young diagrams.

where OM, = OM, =X = T2
In quantum theory f — f acting on Hs, via Z = <¢Mh@1|f|1/1M27@2>.

Consider SLj Z, generated by

11 10
i RV )]

)
)

Then 7,5 +— T, S.

Z(S* x S*) = (0|1]0) = (0]0) = 1.
M, and M, are “solid tori”, i.e. S x disk. Glue using f = 1.
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If 0 = Trg Pef 4, then |1y) = |R). What is the unknot polynomial in S3?
(O) = (0I8|R) = Sor = dim, R = sr

Then R = [ implies

2
dim, 0 = sp(x;) = sz = T

A-polynomial, volume conjecture & quantization

Knot complement M = S3\ K, where the complement is to be taken of a
tubular neighbourhood of the knot. The knot group is (M ). For example,
the knot group of the trefoil knot & (3;) is

(a,blaba = bab)
Consider a representation p: m (M) — SLy C

Let m denote the meridian and [ the longitude, as shown in the figure.

Then
o= (552 ) 0= (),

pr— (z,y) € C?

so that

with (A-)polynomial relation A(x,y) = 0.
For example, Ag(z,y) =y — 1 and p(l) = 1 implies that y = 1.

The properties of the A-polynomial are

o Alz,y) = —-1(-)
e A(z,y) = (monomial) A(Z, %)



e detects mirror knots (that is, knot with opposite orientation) in that
Ax(z,y) = (monomial) Ak (x,y), where 2\ is the mirror knot of K.

e tempered: from a Newton polygon construct face polynomials.
Az, y) = Z Ciﬂiyj
Az (2,y) = (y = 1)(y + 2°)

and f(z) = Y cx2", where the roots of f are roots of unity.

Volume conjecture (Kashaev '97). If K is a hyperbolic knot, then

27i

Jo(K;en )| = Vol(S*\K),

lim 1ln
2

n—>00

where J, = J.0 is the Jones polynomial.

General volume conjecture (Gukov '03).

Tl = ) o ch(a) b bsato) e

as n — 00 and i — 0, where z = ¢™ = ¢" and so(z) = [ Inyd.



Quantum volume conjecture (AJ-conjecture).
AJ, =0.

Weyl algebra:

YT = qTy
zJ, =xJ,
@\Jn = Jn+1

JA®, 5 9) . = 0
apJpir + -+ arpp +agd, =0,
where a; = a;(Z,q). Then

A,y q) — Az, y)

as ¢q— 1 and h — 0.

How does this relate to physics & quantization?

SCS:/A/\dA+§A/\A/\A
M, OM = 3.
0Scs =0 = dA+ AN A =0 (flat connection)

Classical phase space M(G,Y), the moduli space of flat connections. We
have the embedding
M(G, M) — M(G,Y),

whose image is a Lagrangian submanifold of M(G, X).

For example, let M = S®\ K and G = SL, C and consider CS on M. Then
flat connections are in 1-to-1 correspondence and labelled by

C' = Hom(m (M), SLy C)/conj..



Baby example. Each hyperbolic space can be decomposed into “funda-
mental” tetrahedra.

o0

2(x) = [J(1 =g

§Z() = [0 =) = (1 — ) Z(x)

=1

and A =3+ 7 — 1 shows that Alz,y) =z +y+ 1.

Z(x) = H(l —xq") !t = e wlig (@)t

1=0

where L;, (z) = > o, f—k and L;, = —In(1 — z). But then

%@p?¢dwz/mﬁ?

implies that

.Z‘m xa(_LiQ (2)) mln(lfa:)
y=¢e" =e oz —e © =1 — 7.

Example for 3;. R
A=ay " +B+77,

where
2 _
PO )
x?—q
1 qg—=x r—1
—gl1+ 22— _
b q(+x x+az2—q qu—l)
_ 4
7_1—q;152
Also,

Zv=q+¢—q"
ZQ:q2+q5_q7+q8_q9_q10+q11~

A3, = (y — 1)(y + 2*) may be related to A via random matrix theory.



Knot homologies & super-A-polynomial

Super-A-polynomial

The super-A-polynomial A(z,y;a,t) = 0 is a new knot invariant that is
related to 3-dimensional SUSY Gauge theories and Seiberg—Witten curves
via 3d—3d duality.

There is also the quantum super-A-polynomial Z(/x\, ysa,q,t).

Why knot polynomials have integer coeflicients

A knot polynomial gives rise to a vector space H, .. Calculating the Euler
characteristic gives

J(@) =) (~1)'¢ dimHyy,
i,
where _
Kh(q, t) = Z tzq] dlm Hid?
(2]
e.g. Khy, (¢,t) = q+ @t + ¢*t3 and t = —1 gives J = ¢+ ¢* — ¢*.
A(q) — HFK., . — HFK(q,t).
The HOMFLY polynomial is given by
P(a,q) = Z a'@t" dim H; jx
i,4,k
giving the superpolynomial P(a, q,t).
The coloured HOMFLY polynomial is given by
Pr(a,q) = Z a'q’t* dim H 1
0.4,k
giving the coloured superpolynomial Pg(a, q,t).

For 3; we have

a
P(a,q):a—l—aq—a2

Proola, q,t) = — + agt® + o’
q



and a = ¢? gives the Jones polynomial J.

How do we get P,(a,q,t)? Refined Chern—Simons theory for ¢ — (g, t)
(Aganagic & Shakirov).

<O>R - dlmq R = SR('a q) e MR('7 q, t)
S, T — (ST =1,8*=C
Z(a,q) — Z(a,q,t)

Then
H.. = Hpps.
With this
n—1 n—1 ,—1 -1
P a,q,t) = Zan—1t2kqn(k—1)+1 (" g )e(—atq aQ)k7
— (4, D)
where (z,q)y is the g-Pochhammer
k-1
(z, ) = [ (1 = 2¢).
i=0

Super-A-polynomial

Pn(a, q, t) — e%so(x;aﬂg)_i_u_

as n — 00 and h — 0, where x = ¢" and a,t are fixed.

Claims.
1. For so(z,a,t) = [Iny9E we have that A" (z,y;a,t) = 0.
2. AP (F 5 a, )P, = 0.
3. Asuper gives A®"P¢" when g = 1.

In fact, we have

Asuper(m’y; a,t) t=-1

Asuper<x7 y’ Cl)
a=1 a=1

Asuper(x7 y; t)
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