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Knots, quantization, knot homologies & super-

A-polynomials

Knot invariants & Chern�Simons theory

Pictured are the unknot (01), the trefoil knot (31), and the �gure-8 knot
(41) with zero, three, and four crossings, respectively.
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Polynomial knot invariants

• Alexander (1928) Alexander polynomial ∆(q)

• Jones (1984) Jones polynomial J(K; q), satisfying the skein rela-
tions

q−1J( )− qJ( ) = (q
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1
2 )J( )

J( ; q) = 1.

• homfly (1985) homfly polynomial P (a, q), a = q2. Another
normalization of the unknot
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J( ; q) = q + q3 − q4

Puzzles

1. What is the 3-dimensional origin of these knot invariants?

2. Why do knot polynomials have integer coe�cients?

For (1), there is Chern�Simons theory (Witten 1989).

SCS =

∫
M

(A ∧ dA+ 2
3
A ∧ A ∧ A),

where M is a 3-manifold.

QFT

ZG
M(q) =

∫
DAe

ki
4π
SCS ,
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partition function q = e
2πi

k+c2(G) .

Wilson loops 〈
TrRPe

∮
K A
〉

=

∫
DA(TrRPe

∮
K A)e

ki
4π
SCS

and

J(K; q) =

〈
TrR=�Pe

∮
K A
〉
G=SU(2),M=S3〈

TrR=�Pe
∮
K A
〉
G=SU(2),M=S3

If M = S3, then

• G = SU(2), R = � gives the Jones polynomial

• G = SU(2), R = � gives the homfly polynomial P , where

P = P (qN , q) = P (a, q)

and a = qN .

• G = SO or Sp give the Kaufmann polynomial

J( ; q) = q + q3 − q4

Coloured Jones polynomials

R = S3 = ��· · ·�

JR=��( ; q) = q2 + q5 − q7 + q8 − q9 − q10 + q11

JR=���( ; q) = more and more complicated

The coloured polynomials are stronger than R = �, but not strong enough.
For example, they don't distinguish mutant knots.

Non-perturbative methods

How to obtain Z from �surgeries�.
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Σ

M1 M2

Wave-functional

ψM, (A) = 〈A | ψM, 〉 =

∫
A|Σ=A

DAe
ki
4π
SCS

|ψM, 〉 ∈ HΣ, where HΣ is the Hilbert space that arises from canonical
quantization of the Chern�Simons Σ× R, i.e.

HΣ = space of conformal blocks in the WZW model with G level k,

where G is compact. We have that dimHΣ <∞, e.g.

• If Σ = S2, then dimHΣ = 1.

• If Σ = T 2, then HΣ = {integrable representations of ŝu(N)k}, where
by �integrable representations� we mean labelled Young diagrams.

where ∂M1 = ∂M2 = Σ = T 2.

In quantum theory f f̂ acting on HΣ via Z = 〈ψM1,O1|f̂ |ψM2,O2〉.

Consider SL2 Z, generated by

T =

(
1 1
0 1

)
, S =

(
1 0
0 −1

)
,

Then T, S T̂ , Ŝ.

Z(S2 × S1) = 〈0|1|0〉 = 〈0|0〉 = 1.

M1 and M2 are �solid tori�, i.e. S1 × disk. Glue using f = 1.
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Z(S3) = 〈0|Ŝ|0〉 = S00 =
1

(k +N)
N
2

N−1∏
j=1

(
2 sin

(
πj

k +N

))N−j

If θ = TrR Pe
∮
A, then |ψθ〉 = |R〉. What is the unknot polynomial in S3?

〈 〉 = 〈0|Ŝ|R〉 = S0R = dimq R = sR

Then R = � implies

dimq� = s�(xi) =
N∑
i=1

xi =
q
N
2 − q−N2
q

1
2 − q− 1

2

=
a

1
2 − a− 1

2

q
1
2 − q− 1

2

A-polynomial, volume conjecture & quantization

Knot complement M = S3\K, where the complement is to be taken of a
tubular neighbourhood of the knot. The knot group is π1(M). For example,
the knot group of the trefoil knot (31) is

〈a, b|aba = bab〉

Consider a representation ρ : π1(M) SL2 C

Let m denote the meridian and l the longitude, as shown in the �gure.
Then

ρ(m) ∼=
(
x ∗
0 x−1

)
, ρ(l) ∼=

(
y ∗
0 y−1

)
so that

ρ (x, y) ∈ C2

with (A-)polynomial relation A(x, y) = 0.

For example, A (x, y) = y − 1 and ρ(l) = 1 implies that y = 1.

The properties of the A-polynomial are

• A(x, y) = (y − 1)(· · · )

• A(x, y) = (monomial)A( 1
x
, 1
y
)
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m
l

S3

• detects mirror knots (that is, knot with opposite orientation) in that
A K(x, y) = (monomial)AK(x, y), where Kis the mirror knot of K.

• tempered: from a Newton polygon construct face polynomials.

A(x, y) =
∑

cijx
iyj

A31(x, y) = (y − 1)(y + x3)

and f(z) =
∑
ckz

k, where the roots of f are roots of unity.

Volume conjecture (Kashaev '97). If K is a hyperbolic knot, then

lim
n ∞

1

2
ln
∣∣∣Jn(K; e

2πi
n )
∣∣∣ = Vol(S3\K),

where Jn = J��···� is the Jones polynomial.

General volume conjecture (Gukov '03).

Jn(K; q = e~) ' e
1
~ s0(x)+s1(x)+~s2(x)+···

as n ∞ and ~ 0, where x = en~ = qn and s0(x) =
∫ x
x∗

ln y dx′

x′
.
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Quantum volume conjecture (AJ-conjecture).

ÂJ∗ = 0.

Weyl algebra:

ŷx̂ = qx̂ŷ

x̂Jn = xJn

ŷJn = Jn+1

∃Â(x̂, ŷ; q)J∗ = 0

akJn+k + · · ·+ a1Jn+1 + a0Jn = 0,

where ai = ai(x̂, q). Then

Â(x̂, ŷ; q) A(x, y)

as q 1 and ~ 0.

How does this relate to physics & quantization?

SCS =

∫
A ∧ dA+ 2

3
A ∧ A ∧ A

M , ∂M = Σ.

δSCS = 0 dA+ A ∧ A = 0 (�at connection)

Classical phase space M(G,Σ), the moduli space of �at connections. We
have the embedding

M(G,M) M(G,Σ),

whose image is a Lagrangian submanifold ofM(G,Σ).

For example, letM = S3\K and G = SL2 C and consider CS onM . Then
�at connections are in 1-to-1 correspondence and labelled by

C = Hom(π1(M), SL2 C)/conj..
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Baby example. Each hyperbolic space can be decomposed into �funda-
mental� tetrahedra.

Z(x) =
∞∏
i=0

(1− xqi)−1

ŷZ(x) =
∞∏
i=1

(1− xqi)−1 = (1− x)Z(x)

and Â = ŷ + x̂− 1 shows that A(x, y) = x+ y + 1.

Z(x) =
∞∏
i=0

(1− xqi)−1 = e−
1
~Li2 (x)+···,

where Lik(x) =
∑∞

i=1
xi

ik
and Li1 = − ln(1− x). But then

s0(x) = −Li2(x) =

∫
ln y

dx

x

implies that

y = ex
∂s0
∂x = ex

∂(−Li2 (x))

∂x = ex
ln(1−x)

x = 1− x.

Example for 31.

Â = αŷ−1 + β + γŷ,

where

α =
x2(x− q)
x2 − q

β = q

(
1 +

1

x
− x+

q − x
x2 − q

− x− 1

x2q − 1

)
γ =

q − 1
x

1− qx2

Also,

Z1 = q + q3 − q4

Z2 = q2 + q5 − q7 + q8 − q9 − q10 + q11.

A31 = (y − 1)(y + x3) may be related to Â via random matrix theory.
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Knot homologies & super-A-polynomial

Super-A-polynomial

The super-A-polynomial A(x, y; a, t) = 0 is a new knot invariant that is
related to 3-dimensional susy Gauge theories and Seiberg�Witten curves
via 3d�3d duality.

There is also the quantum super-A-polynomial Â(x̂, ŷ; a, q, t).

Why knot polynomials have integer coe�cients

A knot polynomial gives rise to a vector space H∗,∗. Calculating the Euler
characteristic gives

J(q) =
∑
i,j

(−1)iqj dimHi,j,

where
Kh(q, t) =

∑
i,j

tiqj dimHi,j,

e.g. Kh31(q, t) = q + q3t2 + q4t3 and t = −1 gives J = q + q3 − q4.

∆(q) HFK∗,∗ HFK(q, t).

The homfly polynomial is given by

P (a, q) =
∑
i,j,k

aiqjtk dimHi,j,k

giving the superpolynomial P(a, q, t).

The coloured homfly polynomial is given by

PR(a, q) =
∑
i,j,k

aiqjtk dimHp
i,j,k

giving the coloured superpolynomial PR(a, q, t).

For 31 we have

P (a, q) =
a

q
+ aq − a2

PR=�(a, q, t) =
a

q
+ aqt2 + a2t3
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and a = q2 gives the Jones polynomial J .

How do we get Pn(a, q, t)? Re�ned Chern�Simons theory for q (q, t)
(Aganagic & Shakirov).

〈 〉R = dimq R = SR(·, q) MR(·, q, t)
S, T (ST )3 = 1, S2 = C

Z(a, q) Z(a, q, t)

Then
H∗,∗ = HBPS.

With this

Pn( ; a, q, t) =
n−1∑
k=0

an−1t2kqn(k−1)+1 (qn−1, q−1)k(−atq−1, q)k
(q, q)k

,

where (x, q)k is the q-Pochhammer

(x, q)k =
k−1∏
i=0

(1− xqi).

Super-A-polynomial

Pn(a, q, t) e
1
~ s0(x;a,t)+···

as n ∞ and ~ 0, where x = qn and a, t are �xed.

Claims.

1. For s0(x, a, t) =
∫

ln y dx
x
we have that Asuper(x, y; a, t) = 0.

2. Âsuper(x̂, ŷ; a, t)P∗ = 0.

3. Âsuper gives Asuper when q = 1.

In fact, we have

Asuper(x, y; a, t) Asuper(x, y; a)

Asuper(x, y; t) A(x, y) = 0

t = −1

t = −1

a = 1 a = 1

10


