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CHAPTER 0

A review of basic vector calculus

In this chapter we will review some basic facts of vector calculus which will be used extensively along

these notes. We will assume the reader familiar with the differential and integral calculus for real valued

functions of a real variable, as well as with the basic topology of Euclidean spaces: open and closed sets,

continuity, compactness, Cauchy sequences etc. The material in sections 1 and 2 are quite standard in

Calculus courses, while the one in section 3 is probably less “popular” at this level.

1. Differentiable functions

We will consider the Euclidean space Rn with its canonical inner product and associated norm.

For a point x ∈ Rn and r ∈ R, r > 0, we denote by Bn(p, r) := {x ∈ Rn : ∥x− p∥ < r} the ball of radius

r centred at p. When p = 0 we simply write Bn(r) for Bn(0, r).

We will denote by L(Rn,Rm) the space of linear maps of Rn into Rm. There is a natural identification

of L(Rn,Rm) with Rnm, associating to a linear transformation L, the entries (in a fixed order) of the matrix

representing L in the canonical bases. This identification induces a scalar product in L(Rn,Rm)

⟨A,B⟩ = trace AtB,

where At is the transpose of A. Often it is more convenient to consider the operator norm, defined by

∥L∥ = sup{∥Lx∥ : x ∈ Rn, ∥x∥ = 1}.

The two norms are equivalent, as all norms are in a finite dimensional vector space, so for the basic topological

concepts like convergence, continuity etc., it does not matter which one we use. In what follows we will

consider the operator norm, unless otherwise stated.

Let U ⊆ Rn be an open set and f : U −→ Rm a function.

1.1. Definition. f is differentiable at x ∈ U if there exist a linear map df(x) : Rn −→ Rm such that1

lim
∥h∥→0

∥f(x+ h)− f(x)− df(x)(h)∥
∥h∥

= 0.

The map df(x) is called the differential of f at x.

f is differentiable in U if it is differentiable at every point of U .

1.2. Remark. For a function f : U ⊆ R −→ R the derivative of f at x ∈ U, f ′(x), is defined as

f ′(x) :=
df

dt
|t=x := lim

t→0
[f(x+ t)− f(x)]t−1,

1Observe that, if ∥h∥ is sufficiently small, x+ h ∈ U .

5



1. DIFFERENTIABLE FUNCTIONS 6

if the limit exists. The differential of f at x is the linear map

df(x) : R −→ R, df(x)h = f ′(x)h.

The following facts are easy to prove and and we leave the proofs to the reader (Exercise 4.2).

1.3. Proposition.

• If f, g are differentiable at x and a ∈ R, then f + g and af are differentiable and d(f + g)(x) =

df(x) + dg(x), d[af ](x) = a[df(x)].

• If f is differentiable at x, f is continuous at x.

• If f is differentiable at x, the differential is unique.

• (The chain rule) If f : U ⊆ Rn −→W ⊆ Rm, g :W ⊆ Rm −→ Rp are differentiable at x and f(x)

respectively, then g ◦ f is differentiable at x and d[g ◦ f ](x) = dg(f(x)) ◦ df(x).

1.4. Example. Let L : Rn −→ Rm be a linear map. Then L is differentiable and dL(x) = L, ∀ x ∈ Rn,
as follows directly from the definition.

1.5. Example. If B : Rn × Rm −→ Rp is a bi-linear map, B is differentiable and dB(x, y)(z, w) =

B(x,w)+B(z, y). In particular, if f, g : U −→ R are differentiable functions, the map F : U −→ R2, F (x) =

(f(x), g(x)) is differentiable with dF (x) = (df(x),dg(x)). Since the product R×R −→ R is bilinear, by the

chain rule the function fg is differentiable and the product rule d(fg)(x) = f(x)dg(x) + g(x)df(x) holds.

In the theory of real valued functions of one real variable, an elementary but useful result is the Mean

Value Theorem.

1.6. Theorem. [Mean Value Theorem] If f : [a, a+h] ⊆ R −→ R is a differentiable function, then there

exists t0 ∈ [0, 1] such that

f(a+ h)− f(a) = f ′(a+ t0h)h.

The Theorem extends, with essentially the same proof, to the case of a differentiable function f : U ⊆
Rn −→ R. For functions with values in Rm, m > 1, such a Theorem does not hold any longer (see Exercise

4.4) but, at least, we have an inequality. The result will still be called the Mean Value Theorem.

1.7. Theorem. [Mean Value Theorem] Let f : U ⊆ Rn −→ Rm be a continuous function. Suppose that

the segment with endpoints a, a + h is contained in U and f is differentiable at the points of the segment.

Then

∥f(a+ h)− f(a)∥ ≤ ∥h∥ sup{∥df(a+ th)∥ : t ∈ [0, 1]}.

Proof. Consider the function ϕ : [0, 1] −→ Rm, ϕ(t) = f(a+ th). ϕ is differentiable, by the chain rule,

ϕ(0) = f(a), ϕ(1) = f(a + h) and dϕ(t)(1) = df(a + th)(h). Let M = sup{∥dϕ(t)∥ : t ∈ [0, 1]}. It is then

sufficient to prove that ∥ϕ(1)−ϕ(0)∥ ≤M . For this purpose we will show that, given ϵ > 0, ∥ϕ(1)−ϕ(0)∥ ≤
M + ϵ. Consider the set

A = {t ∈ [0, 1] : ∥ϕ(s)− ϕ(0)∥ ≤ (M + ϵ)s, ∀ s ∈ [0, t]}.
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It is easy to see that A = [0, a] for some a ∈ (0, 1]. We wish to prove that a = 1. Suppose a < 1. Then there

exists a positive δ such that a+ δ < 1 and for k ∈ (0, δ) small enough

ϕ(a+ k)− ϕ(a) = dϕ(a)k + r(k) with ∥r(k)∥ ≤ ϵk

(by the definition of differentiability at a). Then ∥ϕ(a + k) − ϕ(a)∥ ≤ (M + ϵ)k. But a ∈ A, hence

∥ϕ(a) − ϕ(0)∥ ≤ (M + ϵ)a. Therefore ∥ϕ(a + k) − ϕ(0)∥ ≤ (M + ϵ)(a + k). In particular a + k ∈ A, a

contradiction. �

1.8. Definition. Let f : U −→ Rm be differentiable at x ∈ U and X ∈ Rn. The directional derivative

of f at x in the X direction is defined as

∂f

∂X
(x) := df(x)(X).

1.9. Remark. For reasons that will be clear later on will use often the notation Xx(f) for df(x)(X).

If {e1, . . . , en} is the canonical basis of Rn,
∂f

∂ei
(x) is the ith partial derivative at x and will be denoted,

as usual, by
∂f

∂xi
(x). If f is differentiable at x and h =

∑n
i=1 αiei, then

df(x)h =

n∑
i=1

αidf(x)(ei) =

n∑
i=1

αi
∂f

∂xi
(x).

In particular, if f(x) = (f1(x), . . . , fm(x)), where fi : U −→ R are the coordinate functions of f ,

then the Jacobian matrix [
∂fj
∂xi

(x)] is the matrix that represents df(x) in the canonical bases. This is the

multidimensional analogue of Remark 1.2.

Let γ : (a, b) ⊆ R −→ Rn be a differentiable map. We will also say that γ is a differentiable curve. For

such a function, the tangent vector at t ∈ (a, b) (or, sometimes, at γ(t)) is the vector

γ̇(t) := dγ(t)(1) =
d

ds
|s=tγ(s).

It is easy to see that if γ : (−ϵ, ϵ) −→ Rn is a differentiable curve with γ̇(0) = X,

∂f

∂X
(x) = d(f ◦ γ)(0)(1) := d

dt
|t=0f(γ(t)).

1.10. Remark. The latter fact gives a geometric interpretation of the differential of f : the image, via

df , of the vector tangent to a given curve γ is the vector tangent to the image curve, f ◦ γ.

In particular the right hand side of the formula above does not depend on γ as long the curve passes

trough x and its tangent vector, at x, is X. This observation allow us to define the directional derivative,

hence partial derivatives, even for a class of not necessarily differentiable functions (in the sense of Definition

1.1). If f : U −→ Rm is a function and X ∈ Rn, we define the directional derivative of f at x ∈ U , in the

direction of X as
∂f

∂X
(x) :=

d

dt
|t=0f(x+ tX),

if it exists. The partial derivatives may exist even if the function is not differentiable (see Exercise 4.7).

However we have
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1.11. Proposition. Let f : U ⊆ Rn −→ Rm be a function. If the partial derivatives of f exist and are

continuous2, f is differentiable.

Proof. We will prove the Proposition for n = 2 to avoid notational complications. We want to show

that the linear map L(x, y)(h, k) =
∂f

∂x
h+

∂f

∂y
k is the differential of f at (x, y) ∈ R2. Hence we have to show

that, given ϵ > 0,

∥f(x+ h, y + k)− f(x, y)− ∂f

∂x
h− ∂f

∂y
k∥ ≤ ϵ∥(h, k)∥,

if ∥(h, k)∥ is sufficiently small. Adding and subtracting f(x, y + k) and using Exercise 4.5, we have that the

quantity on the left of the inequality sign is less or equal to

∥h∥ sup{∥∂f
∂x

(x+ th, y + k)− ∂f

∂x
(x, y)∥ : t ∈ [0, 1]}+ ∥k∥ sup{∥∂f

∂y
(x, y + tk)− ∂f

∂x
(x, y)∥ : t ∈ [0, 1]}.

The conclusion follows from the continuity of the partial derivatives. �

1.12. Remark. Let f : U ⊆ Rn −→ Rm be a function. Let πi : Rm −→ R, πi(x1, . . . , xm) = xi be the

ith projection. Then fi(x) = πi ◦ f(x) are the coordinates of f(x). It is easy to see that f is differentiable

at x ∈ U if and only if the coordinate functions are differentiable at x and, in this case,

df(x)(X) = (df1(x)(X), . . . ,dfm(x)(X)) =
∑

[dfi(x)X]ei.

Partial derivatives take care of the “opposite” situation. Given a splitting of Rn = E1⊕E2 as a direct sum of

complementary subspaces and a point (x0, y0) ∈ E1⊕E2, we can consider the inclusion ij : Ej −→ Rn, i1(x) =
(x, y0), i2(y) = (x0, y) and the functions f (j) = f ◦ ij : Ej ∩U −→ Rm. If f is differentiable at (x0, y0), f

(1)

(resp. f (2)) is differentiable at x0 (resp. y0) and df(x0, y0)(X,Y ) = df (1)(x0)(X) + df (2)(y0)(Y ). So we

can define the partial differentials relative to the given splitting, djf = df ◦ ij . The existence of the partial

differentials does not implies the existence of the differential of f . However, as in Proposition 1.11, if the

partial differentials exist and are continuous, then f is differentiable. Obviously the same arguments work for

a decomposition of Rn into the direct sum of k complementary subspaces. Partial derivatives are, essentially,

partial differentials relative to the canonical splitting of Rn as the direct sum of the coordinate lines.

If f : U −→ Rm is a differentiable function, the differential can be seen as a map df : U −→
L(Rn,Rm), x df(x).

1.13. Definition. We will say that f is twice differentiable at x ∈ U , if the function df : U −→
L(Rn,Rm) is differentiable at x. In this case, the differential of df at x will be called the second differential

of f at x and will be denoted by d2f(x).

Inductively, we define, if it exists, the kth differential of f at x, dkf(x), as the differential, at x, of

dk−1fU −→ L(Rn, L(Rn, . . .)
We will say that f is of class Ck in U if dkf(x) exists, ∀ x ∈ U , and is continuous, as a function of x.

We will say that f is of class C∞, if it is of class Ck, ∀ k. If f is C∞ we will also say that f is smooth.

1.14. Remark. It is easy to produce examples of Ck functions that are not Ck+1 (see Exercise 4.6).

One of the important features of the class of smooth functions is that it is closed under differentiation, i.e.

f is smooth if and only if df is smooth.

2As maps
∂f

∂xi
: U −→ Rm.
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If f is twice differentiable at x, then d2f(x) ∈ L(Rn, L(Rn,Rm)), and so it can be seen as the bilinear

map d2f(x)(X,Y ) = d(df)(x)(X)(Y ). In a similar way, dkf(x) can be viewed as a k-multilinear map.

1.15. Theorem. [Schwarz’s Theorem] If d2f(x) exists, it is a symmetric bilinear form.

We will sketch a proof in the case that f is C2 in Exercise 4.22

1.16. Remark. If f is k times differentiable at x, dkf(x) is a k-multilinear symmetric map. Moreover

we can define higher order partial derivatives. Schwarz Theorem 1.15 and a simple induction imply that if

f is of class Ck, the result of successive partial derivatives, up to order k, does not depend on the order of

derivations.

1.17. Example. If L : Rn −→ Rm is a linear map dL(x) = L, ∀ x ∈ Rn. In particular the differential

dL : Rn −→ L(Rn,Rm) is the constant map. Hence dkL = 0, if k ≥ 2, and L is C∞. Similarly, if

B : Rn×Rm −→ Rp is a bilinear map, dB(x, y)(z, w) = B(x,w)+B(z, y). In particular dB is a linear map,

hence C∞, and so is B.

1.18. Example. Let M(n,R) be the space of n× n matrices with real coefficients. The product map

m :M(n,R)×M(n,R) −→M(n,R), m(A,B) = AB,

is a bi-linear map, hence smooth. Also the map

g :M(n,R)×M(n,R) −→ L(M(n,R),M(n,R)), g(A,B)H = AHB

is bilinear, hence smooth.

Since the determinant, det : M(n,R) −→ R, is a continuous function, the set of invertible matrixes,

GL(n,R), is an open subset of M(n,R). Consider the inversion map

ι : GL(n,R) −→M(n,R), ι(A) = A−1.

Claim The map ι is smooth.

Proof. Differentiating the identity (A+ tB)(A+ tB)−1 = 11 we get

d

dt
|t=0(A+ tB)−1 = −A−1BA−1.

So, if ι is differentiable at A ∈ GL(n,R), dι(A)(B) = −A−1BA−1. It is easy to check that, in fact, the

formula defines a linear map which is the differential of ι at A. In particular ι is continuous. The differential

of ι is then given by the composition

GL(n,R) ∆−→ GL(n,R)×GL(n,R) ι×ι−→ GL(n,R)×GL(n,R) −g−→ L(M(n,R),M(n,R)),

where ∆ : GL(n,R) −→ GL(n,R)×GL(n,R) is the diagonal map, ∆(A) = (A,A), and g is as above. Hence

dι is continuous and ι is of class C1. At this point a simple induction proves the Claim. �

As we have seen, the differential of a function f at a point x, provides the best linear approximation

of f − f(x) in a neighborhood of x. The Taylor formula provides the best polynomial approximation, for

functions with more differentiability.
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1.19. Theorem. [Infinitesimal version of Taylor Theorem] Let f : U −→ Rm be a function s times

differentiable in an open neighborhood of a ∈ U and such that ds+1f(a) exists. Then

f(a+ h) = f(a) +

s+1∑
k=1

1

k!
dkf(a)(h, . . . , h) + r(h) with limh→0 r(h)∥h∥−(s+1) = 0.

Proof. The proof is a simple consequence of the lemma below, which is of interest on its own

1.20. Lemma. Let r : B = Bn(R) −→ Rm be a function s times differentiable in B and s + 1 times

differentiable in 0. Assume djr(0) = 0, 0 ≤ j ≤ s+ 1. Then limx→0 r(x)∥x∥−(s+1) = 0.

Proof. We proceed by induction on s. If s = 0 the conclusion follow from the definition of differentia-

bility. Suppose the conclusion true for s. By the mean value Theorem we have

∥r(x)∥ ≤M∥x∥, M = sup{∥dr(tx)∥| : t ∈ [0, 1]}.

Applying the inductive hypothesis to dr, given ϵ > 0 there exist δ > 0 such that, if ∥y∥ < δ, ∥dr(y)∥ < ϵ∥y∥s.
Hence if ∥x∥δ, M ≤ ϵ∥x∥s and ∥r(x)∥ ≤ ϵ∥x∥s+1. �

�

In the linear context, i.e. vector spaces and linear maps, we study properties that are invariant for linear

isomorphisms, i.e. changes of bases. The analogue in the differential context are properties that are invariant

for (local) diffeomorphisms , i.e. change of variables (or coordinates).

1.21. Definition. A map ϕ : U ⊆ Rn −→ V ⊆ Rm between open sets is a Ck diffeomorphism if there

exists a Ck map ψ : V −→ U , such that ψ◦ϕ = 11U , ϕ◦ψ = 11V . ϕ is a local diffeomorphism if ∀ x ∈ U , there

exists an open neighborhood Ũ ⊆ U of x, such that ϕ|Ũ is a diffeomorphism onto an open neighborhood Ṽ

of ϕ(x) in V . A local diffeomorphism will also be called a change of variables (or change of coordinates).

1.22. Remark. If ϕ is a diffeomorphism, then dϕ(x) is an isomorphism, by the chain rule. Hence n = m.

The following fact will be useful.

1.23. Lemma. If ϕ : U ⊆ Rn −→ V ⊆ Rm is a Ck map, k ≥ 1, between open sets, and ϕ admits a

differentiable inverse, then the inverse is of class Ck.

Proof. From the chain rule d[ϕ−1](ϕ(x)) ◦ dϕ(x) = 11. In particular d[ϕ−1] is given by the composition

V
ϕ−1

−→ U
dϕ−→ GL(n,R) ι−→ GL(n,R),

where ι is the matrix inversion map, that, by Example 1.18, is smooth. Hence d[ϕ−1] is continuous and ϕ−1

is of class C1. In general the argument gives that, if ϕ−1 is Cs, s < k, d[ϕ−1] is also of class Cs so ϕ−1 is of

class Cs+1 and this concludes the proof.

�

Let E,F be real, finite dimensional vector spaces and L : E −→ F be a linear map. Then, in suitable

bases, F has a very simple expression. In fact we can chose a basis {e1, . . . , en} of E, such that {ek+1, . . . , en}
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is a basis of the kernel of F . Then {f1 = F (e1), . . . , fk = F (ek)} is a basis of the image of F that we can

complete with vectors {fk+1, . . . , fm} to have a basis for F. Then, in terms of coordinates in these bases,

F (x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

Since a differentiable function is (locally) approximated by a linear one, we can expect something similar

to hold, locally, for differentiable maps, up to change of coordinates. In fact this is the case.

1.24. Theorem. [Rank Theorem] Let f : U ⊆ Rn −→ Rm be a function of class Ck. Let p ∈ U be such

that rank df(x) = k in an open neighborhood of p. Then there exist open neighborhoods U ′, Ũ of p and V ′, Ṽ

of f(p), and diffeomorphisms ϕ : U ′ −→ Ũ , ψ : V ′ −→ Ṽ such that:

ψ ◦ f ◦ ϕ−1(x1, . . . , xn) = (x1, . . . xk, 0, . . . , 0), for (x1, . . . , xn) ∈ Ũ .

This Theorem will follow from the next three.

1.25. Theorem. [Inverse function Theorem] Let f : U ⊆ Rn −→ Rn be a Ck map, k ≥ 1, such that

df(p) : Rn −→ Rn is an isomorphism. Then the exist an open neighborhood U ′ of p such that f |U ′ is a Ck

diffeomorphism onto an open neighborhood of f(p).

Proof. Without loss of generality we may assume p = 0 = f(p). Moreover, by composing f with

df(0)−1, we may assume df(p) = 11. Consider the function g(x) = f(x)− x. Then g(0) = 0, dg(0) = 0. Let

r be a positive real number such that if x ∈ Bn(r), df(x) is invertible and ∥dg(x)∥ < 1
2 .

Claim 1. If y ∈ Bn( r2 ) then there exists a unique x ∈ Bn(r) such that f(x) = y.

Proof. Define x1 = y and, inductively, xn+1 = y − g(xn). By the mean value Theorem we have:

∥xn+1 − xn∥ = ∥g(xn)− g(xn−1)∥ ≤ 1

2
∥xn − xn−1∥

∥xn+1∥ = ∥g(xn) + y∥ ≤ ∥g(xn)∥+ ∥y∥ < 1

2
∥xn∥+ ∥y∥ ≤ 1

2
∥xn∥+

r

2
− ϵ,

for some ϵ > 0, independent of n. Hence:

(1) ∥xn+1 − xn∥ ≤ 2−n∥y∥ (from the first equation and induction),

(2) ∥xn∥ < r − ϵ (from the second equation and induction).

By condition (1), {xn} is a Cauchy sequence, hence it converges to a point x, and by condition (2), x ∈ Bn(r).

Finally, taking limits, we have x = y − g(x) = y − f(x) + x, hence f(x) = y.

Let us show that x is unique. Suppose f(z) = f(x) = y, z ∈ Bn(r). Then ∥x − z∥ = ∥g(z) − g(x)∥ ≤
1
2∥z − x∥ which implies z = x. �

So we have a well defined surjective map f−1 : Bn( r2 ) −→ U ′ = Bn(r) ∩ f−1(Bn( r2 )). Observe that U ′

is the intersection of two open sets, hence it is open.

Claim 2. f−1 : Bn( r2 ) −→ U ′ is Ck.

Proof. We start by observing that ∥f(x1)− f(x2)∥ ≥ ∥x1−x2∥−∥g(x1)− g(x2)∥ ≥ 1
2∥x1−x2∥, hence

f−1 is continuous. In order to show that f−1 is differentiable we observe that, since f is differentiable,

f(x)− f(x1) = df(x1)(x− x1) + h(x, x1) with lim
x→x1

h(x, x1)

∥x− x1∥
= 0.



1. DIFFERENTIABLE FUNCTIONS 12

Applying A := df(x1)
−1 to the equality above we have

A(y − y1) +Ah1(y, y1) = f−1(y)− f−1(y1),

where y = f(x), y1 = f(x1), h1(y, y1) = −h(f−1(y), f−1(y1)). Then

h1(y, y1)

∥y − y1∥
= − h(x, x1)

∥x− x1∥
∥x− x1∥
∥y − y1∥

.

Since
∥x− x1∥
∥y − y1∥

≤ 2, lim
y→y1

h1(y, y1)

∥y − y1∥
= 0 and d[f−1](y1) = [df(x1)]

−1. Hence f−1 is differentiable and the

Claim follows from Lemma 1.23. �

�

1.26. Theorem. [Local form of immersions] Let f : U ⊆ Rn −→ Rn+p be a Ck map, k ≥ 1, such that

0 ∈ U, f(0) = 0. If df(0) : Rn −→ Rn+p = Rn × Rp is injective, there exists an open neighborhood U ′ of 0

and a Ck diffeomorphism ϕ between neighborhoods of 0 ∈ Rn+p such that if x ∈ U ′,

ϕ ◦ f(x) = (x, 0).

Proof. Up to an isomorphism of Rn+p which sends df(0)ei to ei, we can assume that df(0)v = (v, 0).

Consider the function

F : U × Rp −→ Rn+p, F (x, y) = f(x) + y.

Observe that F (x, 0) = f(x) and dF (0) = 11. By the Inverse Function Theorem there is a diffeomorphism ϕ

between neighborhoods of 0 ∈ Rn+p such that ϕ ◦ F = 11. Then

ϕ ◦ f(x) = ϕ ◦ F (x, 0) = (x, 0).

�

1.27. Theorem. [Local form of subimmersions] Let f : U ⊆ Rn+p −→ Rn be a Ck map, k ≥ 1, such that

0 ∈ U, f(0) = 0. If df(0) : Rn+p −→ Rn is surjective, then there exists a Ck diffeomorphism ψ : U ′ −→ V ,

between open neighborhoods of 0 ∈ Rn+p, such that if (x, y) ∈ U ,

f ◦ ψ(x, y) = x.

Proof. Up to an isomorphism of Rn+p = Rn × Rp, we can assume that ker df(0) = {0} × Rp and

df(0)(v, 0) = v. Consider the function

F : U −→ Rn × Rp, F (x, y) = (f(x, y), y).

Then dF (0) = 11 and f = π ◦F , where π : Rn+p −→ Rn is the canonical projection. By the Inverse Function

Theorem there exists a local inverse ψ of F . Then

f ◦ ψ(x, y) = π ◦ F ◦ ψ(x, y) = π(x, y) = x.

�

At this point we leave to the reader the task of proving Theorem 1.24.
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2. Integration

We will recall now the basic fact of Riemann integration theory. We will take a limited approach which

will be enough for the purpose of these notes. We will start with the case of functions of one real variable.

Let [a, b] ⊆ R be a closed interval. A partition of the interval is a set P = {t0, . . . , tk} ⊆ R such that

a = t0 < · · · < tk = b. We will set |P | = sup{ti − ti−1}. Given a function f : [a, b] −→ Rm and a partition P

of [a, b], we define

Σ(f, P ) =
k−1∑
i=0

(ti+1 − ti)f(ti).

2.1. Definition. A vector X ∈ Rm is said to be an integral of f on [a, b] if, given ϵ > 0, there exists

δ > 0 such that

∥Σ(f, P )−X∥ < ϵ for all partitions P with |P | < δ.

If an integral exists we will say that f is integrable on [a, b] and we use the notation

X =

∫ b

a

f(t)dt or, when clear from the contex, simply X =

∫ b

a

f.

It is easy to see that if a function is integrable, the integral is unique.

2.2. Remark. Let f : [a, b] −→ Rm be an integrable function. Then we can compute the integral as

limit of the sequence Σ(f, Pn) where Pn is a sequence of partitions such that limn→∞ |Pn| = 0.

The proof of the following Proposition is simple and left to the reader (see Exercise 4.16).

2.3. Proposition. Let f, g : [a, b] −→ Rm be integrable functions, k ∈ R and T : Rm −→ Rp be a linear

map. Then f + g, kf and T ◦ f are integrable and

(1)
∫ b
a
f + g =

∫ b
a
f +

∫ b
a
g,

∫ b
a
kf = k

∫ b
a
f,

(2)
∫ b
a
T ◦ f = T (

∫ b
a
f)

(3) ∥
∫ b
a
f∥ ≤ (b− a)∥f∥0.

(4) The function F : [a, b] −→ Rm, defined by F (x) =

∫ x

a

f(t)dt is well defined and continuous.

We will denote by B := B([a, b],Rm) the set of bounded functions of [a, b] into Rm. B([a, b],Rm) is a real

vector space, with the obvious operations, and

∥f∥0 = sup{f(t) : t ∈ [a, b]}

is a norm in B, called the sup norm or the norm of uniform convergence.

2.4. Definition. A sequence of functions fn : [a, b] −→ Rm in B is uniformly convergent to f ∈ B if

limn−→∞ ∥fn − f∥0 = 0.

2.5. Remark. Proposition 2.3 tell us that the set of bounded integrable functions I is a linear subspace

of B, the integral maps I into Rm linearly (items (1)) and continuously (item (3)). The next Proposition

tell us that I is closed in B.
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2.6. Proposition. Let fn : [a, b] −→ Rm be a sequence of bounded integrable functions. If the sequence

converges uniformly to a function f , the f is integrable and∫ b

a

f = limn→∞

∫ b

a

fn.

Proof. Set In =

∫ b

a

fn. By Proposition 2.3 (3), ∥Im−Ik∥ ≤ (b−a)∥fm−fk∥0. Hence {In} is a Cauchy

sequence in Rm and therefore converges to a vector I ∈ Rm. We claim that I is the integral of f . Fix ϵ > 0.

Then there exist n such that ∥fm − f∥0 < ϵ/3(b − a), ∥I − Im∥ < ϵ/3 if m > n. Also there exist δ > 0

such that ∥Σ(fm, P ) − Im∥ < ϵ/3 if |P | < δ. Observe that ∥Σ(f, P ) − Σ(fm, P )∥ ≤ (b − a)∥f − fm∥0. So,

if |P | < δ, ∥I − Σ(f, P )∥ ≤ ∥I − Im∥ + ∥Im − Σ(fm, P )∥ + ∥Σ(fm, P ) − Σ(f, P )∥ < ϵ and this prove the

claim. �

We will describe classes of integrable functions.

2.7. Definition. A function f : [a, b] −→ Rm is a step function if there exists a partition P of [a, b], P =

{t0, . . . , tk} and vectors {X0, . . . , Xk−1} such that f(t) = Xi, t ∈ (ti, ti+1).

2.8. Lemma. Let f : [a, b] −→ Rm be a step function relative to a partition P . Then f is integrable and∫ b

a

f =
∑

(ti+1 − ti)Xi.

Proof. We can suppose f(ti) = Xi (see Exercise 4.19). Observe that Σ(f, P ′) = Σ(f, P ) if P ′ is

obtained from P adding new points. Therefore Σ(f, P ) = Σ(f, P ∪Q) for all partitions Q and the conclusion

follows. �

Since every continuous function is uniform limit of step functions (see Exercise 4.20), combining the last

two Proposition we have

2.9. Proposition. If f : [a, b] −→ Rm is continuous, then it is integrable.

We will recall now the basic relation between differentiation and integration.

2.10. Lemma. Let f : [a, b] −→ Rm be a continuous function and x ∈ [a, b]. Then∫ b

a

f =

∫ x

a

f +

∫ b

x

f.

Proof. Let P be a partition such that x ∈ P . then P = P ′ ∪ P ′′ where P ′ is a partition of [a, x] and

P ′′ a partition of [x, b]. Since all three integrals exist, by Lemma 4.20, we can compute the integrals as limit

of Σ(f, Pn) where Pn is a partition as above and limn→∞ |Pn| = 0 (see Remark 2.2). Then the conclusion

follows easily. �

2.11. Remark. The Lemma still holds for functions that are just integrable. We just have to prove that

an integrable function is integrable on any subinterval (see Exercise 4.18).

2.12. Theorem. [Fundamental Theorem of Calculus] Let f : [a, b] −→ Rm be a continuous function.

Define

F : (a, b) −→ Rm, F (x) =

∫ x

a

f.

Then F is differentiable and F ′(x) = f(x).
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Proof. F is continuous by Proposition 2.3 (item (4)). Fix x ∈ (a, b) and let h > 0 be such that

x+ h ∈ (a, b). Then

|F (x+ h)− F (x)

h
− f(x)| = | 1

h

∫ x+h

x

f − f(x)| ≤ sup{|f(t)− f(x)| : t ∈ [x, x+ h)}.

Since f is continuous the expression on the right hand side goes to 0, when h goes to 0. The same argument

works for h < 0 and the Claim follows. �

We will define now the integral of functions of several real variables. We will consider the case of two

variables and the reader should not have any difficulty to extend these considerations for n variables.

Let f : [a, b]× [c, b] −→ Rm be a function and let t, s be the first and second coordinate respectively. For

t ∈ [a, b] fixed, we set ft(s) = f(t, s). Suppose the function ft integrable, ∀ t ∈ [a, b]. Then we define the

iterated integral (if it exists), as∫ b

a

∫ d

c

f(t, s) ds dt :=

∫ b

a

[

∫ d

c

ft(s) ds] dt :=

∫ b

a

dt

∫ d

c

f(t, s)ds.

The elementary properties of the iterated integrals follows from the corresponding ones for the integrals

of functions of one real variable. For example

|
∫ b

a

∫ d

c

f(t, s)dsdt| ≤ (b− a)(d− c)∥f∥0, where ∥f∥0 = sup{∥f(t, s)∥ : (t, s) ∈ [a.b]× [c, d]}.

2.13. Example. Let P = {t0, . . . , tk} be a partition of [a, b], Q = {s0, . . . , sh} a partition of [c, d] and let

Xij ∈ Rn be fixed vectors. Let g : [a, b]× [c, d] −→ Rn be a function such that g(t, s) = Xij , t ∈ (ti, ti+1), s ∈
(sj , sj+1). For s ∈ [c, d] the function gs(t) = g(t, s) is a step function and∫ b

a

gsdt =

k−1∑
0

(tj+1 − tj)Xij if s ∈ (si, si+1).

Therefore h(s) =

∫ b

a

gsdt is also a step function, therefore integrable and

∫ d

c

ds

∫ b

a

g(t, s)dt =
∑
ij

(si+1 − si)(tj+1 − tj)Xij .

Observe, in particular, that the iterated integral does not depend on the order of integration.

2.14. Proposition. If f is continuous, the iterated integrals exist and∫ b

a

∫ d

c

f(t, s) ds dt =

∫ d

c

∫ b

a

f(t, s) dt ds.

Proof. We will start with a general fact

Claim Let U ⊆ Rn and let f : U × [a, b] −→ Rm be a continuous function. Then the function

F : U −→ Rm, F (x) =

∫ b

a

f(x, t)

is a continuous function.



2. INTEGRATION 16

Proof. Fix x0 ∈ U and ϵ > 0. The set V = {(x, t) ∈ X × [a, b] : |f(x, t) − f(x0, t)| < ϵ(b − a)−1 is

an open neighborhood of x0 × [a, b]. Since [a, b] is compact, there exists a neighborhood W of x0 such that

W × [a, b] ⊆ V . In particular, for all x ∈W, |f(x, t)− f(x0, t)| < ϵ(b− a)−1, ∀t ∈ [a, b]. Hence, if x ∈W

|F (x)− F (x0)| ≤
∫ b

a

|f(x, t)− f(x0, t)| ≤ (b− a) sup{|f(x, t)− f(x0, t)|} < ϵ.

�

The Claim implies, in particular, that a continuous function admits iterated integrals. We will prove

now the commutativity relation. More precisely, given ϵ > 0, we will show that, if P,Q are partitions as in

Example 2.13, there exists δ > 0 such that, if |P |, |Q| < δ,

|
∫ b

a

dt

∫ d

c

f(t, s)ds−
∑

(si+1 − si)(tj+1 − tj)f(tj , si)| < ϵ.

The conclusion will follows, since the other integral is, by symmetry, approximated by a sum of the same type.

By uniform continuity of f , it follows that there exists δ > 0 such that |f(t, s)− f(t′, s′)| < ϵ/(b− a)(d− c)

if |s− s′|, |t− t′| are smaller than δ. Consider the function g as in Example 2.13, with g(t, s) = f(tj , si), t ∈
[tj , tj+1), s ∈ [si, si+1). Then ∥f − g∥ < ϵ/(b− a)(d− c). Therefore

|
∫ b

a

dt

∫ d

c

f(t, s)ds−
∑

(si+1 − si)(tj+1 − tj)f(tj , si)| = |
∫ b

a

dt

∫ d

c

f(t, s)ds−
∫ b

a

dt

∫ d

c

g(t, s)ds| =

= |
∫ b

a

dt

∫ d

c

[f(t, s)− g(t, s)]ds ≤ (b− a)(d− c)∥f − g∥ < ϵ.

�

We will define now the integral of a function f : C = [a, b]× [c, d] −→ Rn. Let P,Q be partitions of the

two intervals and set, in analogy with the 1-dimensional case,

Σ(f, P,Q) =
∑

(ti+1 − ti)(sj+1 − sj)f(ti, sj).

2.15. Definition. We will say that X = lim|P |,|Q|→0 Σ(f, P,Q) if, given ϵ > 0 there exist δ > 0 such

that ∥X −Σ(f, P,Q)∥ < ϵ if |P |, |Q| < δ. If such a limit exists we will say that f is integrable and define the

double integral of f on C as ∫
C

f(t, s)dtds = X.

2.16. Lemma. If f is integrable over C and one of the simple integral, let’s say
∫ p
a
f(t, s)dt, exists,

∀s ∈ [c, d], then the other simple integral exists and the iterated integrals are equal to the double integral.

Proof. The claim follows from the general relation between duple limits and iterated limits:

if lim
|P |,|Q|→0

Σ(f, P,Q) exists and lim
|P |→0

Σ(f, P,Q) exists ∀Q, lim
|Q|→0

[ lim
|P |→0

Σ(f, P,Q)] = lim
|P |,|Q|→0

Σ(f, P,Q).

�

2.17. Theorem. [Baby Fubini] If f : C −→ Rn is continuous, then the double integral exists and is equal

to the iterated integrals.

Proof. This is a corollary of the proof of Theorem 2.14. �
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In particular we can define the integral of a continuous function with compact support.

2.18. Definition. Let f : R2 −→ Rn be a continuous function with compact support and C a rectangle

containing the support of F . We define∫
R2

f(t, s)dtds =

∫
C

f(t, s)dtds.

2.19. Remark. It is easy to see that the definition does not depends on the choice of the rectangle C.

Beside Fubini’s Theorem, that allows us to reduce the calculus of multiple integrals to the case of simple

integrals, the other basic fact on integration that we will need is the formula of change of variables.

2.20. Theorem. Let U, V ⊆ R2 be open sets and let F : U −→ V be a diffeomorphism. If f : V −→ Rn

is an integrable function with compact support,∫
V

f =

∫
U

|J [F ]|f ◦ F,

where J [F ] := det[dF ] is the Jacobian determinant.

Proof. �

We invite the reader to extend the concepts and results above for the case of integration of function of

several variables.

3. Vector fields, distributions and the local Frobenius Theorem

3.1. Definition. Let U be an open set of Rn. A (tangent) vector field on U is a smooth map X : U −→
Rn. We will denote by H(U) the space of vector fields on U .

3.2. Remark. Let X be a vector field. We want to think of X(x) as a vector based at x. This is the

reason why we use different names for the same thing3. We can make this point more precise as follows.

• The tangent space of U at x ∈ U is the vector space

TxU = {(x, v) : v ∈ Rn}

with the obvious operations on the second component.

• The tangent bundle of U is

TU = ∪x∈UTxU = U × Rn.

A vector field on U should be defined as a smooth map X̃ : U −→ TU of the form X̃(x) = (x,X(x)), X :

U −→ Rn. Of course, in our context, we are just complicating notations, but this point of view, that seems

silly now, will prove to be useful when these concepts are extended to the case of differentiable manifolds.

We will review now some facts about solutions of differential equations.

3B. Russel used to say that “Mathematics is the art of calling different things with the same name and the same thing

with different names”.
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3.3. Definition. Let X ∈ H(U), x ∈ U . An integral curve of X with initial condition x is a smooth

map γx : (a, b) ⊆ R −→ U such that:

dγx(t)(1) := γ̇x(t) = X(γx(t)), 0 ∈ (a, b) and γx(0) = x.

When it is clear from the context, or irrelevant, we will ignore the subscript relative to the initial

condition.

The basic result about integral curves is the following

3.4. Theorem. If X ∈ H(U), x ∈ U , there exists an integral curve with initial condition x ∈ U . This

curve is unique in the sense that two such curves, with the same initial condition, coincide in the intersection

of the domains. In particular there is a maximal interval of definition, (α(x), β(x)) ⊆ R. Moreover the curve

is smooth and depends smoothly on the initial condition.

3.5. Remark. Smooth dependence on the initial condition means that, for fixed x, there exists a neigh-

borhood U of x and ϵ > 0 such that the map

Γ : U × (−ϵ, ϵ) −→ U, Γ(y, t) = γy(t),

is a smooth map.

3.6. Remark. Integral curves exist even if the vector field X is merely continuous. They are unique, in

the above sense, if X is locally Lipschitzian. If X is of class Ck, the curves are of class Ck+1.

3.7. Definition. The vector field is complete if its integral curves are defined on all of R.

3.8. Proposition. If X is complete, the map

γt : U −→ U, γt(x) = γx(t),

is well defined and smooth. Moreover

(1) γ0 = 11,

(2) γt+s = γt ◦ γs.

Proof. The first property is obvious, by definition. As regards the second one, we observe that, for

fixed s, the curves γγx(s)(t) and γx(t + s) are integral curves of X with the same initial condition. The

conclusion follows from the unicity of integral curves. �

In particular γt is a diffeomorphism of U with inverse γ−t, and the map t ∈ R γt is a homomorphism

of the additive group R into the group of diffeomorphisms of U .

3.9. Definition. The map Γ (or, sometimes, the maps γt) is called the flow of X.

3.10. Remark. If X is not complete, the considerations above hold locally. We leave to the reader the

task of making this claim precise.

3.11. Definition. A point x ∈ U is a singularity (or a singular point) of X ∈ H(U), if X(x) = 0.

The behavior of X near a singularity could be quite complicated. On the contrary, the behavior near a

non singular point is quite simple.
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3.12. Theorem. Let X ∈ H(U), x ∈ U and X(x) ̸= 0. Then there exists a neighborhood Ũ of 0 ∈ Rn

and a diffeomorphism ϕ of Ũ onto an open neighborhood of x such that dϕ(y)(e1) = X(ϕ(y)).

Proof. We can assume x = 0 and X(0) = e1. For p = (0, x2, . . . , xn) ∈ U , consider the integral curve

of X with initial condition p, γp(t). Then the map ϕ(p, t) = γp(t) is well defined and smooth if |t| < ϵ, with ϵ

sufficiently small and p is in a sufficiently small neighborhood U ′ of 0 ∈ Rn−1 = {(x1, . . . xn)} ∈ Rn : x1 = 0}.
It is clear that dϕ(p, t)(e1) = X(ϕ(p, t)) (see Remark 1.10). Also dϕ(0, 0) = 11, hence, by Theorem 1.25, ϕ is

a diffeomorphism of a (possible smaller) neighborhood Ũ ⊆ U ′ × (−ϵ, ϵ) of 0, onto its image. �

We can ask for a natural generalization of Theorem 3.12: given linearly independent vector fields

X1, . . . , Xk ∈ H(U), do there exist local coordinates (x1, . . . , xn) in Rn such that Xi = ei? In order to

answer this question we will take a slight different approach to vector fields. First a few definitions.

3.13. Definition. An algebra (over the reals) is a real vector space E together with a bilinear map, the

product, b : E⊕ E −→ E. The algebra is said to be associative if b(x, b(y, z)) = b(b(x, y), z) and commutative

if b(x, y) = b(y, x) ∀ x, y, z ∈ E.
When clear from the context we will write xy for b(x, y).

Examples of such a structure are

• The real or complex numbers with the usual multiplication. They are associative and commutative

algebras.

• The spaces M(n,K) of n×n matrices with entries in K = R or C, with the usual product of matrices.

They are associative but non commutative algebras (if n > 1!).

• The space F(U) of smooth real valued functions defined in U ⊆ Rn.

3.14. Definition. An algebra homomorphism h : E −→ E′ between the algebras E and E′ is a linear

map such that the image of the product of two elements in E is the product of the images (in E′).

3.15. Definition. An ideal I of an algebra E is a vector subspace of E such that if x ∈ I, y ∈ E, then
b(x, y) and b(y, x) are in I

It is not difficult to see that if I is an ideal of E, the quotient vector space E/I has a natural product

(and hence a structure of algebra) such that the quotient map is an algebra homomorphism. Moreover, given

an algebra homomorphism h : E −→ E′, the kernel of h, kerh, is an ideal and, in fact, every ideal I is the

kernel of an algebra homomorphism, the projection π : E −→ E/I.
Let F(U) be the algebra of smooth real valued functions defined in U .

3.16. Definition. A derivation of F(U) (resp. a derivation at x ∈ U) is a R-linear map Y : F(U) −→
F(U) (resp. Y (x) : F(U) −→ R), such that:

Y (fg) = Y (f)g + fY (g) (resp. Y (x)(fg) = Y (x)(f)g(p) + f(p)Y (x)(g)) ∀ f, g ∈ F(U).

Both the set of derivations and the set of derivations at x have a natural structure of real vector space.

We will denote by Der(U) and Derx(U) these spaces. Observe that Der(U) is infinite dimensional (if n > 0!)

while, as we will see soon, Derx(U) is n-dimensional.
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3.17. Example. Let X ∈ Rn, x ∈ U . Then the directional derivative of f ∈ F(U) at x ∈ U , in the

direction X is a derivation of f at x. As we shall soon see, all derivations at x are directional derivatives.

3.18. Example. IfX ∈ H(U), we define a derivation in Der(U), still denoted byX,X(f)(x) := X(x)(f),

where X(x)(f) is the directional derivative at x, as in the example above. It is easily seen that X(f) ∈ F(U)

so X is, in fact, a derivation in Der(U).

Some simple but basic facts are the following:

3.19. Lemma. Let f ∈ F(U) and Xx ∈ Derx(U).

• If f vanishes on an open neighborhood V of x, then Xx(f) = 0. In particular, if two functions

f, g ∈ F(U) coincide in a neighborhood of x, then Xxf = Xxg.

• If f is constant in a neighborhood of x, then Xxf = 0.

• If f is (locally) a product of functions vanishing at x, then Xxf = 0.

Proof. Let ϕ ∈ F(U) be a function which vanishes in a neighborhood V1 of x and is identically 1

outside V (see Exercise 4.13 for the existence of such a function). Then f = ϕf and

Xx(f) = (Xxϕ)f(x) + ϕ(x)Xxf = 0.

The second claim follows from 1·1 = 1 and the definition of a derivation. The third one is also immediate. �

Let x ∈ Rn. Consider the set

F̃x := {(f, V ) : V is a neighborhood of x, f ∈ F(V )}.

3.20. Definition. The algebra of germs of smooth functions at x, Fx, is the quotient of F̃x by the

equivalence relation (f, U) ∼ (g, V ) ⇐⇒ f = g in a neighborhood of x (contained in U ∩V ). The operations

are the usual sum and product of functions (which are defined in the intersections of the domains).

3.21. Remark. The advantage of working with germs instead that with functions is that we do not have

to worry about the domain of definition of the functions involved. Anyway, when clear from the context we

will make no difference between a function and its germ.

We will denote by Dx the space of derivations of Fx at x (with the obvious definition). Lemma 3.19

implies, in particular, that an element of Derx(U) induces a derivation of Fx. We shall see next that all

derivations in Dx are of this type.

3.22. Theorem. Given x ∈ Rn and a derivation Xx ∈ Dx, there exist a unique vector v ∈ Rn such that

Xx = v(x). In particular Dx ∼= TxRn ∼= Derx(U).

Proof. Let f ∈ Fx. In a suitable neighborhood of x consider the Taylor formula

f(x1, . . . , xn) = f(x) +
n∑
1

∂f

∂xi
(x)(xi − xi(x)) + Φ(x1. . . . , xn),

where Φ(x1. . . . , xn) is a sum of products of functions vanishing at x (see Theorem 1.19 and Exercise 4.26).



CHAPTER 0. A REVIEW OF BASIC VECTOR CALCULUS 21

Applying Xx to both sides and using Lemma 3.19 we have:

Xx(f) =

n∑
1

Xx(xi)
∂f

∂xi
(x).

Therefore:

X =
n∑
1

X(xi)
∂

∂xi
(x),

and the map that associates to ei the derivation
∂

∂xi
(x) extends to an isomorphism of Rn (or, better TxU)

onto Dx. �

In what follows we will identify TxU with Dx and H(U) with Der(U).

The composition of two derivations is not a derivation, in general. However the commutator of two

derivations is a derivation ( Exercise 4.28). This fact suggests the following

3.23. Definition. Let X,Y ∈ Der(U). The Lie product (or bracket) of X and Y is the commutator

[X,Y ] := X ◦ Y − Y ◦X.

The following properties are easy to prove and we leave the details to the reader (Exercise 4.29).

3.24. Proposition. The Lie product [ ·, · ] : H(U)×H(U) −→ H(U) is a R-bilinear map. Moreover

(1) [X,Y ] = −[Y,X],

(2) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacoby identity).

3.25. Remark. An algebra with a product which satisfies the properties above is called a Lie algebra.

3.26. Example. By Theorem 1.15, [
∂

∂xi
,
∂

∂xj
] = 0.

We go back to the original question: given vector fields X1, . . . , Xk ∈ H(U), linearly independent at

each point, there exist local coordinates (x1, . . . , xn) in Rn such that Xi =
∂

∂xi
?

There is a natural necessary condition for a positive answer, the condition being [Xi, Xj ] = 0 (see

Example 3.26). It turns out that the condition is also sufficient, at least locally. We will take a slightly more

general approach.

3.27. Definition. Let U ⊆ Rn be an open set. A k-dimensional distribution D on U is a law that

associates to a point x ∈ U a k-dimensional subspace Dx ⊆ Rn. Moreover:

• The distribution D is smooth if there exist, locally, k smooth vector fields X1, . . . , Xk such that

Dx = span{X1(x), . . . , Xk(x)}.
• A smooth distribution D is involutive (or integrable) if for all vector fields X,Y ∈ H(U) such that

X(x), Y (x) ∈ Dx, ∀ x ∈ U , then [X,Y ](x) ∈ Dx.

3.28. Theorem. [Frobenius Theorem, local version] Let D be a k-dimensional involutive smooth distribu-

tion on U ⊆ Rn. Then there exist (local) coordinates x1, . . . , xn such that Dx = span{ ∂

∂x1
(x), . . . ,

∂

∂xk
(x)}.

3.29. Remark. The word “local” means that the claim of the Theorem holds in a sufficiently small open

neighborhood of a fixed point, that we can assume to be 0 ∈ Rn.
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Proof. We will proceed by induction on k. If k = 1, the Theorem follows directly from Theorem 3.12.

So we assume that the Theorem is true for (k− 1)-dimensional involutive distributions. Let us suppose that

D is a k-dimensional distribution spanned, locally, by smooth vector fields X1, . . . , Xk. By Theorem 3.12 we

can assume that there are coordinates y1, . . . , yn such that X1 =
∂

∂y1
. Consider the set

D = {X ∈ H(U) : X(x) ∈ Dx, X(y1) = 0}.

Claim 1. D is a smooth (k − 1)-dimensional involutive distribution spanned by the vector fields

Yi = Xi −Xi(y1)X1, i = 2, . . . , k.

Proof. It is easy to see that the vector fields X1, Y2, . . . , Yk are linearly independent at every point.

Moreover Yi ∈ D and X1 ̸∈ D, since X1(y1) = 1. So D is a smooth (k − 1)-dimensional distribution.

Let us show that D is involutive. If Y,Z ∈ D, [Y,Z] ∈ D since D is involutive. Moreover [Y,Z](y1) =

Y (Z(y1))− Z(Y (y1)) = 0, hence [Y,Z] ∈ D. �

Observe that D is tangent to the slices Rn−1
c := {(y1, . . . , yn) ∈ Rn : y1 = c}, since the first coordinate

of Yi is Yi(y1) = 0. By the inductive hypothesis the are (local) coordinates z2, . . . zn, in Rn−1
0 such that

D(0,z) = span{ ∂

∂zi
, i = 2, . . . , k}. Consider the coordinates x1 = y1, xi = zi, i = 2, . . . , n. The proof of the

Theorem follow from the following

Claim 2. D is spanned by
∂

∂xi
, i = 1, . . . , k.

Proof. We want to show that Y1 := X1 =
∂

∂x1
, Y2, . . . , Yk are linear combinations of

∂

∂xi
, i = 1, . . . , k.

For this is sufficient to show that Yi(xj) = 0 for i ≤ k, j > k (this is obviously true for i = 1).

Since the distribution is involutive, there are real valued smooth functions girs such that [Yi, Yr] =∑k
s=1 girsYs. Now

Y1(Yi)(xj) = [Y1, Yi](xj) =
k∑
1

girsYs(xj).

Hence the functions Yi(xj) are solutions of the system of differential equations

∂

∂x1
Yi(xj) =

k∑
1

girsYs(xj).

This is a linear homogeneous system of ordinary differential equations, along the x1 curves, hence it admits

the zero functions as solutions. Now the initial condition, for x1 = 0, is Yi(xj)(0, x2, . . . , xn) which vanishes

(for j > k) since there xj = zj . Hence, by unicity of the solutions of the initial value problem, the solutions

vanish identically. �

�

3.30. Remark. The Frobenius Theorem is really a result on existence and unicity of solutions of first

order partial differential equations. We will sketch the proof of a simple fact that will explain this claim.

Let a, b : R2 −→ R be smooth functions and consider the problem of finding a function f : R2 −→ R
such that

∂f

∂x
= a,

∂f

∂y
= b.
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The Theorem of Schwarz (Theorem 1.15) gives an obvious necessary condition for the existence of such

a function, that is
∂b

∂x
=
∂a

∂y
. We will use the Theorem of Frobenius to shows that, at least locally, such

condition is also sufficient4. Consider the vector fields in R3

X =
∂

∂x
+ a

∂

∂z
Y =

∂

∂y
+ b

∂

∂z
.

A simple calculation gives [X,Y ] = (
∂b

∂x
− ∂a

∂y
)
∂

∂z
. Hence the distribution spanned byX,Y is involutive if

and only if [X,Y ] = 0. In this case, by the Frobenius Theorem, there is a local diffeomorphism Φ : R3 −→ R3

such that dΦ(
∂

∂x
) = X, dΦ(

∂

∂y
) = Y . The “surface” Φ(x, y, c) has the distribution spanned by X and Y

as “tangent space” and, since the normal vector is not horizontal, it projects (locally) onto the plane e⊥3 ,

injectively. Hence it is the graph of a function f that is, as it is easily seen, a solution of our problem.

The differential equation above is the simplest case of a class of differential equation, called total differ-

ential equations, for which necessary and sufficient conditions for existence and unicity of solutions may be

given in terms of the Theorem of Frobenius.

An important fact about Lie product of vector fields is that it “behaves well with respect to smooth

maps”. First a definition to make the statement precise. Let F : U ⊆ Rn −→ V ⊆ Rm be a smooth map

between open sets.

3.31. Definition. We say that X̃ ∈ H(V ) is F -related to X ∈ H(U) if dF (x)(X) = X̃(F (x)), ∀ x ∈ U .

3.32. Proposition. If X̃, Ỹ ∈ H(V ) are F -related to X,Y ∈ H(U), then [X̃, Ỹ ] is F -related to [X,Y ].

Proof. Let f ∈ F(V ). We must show that, fixed x ∈ U, dF ([X,Y ](x))(f) = [X̃, Ỹ ](F (x))(f).

dF ([X,Y ](x))(f) = [X,Y ](x)(f◦F ) = X(x)(Y (f◦F ))−Y (x)(X(f◦F )) = X(x)(Ỹ (f)◦F )−Y (x)(X̃(f)◦F ) =

= dF (X(x))(Ỹ (f))− dF (Y (x))(X̃(f)) = X̃(F (x))(Ỹ (f))− Ỹ (F (x))(X̃(f)) = [X̃, Ỹ ](x)(f).

�

There is an interpretation of the Lie product of vector fields worth mentioning.

3.33. Proposition. Let X,Y ∈ H(U) and let ϕt be the (local) flow of X. Then, for x ∈ U ,

[X,Y ](x) = lim
t→0

t−1[dϕ−t(ϕt(x))Y (ϕt(x))− Y (x)].

Proof. By Theorem 3.12 we can assume X =
∂

∂x1
. Let Y =

∑
yi

∂

∂xi
. By linearity we can assume

Y = yi
∂

∂xi
. Observe that the flow of X is just translations, i.e. ϕt(x1, . . . , xn) = (x1 + t, . . . , xn). Then the

right hand side is just
∂Y

∂x1
(x) =

∂yi
∂x1

(x)
∂

∂yi
(x). On the other hand, the left hand side is also

∂yi
∂x1

(x)
∂

∂yi
(x)

(see Exercise 4.30). �

4A different proof will be given in Chapter 1.
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4. Exercises

4.1. For L, T ∈ L(Rn,Rn) consider the norms ∥L∥2 = traceLtL, ∥L∥ = sup{∥L(x)∥ : ∥x∥ = 1}.

(1) Prove that ∥L ◦ T∥ ≤ ∥L∥∥T∥.
(2) Prove that ∥L∥2 = λ where λ is the largest eigenvalue of LtL. Conclude that ∥L∥ ≤ ∥L∥2 ≤ n∥L∥.

4.2. Prove Proposition 1.3.

4.3. Let f, g : U −→ Rn be differentiable functions. Define F : U −→ R, F (x) = ⟨f(x), g(x)⟩. Prove
that F is differentiable and compute dF (x) (see Example 1.5).

4.4. Consider the function f : R −→ R2, f(t) = (cos t, sin t). Compute df(t) and show that there is no

t0 ∈ [0, 2π] such that f(2π)− f(0) = df(t0)(1)2π (So the mean value Theorem, in the form 1.6, is not true

if the dimension of the target space is greater than 1).

4.5. Let f : U −→ Rm be a differentiable function. Use Theorem 1.7 to prove

(1) if df(x) = 0, ∀ x ∈ U , then f is locally constant. In particular, if U is connected, f is constant,

(2) if T ∈ L(Rn,Rm). Then

∥f(a+ h)− f(a)− T (h)∥ ≤ ∥h∥ sup{∥df(a+ th)− T∥ : t ∈ [0, 1]}.

4.6. Prove that the function

fk(t) =

{
tk if t > 0

0 if t ≤ 0

is of class Ck−1 but is not of class Ck.

4.7. Consider the function f : R2 −→ R

f(x, y) =
x2y

x2 + y2
, (x, y) ̸= (0, 0), f(0, 0) = 0.

Prove that the partial derivatives at (0, 0) exist, but f is not differentiable at (0, 0).

4.8. Let f : Rn −→ Rm be a function.

(1) Prove that if f(tx) = tf(x), ∀ t ∈ R, and f is differentiable at 0, then f is linear.

(2) Prove that if f(tx) = |t|f(x), ∀ t ∈ R, and f is differentiable at 0, then f vanishes identically.

(3) Prove that if f(tx) = t2f(x), ∀ t ∈ R, and f is twice differentiable at 0, then f is bilinear.

(4) Prove that if f(tx) = tkf(x), ∀ t ∈ R and f is of class Ck, then

dif(x)(h1, . . . , hi) =
1

(k − i)!
dkf(0)(x, . . . , x, h1, . . . , hi).

4.9. Let ∥ · ∥ : Rn −→ R be a norm. Prove that ∥ · ∥ is not differentiable at 0, ∥ · ∥2 is differentiable at 0

and twice differentiable at 0 if and only if it is induced by a scalar product.

4.10. Prove that, if {xn} ⊆ Rn is a Cauchy sequence admitting a subsequence converging to x ∈ Rn,
then the whole sequence converges to x.
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4.11. Let {xn} ⊆ Rn be a sequence. Define convergence for the series
∑
xn and prove the Cauchy

convergence criterion for series.

4.12. Let M(n,R) the space of n×n matrices with real entries. Consider the natural identification with

Rn2

and define exp :M(n,R) −→M(n,R), by:

exp(A) =
∞∑
k=0

1

k!
Ak.

(1) Prove that exp is well defined (i.e. the series converges).

(2) Prove that, if AB = BA, then

(A+B)k =
k∑
i=0

(
k

i

)
AiBk−i.

Conclude that, if AB = BA, exp(A+B) = exp(A) exp(B).

(3) Prove that exp(PAP−1) = P exp(A)P−1.

(4) Let A be an upper triangular matrix. Compute the diagonal entries of exp(A).

(5) Show that det(exp(A)) = etrace(A), ∀A ∈ M(n,R). Conclude that exp(A) is invertible ∀A ∈
M(n,R). Hint: put A in upper diagonal form.

(6) Show that exp is differentiable and compute d exp(A)(B). Hint: compute d
dt |t=0 exp(A+ tB).

(7) Show that d exp(0) = 11. In particular exp maps diffeomorphically a neighborhood of 0 onto a

neighborhood of exp(0) = 11. The (local) inverse is the logarithm.

4.13. Consider the function

f(t) =

{
e−

1
t if t > 0

0 if t ≤ 0

(1) Prove that f is smooth.

(2) Let 0 < δ1 < δ2. Prove that the function

ϕ(x) =
f(∥x∥2 − δ21)

f(∥x∥2 − δ21) + f(δ22 − ∥x∥2)

is a well defined smooth function with values in [0, 1], that vanishes for ∥x∥ ≤ δ1 and is identically

1 for ∥x∥ ≥ δ2.

4.14. Consider the map ϕ : Bn(1) −→ Rn, ϕ(x) = x(1− ∥x∥2)− 1
2 . Prove that ϕ is a diffeomorphism.

4.15. Use the local form of subimmersions (Theorem 1.27), to prove the following

Theorem [Implicit function Theorem] Let U ⊆ Rn×Rm be an open set. f : U −→ Rm a smooth function

such that, for z0 = (x0, y0) ∈ U, f(z0) = 0, and d2 f(z0) : Rm −→ Rm is an isomorphism. Then there exists

a neighborhood V ⊆ Rn of x0 and a unique smooth function g : V −→ Rm such that f(x, g(x)) = 0 ∀ x ∈ V .

Moreover

dg((x) = −[d2f(x, g(x))]
−1 ◦ d1f(x, g(x))

(dif is defined in Remark 1.12).

4.16. Prove Proposition 2.3
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4.17. Let T : [a, b] ⊆ R −→ L(Rn,Rm) be an integrable function and Y ∈ Rm. Prove that the function

f(t) = T (t)Y is integrable and ∫ b

a

f = [

∫ b

a

T ]Y.

4.18. Prove that, if f : [a, b] −→ Rm is integrable and x ∈ [a, b] then f |[a,x] and f |[x,b] are integrable and∫ b

a

f =

∫ x

a

f +

∫ b

x

f.

4.19. Let f : [a, b] −→ Rm be such that f(t) = 0 for t outside a finite set. Prove that f is integrable and∫ b

a

f = 0. Conclude that if two functions f, g : [a, b] −→ Rm differ only on a finite set, then one is integrable

if and only if the other one is integrable and, in this case, the two integral coincide.

4.20. Prove that any continuous function f : [a, b] ⊆ R −→ Rm is uniform limit of step functions.

4.21. A curve γ : [a, b] −→ Rm is said to be rectificable if there exists l = l(γ) ∈ R (called the length of

γ) such that for all ϵ > 0 there exists δ > 0 such that if P = {t0, . . . , tk} is a partition with |P | < δ, we have

|l −
k−1∑
0

∥γ(ti+1)− γ(ti)∥ | < ϵ.

Prove that if γ is of class C1, γ is rectificable and l(f) =

∫ b

a

γ̇(t)dt :=

∫ b

a

dγ(t)(1)dt.

4.22. Use Fubini’s Theorem (Theorem 2.17) to prove Theorem 1.15. Hint: it is nor restrictive to assume

f : R2 −→ R (why?). If
∂f

∂x∂y
− ∂f

∂y∂x
> 0 at z0 = (x0, y0) so it is in a small rectangle C = [a, b] × [c, d]

containing z0. Show that the integral over C of the difference is zero.

4.23. Let X : U ⊆ Rn −→ Rn be a smooth vector field. Prove that if supp(X) := {x ∈ U : X(x) ̸= 0} is

compact, then X is complete.

4.24. Let X : Rn −→ Rn be a smooth vector field. Prove that, if there is a constant M with ∥X(x)∥ ≤
M, ∀ x ∈ Rn, then X is complete (hint: show that an integral curve γ : [0, a) −→ Rn has finite length, if

a <∞, so its image has compact closure).

4.25. Give an example of a non complete vector field in R.

4.26. Let f ∈ F(U), 0 ∈ U ⊆ Rn, f(0) = 0. Prove that there exist functions gi ∈ F(U ′) where U ′ ⊆ U

is an open neighborhood of 0, such that f(xi, . . . xn) =
∑n
i=1 xigi(xi, . . . xn) and gi(0) =

∂f

∂xi
(0). Hint: write

f(x) =

∫ 1

0

df(tx)

dt
dt.

4.27. Consider F0, the algebra of germs of smooth functions at 0 ∈ Rn and I0 = {[f ] ∈ F0 : f(0) = 0}.

(1) Prove that I0 is the unique maximal (non trivial) ideal of F0.

(2) Let I2
0 be the ideal generated by products of two elements in I0. Prove that I0/I2

0 is a n-dimensional

real vector space spanned by the (equivalence classes of) the germs of the coordinate functions.

Conclude that I0/I2
0 is canonically isomorphic to [Rn]∗.
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4.28. Prove that if X,Y ∈ Der(U) then [X,Y ] := X ◦ Y − Y ◦X ∈ Der(U).

4.29. Prove Proposition 3.24.

4.30. Let

X =
∑
k

ak(x)
∂

∂xk
, Y =

∑
k

bk(x)
∂

∂xk

be smooth vector fields in Rn.

(1) Compute [X,Y ] in the basis
∂

∂xk
.

(2) Let X1, . . . , Xp be linear independent vectors in Rn. Show that there exist smooth vector fields

X̃1, . . . , X̃p in Rn such that, for a fixed x ∈ U, X̃i(x) = Xi and [X̃i, X̃j ] = 0.





CHAPTER 1

The de Rham cohomology for open sets of Rn

1. Exterior forms

Let E be a finite dimensional real vector space and E∗ its dual. We will identify, as usual, E with the

double dual (E∗)∗ := E∗∗.

1.1. Definition. A tensor of type (p, q) in E is a multilinear1 map:

t : E∗ × · · · × E∗︸ ︷︷ ︸×E× · · · × E︸ ︷︷ ︸ −→ R

p times q times

We will denote by E(p,q) the space of these tensors. This is a real vector space with the operations of sum

of multilinear maps (summing the values) and product by a scalar (multiplying the values by the scalar).

1.2. Examples.

• E(0,1) = E∗, E(1,0) = E∗∗ = E.
• A scalar product in E is an element of E(0,2).

• It is convenient to define E(0,0) := R.

We will be interested mainly in tensors of type (0, q). To simplify the notations we will set Eq := E(0,q).

Beside adding tensors, we can multiply them.

1.3. Definition. Given ω ∈ Ep, τ ∈ Eq, we define the tensor product ω ⊗ τ ∈ Ep+q as

ω ⊗ τ(x1, . . . , xp+q) := ω(x1, . . . , xp)τ(xp+1, . . . xp+q).

1.4. Remark. It is easy to see that the tensor product is associative and distributive (Exercise 7.1) and

therefore, suitably extended, defines an associative algebra structure in E∗ := ⊕Ep. With this structure E∗

is called the tensor algebra.

1.5. Proposition. Let {ω1, . . . , ωn} be a basis of E1 = E∗. Then the set {ωi1 ⊗ · · · ⊗ ωiq : i1, . . . , iq ∈
{1, . . . , n}} is a basis of Eq.

Proof. Let {e1, · · · , en} be the dual basis, i.e., ωi(ej) = δij . Then:∑
ai1···iqωi1 ⊗ · · · ⊗ ωiq (ej1 , . . . , ejq ) = aj1···jq .

1i.e. linear in each variable.

29



1. EXTERIOR FORMS 30

It follows, by a standard argument, that the the elements of the set in question are linearly independent.

Now, given ω ∈ Eq we define ai1···iq = ω(ei1 , . . . , eiq ). It is easy to check that ω =
∑
ai1···iqωi1 ⊗ · · · ⊗ ωiq ,

and this concludes the proof.

�

We will be interested in special elements of Eq. Let Σ(p) be the group of permutations of {1, . . . , p} ⊆ N.
If π ∈ Σ(p), we will denote by |π| the sign of π, i.e. |π| = 1 if π is the product of an even number of

transpositions and |π| = −1 otherwise.

1.6. Definition. Let ω ∈ Ep. We will say that

• ω is a symmetric form if ω(x1, . . . , xp) = ω(xπ(1), . . . , xπ(p)), ∀ π ∈ Σ(p).

• ω is an exterior form 2 if ω(x1, . . . , xp) = |π|ω(xπ(1), . . . , xπ(p)), ∀ π ∈ Σ(p).

We will denote by Σp(E) the space of symmetric tensors in Ep and with Λp(E) the space of exterior

p-forms. These are subspaces of Ep. Clearly Λ0(E) = R = Σ0(E), Λ1(E) = E1 = E∗ = Σ1(E).
We will be mostly interested in exterior forms and we will describe now the basic example.

1.7. Example. Let {e1, . . . , en} be a fixed basis of E and {ϕ1, . . . , ϕn} be the dual basis. Let us fix

indexes 1 ≤ i1 < · · · < ip ≤ n and define:

ω(i1,...,ip)(x1, . . . , xp) := det(ϕij (xk)).

In other words we consider the matrix whose kth column is given by the coordinates of xk in the fixed

basis, and compute the determinant of the sub matrix obtained considering only the lines (i1, . . . , ip) of the

original matrix. The ω(i1,...,ip)’s are exterior p-forms since the determinant is multilinear in the columns

and, permuting the columns the sign changes according to the parity of the permutation. As we shall see

(Proposition 1.20 and Remark 1.18), these forms are a basis of Λp(E).

1.8. Remark. By Example 1.7 p-forms are, essentially, determinants of p×p matrices and, therefore, “p-

dimensional (oriented) volume elements”. So they appear as the natural integrands of the multiple (oriented)

integrals. This statement will be made precise in the next chapter.

The tensor product of exterior forms is not, in general, an exterior form. But we can “alternate” the

tensor product in order to obtain an exterior form. Define the linear operator

A : Ep −→ Ep, A(τ)(x1, . . . , xp) =
1

p!

∑
π∈Σ(p)

|π|τ(xπ(1), . . . , xπ(p)).

1.9. Proposition.

(1) If τ ∈ Ep, A(τ) ∈ Λp(E).
(2) If τ ∈ Λp(E), A(τ) = τ .

In particular A2 = A.

2The terms alternating tensor or skew symmetric tensor are also used in the literature.
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Proof. If p = 1 there is nothing to prove, so we assume p > 1. For i, j ∈ {1, . . . , p}, we will denote by

(ij) the element of Σ(p) that interchanges i and j and leaves the other integers fixed. If π ∈ Σ(p), we set

π′ = π ◦ (ij). Then |π′| = −|π| and

A(τ)(x1, . . . , xj , . . . , xi, . . . , xp) =
1

p!

∑
π

|π|τ(xπ(1), . . . , xπ(j), . . . , xπ(i), . . . , xπ(p)) =

1

p!

∑
π

|π|τ(xπ′(1), . . . , xπ′(i), . . . , xπ′(j), . . . , xπ′(p)) =

1

p!

∑
π′

−|π′|τ(xπ′(1), . . . , xπ′(i), . . . , xπ′(j), . . . , xπ′(p)) = −A(τ)(x1, . . . , xi, . . . , xj , . . . , xp)

It is easy to see that the equation above implies that A(τ) ∈ Λp(E) (see Exercise 7.2). Moreover, if τ ∈ Λp(E),

A(τ)(x1, . . . , xp) =
1

p!

∑
π

|π|τ(xπ(1), . . . xπ(p)) =
1

p!

∑
π

|π|2τ(x1, . . . xp) = τ(x1, . . . , xp)

and this proves the second claim.

�

Observe that, in general, A(ϕ⊗ ψ) ̸= A(ϕ)⊗A(ψ). However we have

1.10. Lemma. If ϕ1, . . . , ϕp ∈ E∗, then:

A(ϕ1 ⊗ · · · ⊗ ϕp) =
1

p!

∑
σ∈Σ(p)

|σ|ϕσ(1) ⊗ · · · ⊗ ϕσ(p).

Proof.

A(ϕ1 ⊗ · · · ⊗ ϕp)(x1, . . . , xp) =
1

p!

∑
σ∈Σ(p)

|σ|ϕ1 ⊗ · · · ⊗ ϕp(xσ(1), . . . , xσ(p)) =

1

p!

∑
σ∈Σ(p)

|σ|ϕ1(xσ(1)) · · ·ϕp(xσ(p)) =
1

p!

∑
σ∈Σ(p)

|σ|ϕσ(1)(x1) · · ·ϕσ(p)(xp).

�

Using the operator A we can define product of exterior forms.

1.11. Definition. The exterior (or wedge) product is defined as the map

∧ : Λp(E)× Λq(E) −→ Λp+q(E), ∧(ω, τ) := ω ∧ τ =
(p+ q)!

p!q!
A(ω ⊗ τ).

(The reason for the coefficient
(p+ q)!

p!q!
will be discuss in Remark 1.19.)

It is easy to prove that the exterior product is distributive (see Exercise 7.3). In particular, suitably

extended, it defines an algebra structure on Λ∗(E) := ⊕Λp(E). Λ∗(E) is called the exterior algebra.

It is also true that the exterior product is associative, but this fact is a little bit tricky. The proof

involves a characterization of the kernel of A. The problem is that A is not an algebra homomorphism, hence

we can not conclude, directly, that kerA is an ideal. We will prove that, in fact, kerA is an ideal.
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Consider the ideal I ⊆ E∗ generated by ϕ⊗ ϕ, ϕ ∈ E∗. This is the vector subspace of E∗ generated by

elements of the form τ ⊗ ϕ⊗ ϕ, ψ ⊗ ψ ⊗ η, ϕ, ψ ∈ E∗, τ, η ∈ E∗ or, alternatively, it is the intersection of all

ideals containing the elements of the form ϕ⊗ ϕ, ϕ ∈ E∗.

1.12. Theorem. kerA = I.

Proof. It is easily seen that I ⊆ kerA. We will prove that kerA ⊆ I. Consider the quotient algebra

E∗/I. Denote by · the product in this quotient and by π : E∗ −→ E∗/I the quotient map, which is an

algebra homomorphism. First observe that, if ϕ, ψ ∈ E∗:

0 = π((ϕ+ ψ)⊗ (ϕ+ ψ)) = π(ϕ⊗ ϕ+ ϕ⊗ ψ + ψ ⊗ ϕ+ ψ ⊗ ψ) = π(ϕ⊗ ψ) + π(ψ ⊗ ϕ),

i.e. π(ϕ⊗ ψ) = −π(ψ ⊗ ϕ). Therefore, for ϕ1, . . . , ϕp ∈ E∗ and σ ∈ Σ(p), we have

π(ϕσ(1),⊗ . . . ,⊗ϕσ(p)) = π
(
ϕσ(1)) · · ·π(ϕσ(p)

)
= |σ|π(ϕ1) · · ·π(ϕp) = |σ|π(ϕ1 ⊗ · · · ⊗ ϕp).

Hence

π(A(ϕ1⊗· · ·⊗ϕp)) = π(
1

p!

∑
σ∈Σ(p)

|σ|π(ϕσ(1) ⊗ · · · ⊗ ϕσ(p))) =
1

p!

∑
σ∈Σ(p)

|σ|2π(ϕ1 ⊗ · · · ⊗ ϕp) = π(ϕ1 ⊗ · · · ⊗ ϕp).

So any element in kerA is in I := ker π. �

1.13. Corollary. Let ω ∈ Ep, τ ∈ Eq. If A(ω) = 0, A(ω ⊗ τ) = 0 = A(τ ⊗ ω).

Proof. This follows from the fact that kerA is an ideal. �

At this point we can prove the announced result

1.14. Proposition. The wedge product is associative.

Proof. First we observe that

A(A(ω ⊗ η)⊗ θ)) = A(ω ⊗ η ⊗ θ) = A(ω ⊗A(η ⊗ θ)).

In fact, by 1.9, A2 = A. Hence A(A(η ⊗ θ)− η ⊗ θ) = 0 and, by 1.13, we have that:

0 = A(ω ⊗ (A(η ⊗ θ)− η ⊗ θ)) = A(ω ⊗A(η ⊗ θ)− ω ⊗ η ⊗ θ) = A(ω ⊗A(η ⊗ θ))−A(ω ⊗ η ⊗ θ),

which proves the second equality. The first one is proved in a similar way.

Therefore, if ω ∈ Λk(E), η ∈ Λl(E), θ ∈ Λm(E), we have:

(ω ∧ η) ∧ θ = (k + l +m)!

(k + l)!m!
A((ω ∧ η)⊗ θ) =

(k + l +m)!

(k + l)!m!

(k + l)!

k!l!
A(ω ⊗ η ⊗ θ),

and the associativity follows from the associativity of the tensor product. �

1.15. Example. Let ϕ1, ϕ2 ∈ E∗ = E1, x1, x2 ∈ E. Then:

ϕ1 ∧ ϕ2(x1, x2) = 2
1

2
(ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)) = det[ϕi(xj)].

More generally, an induction on p gives
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1.16. Proposition. Let ϕi ∈ E∗, xj ∈ E i, j = 1, . . . , p. Then:

ϕ1 ∧ · · · ∧ ϕp(x1, . . . , xp) = det[ϕi(xj)].

In particular if σ ∈ Σ(p), ϕ1 ∧ · · · ∧ ϕp = |σ|ϕσ(1) ∧ · · · ∧ ϕσ(p).

1.17. Remark. Observe that, by 1.14, the form ϕ1 ∧ · · · ∧ ϕp is well defined.

1.18. Remark. In the Example 1.7 the form ω(i1,...,ip) is just ϕi1 ∧ · · · ∧ ϕip .

1.19. Remark. The coefficient
(p+ q)!

p!q!
in 1.11 is convenient in order to avoid unpleasant coefficients in

1.16 and also for a geometric reason: let E be an inner product space, {e1, . . . , en} an orthonormal basis and

{ϕ1, . . . , ϕn} the dual basis (so ϕi(ej) = ⟨ei, ej⟩ = δij). Given vectors x1, . . . , xn ∈ E, ϕ1∧· · ·∧ϕn(x1, . . . , xn)
is the “volume” of the parallelepiped of edges the x′is. The coefficient above is such that the “unit cube”,

i.e. the parallelepiped spanned by the ei’s, has volume 1 (see Definition 1.28).

1.20. Proposition. Let {ϕ1, . . . , ϕn} be a basis for E∗. Then

{ϕi1 ∧ · · · ∧ ϕip : 1 ≤ i1 < · · · < ip ≤ n}

is a basis of Λp(E). In particular Λp(E) has dimension

(
n

p

)
and Λp(E) = {0}, if p > n.

Proof. Let {e1, . . . , en} be the dual basis. First observe that ϕ1∧· · ·∧ϕn(e1, . . . , en) = det[ϕi(ej)] = 1.

Also observe that ϕi ∧ ϕj = −ϕj ∧ ϕi and, in particular, if we interchange two elements in the product

ϕi1 ∧ · · · ∧ ϕip the form changes sign. We will prove now that the forms {ϕi1 ∧ · · · ∧ ϕip : i1 < · · · < ip} are

linearly independent. Suppose ∑
i1<···<ip

ai1···ipϕi1 ∧ · · · ∧ ϕip = 0.

We want to show that ai1···ip = 0. We will do it for a1···p, the other cases being analogous. Observe that∑
i1<···<ip

ai1···ipϕi1 ∧ · · · ∧ ϕip ∧ ϕp+1 ∧ · · · ∧ ϕn(e1, . . . , en) = a1···p = 0,

since the terms with {i1, . . . , ip} ̸= {1, . . . , p} vanish (they contain two equal indexes), and the conclusion

follows. We leave to the reader the task of showing that they span Λp(E) (Exercise 7.4).

�

1.21. Corollary. The algebra Λ∗(E) is a graded commutative algebra3, i.e. if ω ∈ Λp(E), τ ∈ Λq(E)

ω ∧ τ = (−1)pqτ ∧ ω.

In particular the square of a form of odd degree is zero.

Proof. As we have seen this is true for products of decomposable elements (i.e. elements of the form

ϕi1 ∧ · · · ∧ ϕip). The general case follows from the fact that such forms span the exterior algebra. �

1.22. Remark. There is a restriction, in Proposition 1.20, on the set of indexes with respect to Propo-

sition 1.5 and this is due to the graded commutativity of the exterior algebra.

3An algebra E, with product b : E ⊕ E −→ E is a graded algebra if there is a sequence of vector subspaces Ei such that

E = ⊕Ei and b(Ei⊕Ej) ⊆ Ei+j . Such an algebra is said to be graded commutative if for ω ∈ Ep, τ ∈ Eq , b(ω, τ) = (−1)pqb(τ, ω).
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Let L : E −→ F be a linear map. Recall that the transpose of L is the map

L∗ : F∗(= F1) −→ E∗(= E1), L∗(ϕ)(x) := ϕ(Lx).

This map extends to a linear map

Ep(L) : Fp −→ Ep, Ep(L)(ω)(x1, . . . , xp) = ω(L(x1), . . . , L(xp)).

It is simple to see that if ω ∈ Λp(F) then Ep(L)(ω) ∈ Λp(E). So we get, by restriction, a linear map

Λp(L) := Ep(L)|Λp(F) : Λ
p(F) −→ Λp(E),

and, by additivity, a linear map Λ∗(L) : Λ∗(F) −→ Λ∗(E).
When clear from the context we will write L∗

p, or just L
∗, for Λp(L) and Λ∗(L).

1.23. Proposition. L∗(ω ∧ τ) = L∗(ω)∧L∗(τ). This means that L induces a graded algebra homomor-

phism L∗ : Λ∗(F) −→ Λ∗(E). Moreover we have the following properties, called the funtorial properties4

(1) (11E)
∗ = 11Λ∗(E).

(2) If L : E −→ F and T : F −→ G are linear maps, then (T ◦ L)∗ = L∗ ◦ T ∗.

Proof. To prove the first assertion, we just observe that, if ϕi ∈ F∗, xj ∈ E, i, j = 1, . . . , p, we have:

L∗
p(ϕ1 ∧ · · · ∧ ϕp)(x1, . . . , xp) = det[ϕi(Lxj)] = det[L∗(ϕi)(xj)] = L∗(ϕ1) ∧ · · · ∧ L∗(ϕp)(x1, . . . , xp).

Since Λp(E) is spanned by elements of the form ϕ1 ∧ · · · ∧ ϕp, by Proposition 1.20, the conclusion follows by

linearity. The functorial properties are obvious. �

1.24. Remark. We will meet often, along these notes, “functorial properties”. These properties are

usually trivial to prove, but important. For example, in the context of Proposition 1.23, they imply that, if

L is an isomorphism, then L∗ is also an isomorphism (see Exercise 7.16).

Let E be a finite dimensional real vector space with an inner product ⟨·, ·⟩ : E× E −→ R.

1.25. Definition. The isomorphisms

♭ : E −→ E∗, ♭(x)(y) = ⟨x, y⟩, ♯ : E∗ −→ E, ♯ := ♭−1,

are called the musical isomorphisms.

We define an inner product in E∗ by requiring ♭ to be an isometry. We can also define an inner product

in Λp(E) extending, by bi-linearity, the formula

⟨ϕ1 ∧ · · · ∧ ϕp, ψ1 ∧ · · · ∧ ψp⟩ = det(⟨ϕi, ψj⟩).

Observe that, if {ωi} is an orthonormal basis for E∗, the basis {ωi1 ∧ · · ·∧ωip : i1 < · · · < ip} is orthonormal.

We recall that two bases of a n-dimensional real vector space E are equioriented if the matrix that gives

the change of bases has positive determinant. This relation is an equivalence relation and the set of bases of

E is divided into two equivalence classes.

4In the language of category theory this means that the law that associate to a finite dimensional real vector space E
the graded algebra Λ∗(E) and to a linear maps L : E −→ F the map L∗ is a contravariant functor from the category of finite

dimensional real vector spaces and linear maps, to the category of algebras and their homomorphisms.
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1.26. Definition. An orientation on E is the choice of one of two equivalence classes of equioriented

bases. E is oriented if such a choice has been made and the bases in the chosen class will be called positive.

1.27. Remark. Naturally an orientation in E induces an orientation on E∗, by declaring positive the

bases that are dual of positive bases of E.

1.28. Definition. Let E be a n-dimensional oriented inner product space and let {ω1, . . . , ωn} be a

positive orthonormal basis of E∗. The volume form of E is the n-form v = ω1 ∧ · · · ∧ ωn.

1.29. Lemma. The volume form is well defined, i.e. it does not depend on the choice of the basis.

Proof. Let {ωi}, {ϕj} be bases of E∗ and A = (aij) such that ϕk =
∑
akjωj . Then

ϕ1 ∧ · · · ∧ ϕn =
∑

σ∈Σ(n)

|σ|a1σ(1) · · · anσ(n)ω1 ∧ · · · ∧ ωn = det(A)ω1 ∧ · · · ∧ ωn.

If the bases are orthonormal and positive, then A ∈ SO(n). In particular det(A) = 1. �

1.30. Definition. Let E be a n-dimensional oriented inner product space. The Hodge (star) operator

is the operator

∗p : Λp(E) −→ Λ(n−p)(E), ∗p(η)(x1, . . . , x(n−p)) := ⟨η ∧ ♭(x1) ∧ · · · ∧ ♭(x(n−p)), v⟩,

where v is the volume form. When clear from the context, we will write simply ∗ instead of ∗p.

1.31. Remark. Let {ωi} be a positive orthonormal basis for E∗. Then the Hodge operator may be

defined by extending, linearly, the map

∗(ωi1 ∧ · · · ∧ ωip) = ωj1 ∧ · · · ∧ ωjn−p ,

where {i1, . . . , ip, j1, . . . jn−p} is an even permutation of {1, . . . , n}.

The following properties are easily established

1.32. Proposition. ∗ is a linear isometry and ∗n−p ◦ ∗p = (−1)p(n−p)11Λp(E).

2. Differential forms and the de Rham cohomology

2.1. Definition. A differential p-form on an open set U ⊆ Rn is a smooth map ω : U −→ Λp(Rn) ∼=
R(

n
p). When clear from the context we will just say that ω is a differential form or simply a form.

2.2. Remark. According to Remark 3.2 of Chapter 0, we can complicate the definition in order to have

one that make sense in the context of smooth manifold. Consider the bundle of exterior p-forms

Λp(U) := ∪x∈UΛp(TxU)

that can be identified with U × Λp(Rn). Then a differential p-form is a smooth map ω̃ : U −→ Λp(U) such

that ω̃(x) ∈ Λp(TxU), i.e, ω̃(x) = (x, ω(x)), ω(x) ∈ Λp(Rn).
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We will denote by Ωp(U) the set of differential p-forms on U . Ωp(U) has an obvious structure of real

vector space. Moreover we can multiply a differential form by a function and this operation is associative

and distributive, in the appropriate sense, i.e. Ωp(U) is a module over F(U).

A differential form ω ∈ Ωp(U) induces a F(U)-multilinear map, denoted by the same symbol,

ω : H(U)× · · · × H(U) −→ F(U), ω(X1, . . . , Xp)(x) = ω(x)(X1(x), . . . , Xp(x)).

Conversely, we have

2.3. Theorem. [Tensoriality Criterion] A R-multilinear map

ω : H(U)× · · · × H(U) −→ F(U),

is induced by a differential form if and only if it is F(U)-multilinear.

Proof. Clearly, if ω is induced by a form, it is F(U)-multilinear. Suppose that ω is F(U)-multilinear.

Let x ∈ U,Xi ∈ TxU . Extend the Xi’s to vector fields X̃i ∈ H(U), X̃i(y) =
∑
j aij(y)ej , and define:

ω(x)(X1, . . . , Xp) := ω(X̃1, . . . , X̃p)(x).

In order to show that the above equality defines a form it is sufficient to show that it does not depend on

the extensions. In fact, by F(U)-multilinearity,

ω(X̃1, . . . , X̃p)(x) =
n∑

i1,...,ip=1

a1i1(x) · · · apip(x)ω(ei1 , . . . , eip).

�

2.4. Example. Since Λ0(Rn) = R, Ω0(U) = F(U).

The basic example of a differential form is the following. Let f ∈ F(U). Then the differential of f is

the the 1-form

(df)(x)(X) := X(x)(f), X ∈ Der(U).

In particular, we can consider the coordinate functions xi : Rn −→ R. At each point x ∈ U , the

differentials at x, dxi(x)
5 are a basis of Λ1(Rn). Therefore {dxi1(x)∧· · ·∧dxip(x) : 1 ≤ ii < · · · < ip ≤ n}

is a basis of Λp(Rn). So we have

2.5. Proposition. Let ω ∈ Ωp(U). Then ω can be written in a unique way as:

ω =
∑

i1<···<ip

ωi1,...,ipdxi1 ∧ · · · ∧ dxip ,

where ωi1,...,ip ∈ F(U).

2.6. Example. If f ∈ F(U), df =
n∑
1

∂f

∂xi
dxi.

2.7. Remark. As a real vector space Ωp(U) is infinite dimensional (if n > 0 !), but as a F(U)-module,

it is a free module of dimension

(
n

p

)
.

5Since xi is linear, dxi = xi, and dxi is the form that associates to a vector its ith coordinate in the canonical basis.
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Let U ⊆ Rn, V ⊆ Rm be open sets and F : U −→ V a smooth function, F (x) = (F1(x), . . . , Fm(x)).

Then dF (x) : Rn −→ Rm is a linear map and we have an induced map F ∗ : Λp(Rm) −→ Λp(Rn). This map

induces a linear map:

F ∗ : Ωp(V ) −→ Ωp(U), F ∗(ω)(X1, . . . , Xp)(x) := ω(dF (x)(X1), . . . ,dF (x)(Xp)).

If x1, . . . , xn, y1, . . . ym are the canonical coordinates in Rn and Rm respectively, we have

F ∗(dyi) =
n∑
i=1

∂Fi
∂xj

dxj ,

and therefore, if ω =
∑

i1,...,ip

ωi1,...,ipdyi1 ∧ · · · ∧ dyip ,

F ∗(ω)(x) =
∑

i1,...,ip

ωi1,...,ip(F (x))F
∗(dyi1) ∧ . . . ∧ F ∗(dyi1).

We have the functorial properties:

• 11∗U = 11Ωp(U),

• If F1 : U1 −→ U2 e F2 : U2 −→ U3 are smooth maps, (F2 ◦ F1)
∗ = F ∗

1 ◦ F ∗
2 .

In particular, if F is a diffeomorphism, F ∗ is an isomorphism.

2.8. Example. Let U ⊆ Rn and j : U −→ U × Rm, j(x1 . . . , xn) = (x1 . . . , xn, 0 . . . , 0), be the in-

clusion. If ω = f(x1, . . . , xn+m)dxi1 ∧ · · · ∧ dxip , i1 < · · · < ip, j∗ω = 0, if ip > n, and j∗ω =

f(x1, . . . xn, 0, . . . , 0)dxi1 ∧ · · · ∧ dxip is ip ≤ n.

Differentiating a function can be viewed as a R-linear map:

d : Ω0(U) = F(U) −→ Ω1(U).

Now we extend extend now this operation to higher dimensional forms.

2.9. Theorem. There exists a unique family of R- linear operators dp : Ωp(U) −→ Ωp+1(U), p =

0, . . . , n, such that:

(1) d0 = d (the usual differential).

(2) dp+1 ◦ dp = 0.

(3) If ω ∈ Ωp(U), τ ∈ Ωq(U),dp+qω ∧ τ = dpω ∧ τ + (−1)pω ∧ dqτ.

Moreover, if F : U −→ V is a smooth map and ω ∈ Ωp(V ), then dpF ∗ω = F ∗dpω.

When clear from the context we will write simply d for dp.

Proof. Let us suppose that such a family exists. If ω = f(x) dxi1 ∧ · · · ∧ dxip , we have, by (3),

dω = (df) ∧ dxi1 ∧ · · · ∧ dxip + f d(dxi1 ∧ · · · ∧ dxip).

Now, from (1), df =
n∑
i=1

∂f

∂xi
dxi, and, from (2) and (3)

d(dxi1 ∧ · · · ∧ dxip) =
∑
j

±dxi1 ∧ · · · ∧ ddxij ∧ · · · ∧ dxip = 0.
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Therefore, if ω =
∑

i1<···<ip

ωi1...ipdxi1 ∧ · · · ∧ dxip ,

dω =
∑
k

∑
i1<···<ip

∂ωi1...ip
∂xk

dxk ∧ dxi1 ∧ · · · ∧ dxip .

This shows that if such a family exists, it is unique. Conversely, if we define dp by the formula above we

obtain a family of operators that, as it is easily seen, has the desired properties.

The last claim follows from

F ∗(dyi) =
∑
j

∂Fi
∂xj

dxj = d(yi ◦ F ) = d(F ∗(yi))

and the fact that F ∗ is an algebra homomorphism. �

2.10. Definition. The operator d is called the de Rham differential or the exterior differential or simply

the differential. For reasons that will be clear later, d is also called the coboundary operator.

A simple but useful consequence of the properties above is the following

2.11. Corollary. d is a local operator, i.e. if ω ≡ τ in an open set U , then dω = dτ in U .

Proof. The proof is essentially the same as the proof of the first claim in Lemma 3.19 of Chapter 0. �

We can also give an alternative definition of the exterior differential that does not depend on coordinates.

2.12. Proposition. Let ω ∈ Ωp(U), X0, . . . , Xp ∈ H(U). Then

dω(X0, . . . , Xp) =

p∑
i=0

(−1)iXi · ω(X0, . . . , X̂i, . . . Xp) +
∑
i<j

(−i)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp),

where [Xi, Xj ] is the Lie product of vector fields defined in Chapter 0.

Proof. We sketch the proof leaving the details to the reader (Exercise 7.24). First observe that the

right hand side of the equality above is F(U)-multilinear, and so, by the tensoriality criterium (Theorem

2.3), it is a differential form. In particular, to compute dω(X0, . . . , Xp) at a given point x0 ∈ U , we can take

arbitrarily extensions of the Xi(x0). So, it will be enough to prove the equality for the case when the Xi’s

are coordinate vector fields. In this case [Xi, Xj ] = 0 so the second term on the right hand side vanishes

while the first term is just the expression of dω given in Theorem 2.9. �

We have a sequence of vector spaces and R-linear maps:

0 −→ Ω0(U)
d0

−→ Ω1(U)
d1

−→ · · · d
n−1

−→ Ωn(U) −→ 0

which is a cochain complex, i.e. dp+1 ◦ dp = 0, or, equivalently, Imdp−1 ⊆ ker dp (see next section for the

definition and basic properties of cochain complexes). This sequence is called the de Rham complex of U .

We define

• Zp(U) := ker dp, the space of p-cocycles or closed p-forms.

• Bp(U) := Im dp−1, the space p-coboundaries or exact p-forms.

• Hp(U) := Zp(U)/Bp(U), the p-dimensional (de Rham) cohomology of U .
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2.13. Remark. Let ω, τ be closed forms in U . Since d(ω∧τ) = dω∧τ±ω∧dτ , ω∧τ is closed. Moreover

if τ = dβ, ω ∧ τ = ±d(ω ∧ β), i.e. ω ∧ τ is exact. In particular the wedge product induces a well defined

bilinear map ∪ : Hp(U)⊕Hq(U) −→ Hp+q(U), [ω]∪ [τ ] = [ω∧ τ ]. This product, suitably extended, defines

an algebra structure on H∗(U) := ⊕Hp(U). With this structure H∗(U) is called the cohomology algebra of

U6.

Let U ⊆ Rn, V ⊆ Rm be open sets and F : U −→ V a smooth function. As we already observed, F

induces a map F ∗ : Ωp(V ) −→ Ωp(U). Since, by Theorem 2.9, F ∗ ◦ d = d ◦ F ∗, F ∗ maps closed forms to

closed forms and exact forms to exact forms. Hence it induces a R-linear map, that we still denote by F ∗,

F ∗ : Hp(V ) −→ Hp(U).

It is also simple to see that F ∗ induces an algebra homomorphism F ∗ : H∗(V ) −→ H∗(U) (see Remark

2.13). The functorial properties

• 11∗U = 11Hp(U),

• If F1 : U1 −→ U2 and F2 : U2 −→ U3 are smooth maps, then (F2 ◦ F1)
∗ = F ∗

1 ◦ F ∗
2

are also easily verified. In particular, if F is a diffeomorphism, F ∗ is an isomorphism. So the de Rham

cohomology is a (differential) topological invariant of U .

3. Algebraic aspects of cohomology

The construction of the de Rham cohomology fits into a general algebraic setting called homological

algebra. In this section we will discuss some elementary facts that will be used in these notes. For simplicity

we will restrict to the case of real vector spaces (not necessarily finite dimensional) although most of the

matter could be extended to the case of modules over commutative rings (see Remarks 3.10 and 3.22 ).

The objects we study are sequences of (real) vector spaces and linear maps of the type

E := {(Ep,dp) : dp : Ep −→ Ep+1}.

When we introduce “objects” it is a good strategy to introduce “morphisms” between such objects, i.e.

maps that preserves the structure of the objects.

3.1. Definition. A morphism ϕ : E −→ F , between two sequences is a sequence of linear maps ϕp :

Ep −→ Fp such that the diagrams

· · · −→ Ep dp

−→ Ep+1 −→ · · ·
↓ ϕp ↓ ϕp+1

· · · −→ Fp dp

−→ Fp+1 −→ · · ·

commute, i.e. dp◦ϕp = ϕp+1◦dp (we are using the same symbols dp for the linear maps in the two sequences).

The morphism is an isomorphism if all ϕp are vector spaces isomorphisms.

We have some special sequences.

6This product is usually called the cup product. The use of this terminology, instead of the more natural wedge product, is

due to the fact that the cup product can be defined for different cohomology theories, where the wedge product is not defined.
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3.2. Definition. A sequence E = {Ep,dp} is exact at Ep if Imdp−1 = ker dp. The sequence is an exact

sequence if it is exact at each Ep.

3.3. Examples.

(1) A sequence of the type {0} −→ E ϕ−→ F is exact at E if and only if ϕ is injective.

(2) A sequence of the type E ϕ−→ F −→ {0} is exact at F if and only if ϕ is surjective.

(3) A sequence of the type {0} −→ E ϕ−→ F −→ {0} is exact if and only if ϕ is an isomorphism.

3.4. Definition. A sequence of the type:

{0} −→ E −→ F −→ G −→ {0}

is called a short sequence.

3.5. Remark. Short (exact) sequences are important since they are the “building blocks” of long (exact)

sequences. Let

· · · −→ Ei−1 ϕi−1−→ Ei ϕi−→ Ei+1 −→ · · ·

be a sequence. Consider the short sequence

{0} −→ Ei−1/ kerϕi−1
ϕ̃i−1−→ Ei ϕ̃i−→ Im(ϕi) −→ {0}

where ϕ̃i−1, ϕ̃i are the induced maps. Since Im(ϕ̃i−1) = Im(ϕi−1), ker(ϕ̃i) = ker(ϕi), the long sequence is

exact at Ei if and only if the short sequence is exact.

3.6. Proposition. A short exact sequence

{0} −→ E ϕ−→ F ψ−→ G −→ {0}

is isomorphic to the sequence

{0} −→ E i−→ E⊕G π−→ G −→ {0},

where i(v) = (v, 0) and π(v, w) = w.

Proof. Let G̃ be a complement7 of Imϕ = kerψ, i.e F = ϕ(E) ⊕ G̃. The map ψ |G̃ : G̃ −→ G is an

isomorphism. Therefore the map k : F −→ E ⊕ G, k(v + w) = (ϕ−1(v), ψ(w)) (v ∈ ϕ(E), w ∈ G̃) is the

required isomorphism. �

The following result appears often in the applications

3.7. Lemma. [The five Lemma] Consider the diagram:

E1
f1−→ E2

f2−→ E3
f3−→ E4

f4−→ E5

↓ ϕ1 ↓ ϕ2 ↓ ϕ3 ↓ ϕ4 ↓ ϕ5
F1

g1−→ F2
g2−→ F3

g3−→ F4
g4−→ F5

If the squares commute, the lines are exact and the ϕi’s are isomorphisms for i = 1, 2, 4, 5 then ϕ3 is an

isomorphism.

7Recall that a complement of a subspace is obtained by starting from a basis {eα} of the subspace and completing it to a

basis of the ambient space with elements {fβ} and then considering the subspace spanned by the {fβ}.
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Proof. Suppose ϕ3(e3) = 0. Then ϕ4(f3(e3)) = g3(ϕ3(e3)) = 0. Therefore f3(e3) = 0 and, by the

exactness of the first line, e3 = f2(e2). Now g2(ϕ2(e2)) = ϕ3(e3) = 0. Therefore ϕ2(e2) = g1(µ1), for some

µ1 ∈ F1, by the exactness of the second line. Since ϕ1 is surjective, there exists e1 ∈ E1 such that ϕ1(e1) = µ1.

Finally

0 = f2(f1(e1)) = f2(ϕ
−1
2 g1ϕ1(e1)) = f2(e2) = e3

and therefore ϕ3 is injective. We will show now that ϕ3 is surjective. Let µ3 ∈ F3, µ4 = g3(µ3) and

e4 = ϕ−1
4 (µ4). Now ϕ5(f4(e4)) = g4(µ4) = 0 and therefore f4(e4) = 0, since ϕ5 is injective. In particular

there exists e3 ∈ E3 such that f3(e3) = e4. Let µ3 = ϕ3(e3) and ω = µ3 − µ3. Now g3(ω) = 0 and

therefore ω = g2(µ2). Let e2 = ϕ−1
2 (µ2). We have ϕ3(f2(e2)) = g2(ϕ2(e2)) = ω = ϕ(e3) − µ3 and therefore

µ3 = ϕ3(e3 − f2(e2)) ∈ Imϕ3.

�

3.8. Remark. We observe that in the proof of Theorem 3.7 we use only that ϕ2, ϕ4 are isomorphisms,

ϕ1 is surjective and ϕ5 is injective. However, the lemma is used, generally, as it is stated.

A more general and very important class of sequences is the class of cochain complexes.

3.9. Definition. A sequence E = {Ep,dp} is semiexact or a cochain complex if Imdp−1 ⊆ ker dp, ∀p.
Equivalently, it is a cochain complex if dp ◦ dp−1 = 0.

If E is a cochain complex we define:

• Zp(E) := ker dp, the group of p-dimensional cocycles,

• Bp(E) := Im dp−1, the group of p-dimensional coboundaries,

• Hp(E) := Zp(E)/Bp(E), the p-dimensional cohomology group.

3.10. Remark. Naturally Zp(E), Bp(E), Hp(E) are vector spaces. The use of the term “group” is due

to the fact that they can be defined in the more general context of complexes of Abelian groups, or modules

over a commutative ring.

The cohomology gives a measure of how much the complex is not an exact sequence.

3.11. Example. Let U ⊆ Rn be an open set. The de Rham complex

· · · −→ Ωp(U)
dp

−→ Ω(p+1)(U) −→ · · ·

is a cochain complex whose cohomology is the de Rham cohomology Hp(U).

Consider now a morphism between two cochain complexes, ϕ : E −→ F . The commutativity condition

implies that cocycles are sent to cocycles and coboundaries to coboudaries. In particular ϕ induces linear

maps

ϕ∗,p : Hp(E) −→ Hp(F).

When clear from the context we will write simply ϕ∗ or ϕp.

The following “functorial” properties are easily verified:

• 11∗ = 11,

• (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗.
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In particular if ϕ is an isomorphism, ϕ∗ is also an isomorphism.

It is convenient to consider also sequences with “decreasing indices”, i.e. a sequence of the type

E := {(Ep, ∂p) : ∂p : Ep −→ Ep−1}.

If such a sequence is semiexact, we will call it a chain complex. For such a chain complex we define:

• Zp(E) := ker ∂p, the group of p-dimensional cycles.

• Bp(E) := Im ∂p+1, the group of p-dimensional boundaries.

• Hp(E) := Zp(E)/Bp(E), the p-dimensional homology group.

As in the case of cochains, a morphism ϕ : E −→ F , between two chain complexes, sends cycles to cycles

and boundaries to boundaries, so it induces a sequence of maps ϕ∗,p : Hp(E) −→ Hp(F) and the functorial

properties are easily verified. When clear from the context we will write simply ϕ∗ or ϕ∗,p.

3.12. Remark. Naturally chain and cochain complexes are, essentially, the same objects. For example,

changing the index p by −p we pass from a chain complex to a cochain complex. But a more interesting

approach is duality and we will discuss this now.

Let E := {(Ep, ∂p) : ∂p : Ep −→ Ep−1} be a chain complex. We define the dual complex E∗ = {(Ep,dp)}
where Ep := (Ep)∗ is the dual space of Ep and dp = (∂p+1)

∗ is the transpose of ∂p+1. It is simple to show

that dp ◦ dp−1 = 0 so E∗ is, in fact, a cochain complex. We will denote with Hp (resp. Hp) the homology of

E (resp. the cohomology of E∗). Consider the bi-linear map

b : Ep × Ep −→ R, b(ϕ, c) = ϕ(c).

Since (dϕ)(c) = ϕ(∂c), we have that, if dϕ = 0, ∂c = 0, b(ϕ+ dτ, c+ ∂d) = b(ϕ, c). Hence b induces a

bi-linear map

b̃ : Hp ×Hp −→ R, b̃([ϕ], [c]) = ϕ(c),

and therefore a linear map

K : Hp −→ [Hp]
∗, K([ϕ])([c]) = ϕ(c).

3.13. Theorem. [Universal coefficient Theorem] The map K is an isomorphism.

Proof. We start observing that we have two short exact sequences

(1) {0} −→ Zp −→ Ep
∂p−→ Bp−1 −→ {0}, {0} −→ Bp−1 −→ Zp−1 −→ Hp−1 −→ {0}

where the maps are the obvious ones. By Proposition 3.6, we have the decompositions

(2) Ep ∼= Zp ⊕Bp−1, Zp−1
∼= Bp−1 ⊕Hp−1

Claim 1.: K is surjective. Let [ϕ] ∈ [Hp]
∗. Consider the map ϕ ◦ π : Zp −→ R, where π : Zp −→ Hp is

the quotient map. Using the first decomposition in (2), we can extend this map to a map ϕ̃ : Ep −→ R with

ϕ̃ = 0 on Bp−1. Let e ∈ Ep. Then dϕ̃(e) = ϕ̃(∂(e)) = 0, hence ϕ̃ is a cocycle and K([ϕ̃]) = [ϕ].
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Claim 2.: K is injective. Let ψ ∈ Zp be such that ψ(c) = 0 ∀ c ∈ Zp. The map ϕ = ψ◦∂−1 : Bp−1 −→ R
is well defined since, by the first sequence in (1), the difference of two elements in ∂−1(Bp−1) is a cycle.

Using the decompositions in (2), we can extend ϕ to a map ϕ̃ : Ep−1 −→ R. Now, ∀e ∈ Ep, we have:

dϕ̃(e) = ϕ̃(∂e) = ψ ◦ ∂−1(∂e) = ψ(e).

Hence [ψ] = [dϕ̃] = 0. �

A useful consequence is the following

3.14. Corollary. If a sequence is exact, the dual sequence is also exact.

Proof. An exact sequence is a chain complex with vanishing homology. Therefore the dual sequence

is a cochain complex with vanishing cohomology, by Theorem 3.13, hence an exact sequence 8. �

We will study now when two morphism between cochain (resp. chain) complexes induces the same map

in cohomology (resp. homology).

3.15. Definition. An algebraic homotopy between two morphisms ϕ, ψ : E −→ F of cochain (resp.

chain) complexes is a family of maps Kp : Ep −→ Fp−1 (resp. Kp : Ep −→ Fp+1), such that:

ϕ− ψ = d ◦K +K ◦ d (resp. ϕ− ψ = ∂ ◦K +K ◦ ∂).

If there exists such an algebraic homotopy, we will say the the two morphisms are (algebraically) homotopic.

From the very definition of induced morphisms we have:

3.16. Proposition. Two algebraically homotopic maps induce the same morphism in cohomology (resp.

in homology).

Consider now a short exact sequence of cochain complexes:

{0} −→ E ϕ−→ F ψ−→ G −→ {0}.

In particular ϕi is injective and ψi is surjective. In general, at the cohomology level, ϕ∗ is not injective and

ψ∗ is not surjective. In any case, we still have a good relation between the cohomology groups of the three

complexes.

3.17. Theorem. [Algebraic Mayer-Vietoris Theorem] In the situation above there exists a family of

linear maps ∆∗,p : Hp(G) −→ Hp+1(E) such that the sequence:

· · · −→ Hp(E) ϕ∗

−→ Hp(F)
ψ∗

−→ Hp(G) ∆∗,p

−→ Hp+1(E) −→ · · ·

is a (long) exact sequence. When clear from the context we will write simply ∆p or ∆∗.

8We could also give a direct proof, and the reader is invited to do so (Exercise 7.18).
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Proof. We have the commutative diagram

0

��

0

��

0

��
· · · // Ep

dp

//

ϕp

��

Ep+1
dp+1

//

ϕp+1

��

Ep+2 //

ϕp+2

��

· · ·

· · · // Fp
dp

//

ψp

��

Fp+1
dp+1

//

ψp+1

��

Fp+2 //

ψp+2

��

· · ·

· · · // Gp
dp

//

��

Gp+1
dp+1

//

��

Gp+2 //

��

· · ·

0 0 0

where the columns are exact and the rows are the cochain complexes under consideration. The idea is to

construct a map from Gp to Ep+1. A natural choice would be (ϕp+1)
−1 ◦dp ◦ψ−1

p . The point is that this map

is not well defined. Let us see how we can overcome this problem. Consider a cocycle c ∈ Gp. Since ψp is

surjective, there exists b ∈ Fp such that c = ψp(b). The element dp(b) ∈ Fp+1 is in kerψp+1 since the diagrams

commute and c is a cocycle. Since kerψp+1 = Imϕp+1 we have dp(b) = ϕp+1(a) for some a ∈ Ep+1 and this

a is unique since ϕp+1 is injective. Observe that dp+1(a) = 0, since ϕp+2(d
p+1(a)) = dp+1(ϕp+1(a)) = dp+1 ◦

dp(b) = 0 and ϕi+2 is injective. Therefore a is a cocycle. We define: ∆∗ : Hp(G) −→ Hp+1(E), ∆∗([c]) = [a].

We have to show that [a] is well defined. The first choice we made was b ∈ Fp. If b′ is an other choice, i.e.

ψp(b
′) = ψp(b), then b− b′ ∈ kerψp = Imϕp. Therefore b

′ − b = ϕp(a
′), for some a′ ∈ Ep, and b′ = b+ϕp(a

′).

So, changing b by b + ϕp(a
′), we change a by a + dp(a′) and this does not change [a]. Next we shall show

that [a] does not depend on the choice of c ∈ [c]. Consider c+dp(c′). Since c′ = ψp−1(b̃), for some b̃ ∈ Fp−1,

we have c + dp−1(c′) = c + dp−1(ψp−1(b̃)) = c + ψp(d
p−1(b̃)) = ψp(b + dp−1(b̃)). Therefore b is replaced by

b+ dp−1(b̃) and this does not change dp(b) and, therefore, [a].

It is easy to see that ∆∗ is linear. We leave to the reader the task of proving the exactness of the

sequence (Exercise 7.22). �

3.18. Remark. The map ∆∗ is well defined in cohomology but not at the cocycles level.

3.19. Definition. The sequence in Theorem 3.17 is called the (algebraic) Mayer-Vietoris sequence. The

maps ∆∗ are called the Mayer-Vietoris coboundaries9.

3.20. Remark. Naturally we have a similar sequence in homology, associated to a short exact sequence

of chain complexes. The similar maps ∆∗,p or simply ∆∗, are called the Mayer-Vietoris boundaries. We

leave the details to the reader.

An important aspect of the Mayer-Vietoris (co)boundaries is that they are “natural” in the sense of the

following Proposition, whose proof we leave to the reader (Exercise 7.22).

9The name “coboundaries” cames from the fact that, in the case of the de Rham cohomology, they are, essentially, the

coboundaries operators dp (see Remark 4.14).
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3.21. Proposition. A morphism between short exact sequences of (co)chain complexes induces a mor-

phism between the associated Mayer-Vietoris exact sequences, i.e. the Mayer-Vietoris (co)boundaries com-

mute with the induced maps.

3.22. Remark. As suggested in Remark 3.10, instead of chain and cochain complexes of vector spaces

we could consider chain and cochain complexes of Abelian groups (or modules over a commutative ring).

Almost all we have done in this section extends to the case of complexes of Abelian groups. The “almost”

refers to two exceptions:

• Proposition 3.6 does not hold in this more general setting. For example the sequence of abelian groups

{0} −→ Z ·2−→ Z −→ Z2 −→ {0}, ·2(a) := 2a,

is a short exact sequence, but it is not isomorphic to the sequence

{0} −→ Z −→ Z⊕ Z2 −→ Z2 −→ {0}.

A short exact sequence of Abelian groups that verify Proposition 3.6 is called a split short exact sequence.

A sufficient condition for splitting is given by the following simple fact

3.23. Proposition. A short exact sequence of Abelian groups

{0} −→ A
ϕ−→ B

ψ−→ C −→ {0}

splits if and only if there is a map r : C −→ B such that ψ ◦ r = 11C . This always happens if C is free 10.

• We can consider “duality” in the context Abelian groups. If G is such a group, G∗ := Hom(G,Z) is
the group of homomorphisms from G to Z. Therefore we can define the dual of a chain complex of Abelian

groups. However Theorem 3.13 does not hold in this context. In fact, one of the points in the proof was

that the sequence of vector spaces

{0} −→ Bp−1 −→ Zp−1 −→ Hp−1 −→ {0}

splits. As observed above, this is not the case, in general, for short exact sequences of Abelian groups.

However, if Hp−1 is a free Abelian group, then the sequence splits, by Proposition 3.23, and the Theorem

is true. In general, there is still a relation between the homology of a chain complex of Abelian groups and

the cohomology of the dual complex, still known as the Universal Coefficient Theorem.

4. Basic properties of the de Rham cohomology

The natural problem that the de Rham cohomology treats is the problem of (indefinite) integration,

i.e. the problem of solving the equation dω = β, for a given β ∈ Ωp+1(U). A necessary condition for the

existence of a solution ω is dβ = 0. In general the problem has two aspects:

• The local problem: given x ∈ U, β ∈ Ωp+1(U) does there exist a neighborhood V ⊆ U of x and a

solution ω ∈ Ωp(V ) of the equation dω = β|V ? In this case, as we shall see, the condition dβ = 0 is also

sufficient.

10A free Abelian group G is an Abelian group that admits a basis, i.e. a subset B ⊆ G such that for any Abelian group H

and map ϕ : B −→ H, there exists a homomorphism ϕ̃ : G −→ H, extending ϕ.
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• The global problem: given β ∈ Ωp+1(U), does there exist a solution ω ∈ Ωp(U) of the equation dω = β?

In this case, the condition dβ = 0 is no longer sufficient, in general, and the answer will depend on the

particular β and/or the topology of U .

We will start computing the de Rham cohomology in some simple cases.

4.1. Example. For U = R0 we have the obvious fact

Hp(R0) ≃

{
R if p = 0

{0} if p > 0

4.2. Example. Let U =
⨿
α Uα be the union of disjoint open sets Uα. Then Ωp(U) =

∏
α Ω

p(Uα) (direct

product) and the differential preserves the decomposition, i.e. if ω = {ωα}, dω = {dωα}. It follows that

Hp(U) ∼=
∏
α

Hp(Uα).

4.3. Example. Let us analyze the 0-dimensional cohomology. In this case, the only exact 0-form is the

zero form so H0(U) is the space of closed 0-forms, i.e. functions in F(U) with zero differential. Such a

function is locally constant, in particular it is constant on the connected components of U . It follows that

H0(U) is the direct product of copies of R, as many as the connected components of U .

Let us take a further look at the 0-dimensional cohomology. Let U ⊆ Rn, V ⊆ Rm be open connected

sets, and F : U −→ V a smooth map. As we observe in 4.3, the zero dimensional cohomology of U is the

space of constant functions, and the same for V . Given a 0-form f ∈ Ω0(V ) = F(V ), F ∗(f) = f ◦ F and

therefore F ∗ : H0(V ) −→ H0(U) is an isomorphism. Modulo the identification of the zero dimensional

cohomology groups with R, we have F ∗ = 11 : R −→ R.
We want to look now at the induced maps in higher dimensional cohomology groups. The question is

the following: when do two smooth maps Fi : U −→ V, i = 0, 1 induce the same morphism in cohomology?

We will give a sufficient condition in terms of homotopy.

4.4. Definition. Let U ⊆ Rn, V ⊆ Rm be open sets and Fi : U −→ V, i = 0, 1 be smooth functions.

• A homotopy between the two functions is a smooth map11

H : U × [0, 1] ⊆ Rn+1 −→ V,

such that H(x, i) = Fi(x), i = 0, 1.

• We will say that the two functions are homotopic if there exist a homotopy between them. In this

case we write F0 ∼ F1.

• We will say that U and V are homotopy equivalent if there exist functions F : U −→ V, G : V −→ U ,

such that G ◦F ∼ 11U , F ◦G ∼ 11V . F (resp. G) is called a homotopy inverse of G (resp. of F )12.

• We will say that U is contractible if U is homotopy equivalent to R0.

11A map f : V ⊆ RN −→ RM , defined in a non necessarily open subset V ⊆ RN is smooth, if for all p ∈ V, f extends to

a smooth map defined in an open neighborhood of p.
12Observe that a homotopy inverse is not, in general, unique.
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4.5. Example. A subset U ⊆ Rn is star shaped if there exists p ∈ U such that, for all q ∈ U , the

segment joining p and q is contained in U . For example convex sets are star shaped. Star shaped subsets

are contractible since the map H(q, t) := tp + (1 − t)q is a homotopy between 11U and the constant map

F (q) = p. It follows that 11 and F are homotopy inverses.

4.6. Remark. Given a homotopy H : U × [0, 1] −→ V , there is a smooth function H : U × R −→ V ,

such that H(x, i) = Fi(x), i = 0, 1. In fact, if λ : R −→ [0, 1] is a smooth function such that λ(t) = 0 if t ≤
0, λ(t) = 1 if t ≥ 1, just take H(x, t) = H(x, λ(t)).

A homotopy between two functions may be viewed as a curve in the space of smooth maps joining the

two functions. Also it may be viewed as a “smooth deformation” of one function to the other.

4.7. Theorem. [Homotopy invariance for cohomology] If Fi : U −→ V, i = 0, 1 are two homotopic

smooth functions, then F ∗
0 = F ∗

1 : Hp(V ) −→ Hp(U), for all p.

Proof. By Remark 4.6 we can suppose that there is a homotopy H : U × R −→ V . Let ji : U −→
U × R, i = 0, 1, ji(x) = (x, i), be the canonical inclusions. We claim that it is sufficient to prove that

j∗0 = j∗1 . In fact, if so, we have:

F ∗
0 = (H ◦ j0)∗ = j∗0 ◦H∗ = j∗1 ◦H∗ = (H ◦ j1)∗ = F ∗

1 .

To prove that j∗0 = j∗1 we will construct an algebraic homotopy between j∗0 and j∗1 (at the cochain level,

see Definition 3.15 and Proposition 3.16), i.e. an R-linear map H̃ : Ωp(U × R) −→ Ωp−1(U) such that

H̃dω + dH̃ω = j∗1ω − j∗0ω.

Let us construct such a map. If ω ∈ Ωp(U × R), ω = dt ∧ α+ β, with

α =
∑

i1<...<ip−1

αi1,...,ip−1(x, t)dxi1 ∧ · · · ∧ dxip−1 , β =
∑

j1<···<jp

βj1,...,jp(x, t)dxj1 ∧ · · · ∧ dxjp .

We define

H̃(ω) =
∑

i1<...<ip−1

(∫ 1

0

αi1,...,ip−1(x, t)dt

)
dxi1 ∧ · · · ∧ dxip−1 .

Then

dω = −dt ∧ dα+ dβ = −dt ∧
∑

j,i1<···<ip

∂αi1...ip−1

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip−1 +

+dt ∧
∑

j1<···<jp

∂βj1,...,jp
∂t

dxj1 ∧ · · · ∧ dxjp + γ

where γ does not contain terms with dt. Therefore

H̃dω =
∑

j1<···<jp

(∫ 1

0

∂βj1,...,jp
∂t

dt

)
dxj1 ∧ · · · ∧ dxjp −

∑
j,i1<···<ip

(∫ 1

0

∂αi1...ip−1

∂xj
dt

)
dxj ∧ dxi1 ∧ · · · ∧ dxip−1 ,

dH̃ω =
∑

j,i1<···<ip

(∫ 1

0

∂αi1...ip−1

∂xj
dt

)
dxj ∧ dxi1 ∧ · · · ∧ dxip−1 ,
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and (see Example 2.8)

H̃dω + dH̃ω =
∑

j1<···<jp

(∫ 1

0

∂βj1,...,jp
∂t

dt

)
dxj1 ∧ · · · ∧ dxjp =

=
∑

j1<···<jp

[βj1,...,jp(x, 1)− βj1,...,jp(x, 0)]dxj1 ∧ · · · ∧ dxjp = j∗1ω − j∗0ω.

�

From 4.7, and the funtorial properties, we have

4.8. Corollary. If U ⊆ Rn, V ⊆ Rm are homotopically equivalent open sets, then they have isomorphic

cohomology.

In particular we have the so called Poincaré Lemma

4.9. Corollary. [Poincaré Lemma] If U is a contractible open set in Rn, Hp(U) = {0} if p ≥ 1.

4.10. Remark. Theorem 4.7 allows to define the map induced in cohomology by a continuous map.

In fact, as we shall see in the Appendix, a continuous map F : U −→ V is homotopic, via a continuous

homotopy H : U × [0, 1] −→ V , to a smooth map F̃ : U −→ V and if there is a continuous homotopy

between two smooth maps, there is a smooth one. So F ∗ := F̃ ∗ is well defined and invariant by continuous

homotopies.

A basic method to compute the cohomology of an open set U ⊆ Rn is to write U as union of two,

possibly simpler open sets U1, U2, and look for relations between the cohomology of U,Ui and V := U1∩U2.

4.11. Lemma. Consider the sequence :

{0} −→ Ωp(U)
(j∗1 ,j

∗
2 )−→ Ωp(U1)⊕ Ωp(U2)

(k∗1−k
∗
2 )−→ Ωp(V ) −→ {0},

where ji : Ui −→ U and ki : V −→ Ui are the inclusions. Then the sequence is a short exact sequence of

cochain complexes.

Proof. Observe that j∗i ω = ω|Ui and, if (ω1, ω2) ∈ Ωp(U1) ⊕ Ωp(U2), (k
∗
1 − k∗2)(ω1, ω2) = ω1|V − ω2|V

(see Example 2.8). So the exactness of the sequence is obvious, except for the surjectivity of (k∗1 − k∗2). To

prove that (k∗1 − k∗2) is surjective we consider a partition of unity dominated by the covering {U1, U2}, i.e.
smooth functions ϕi : U −→ [0, 1], i = 1, 2 such that:

ϕ1(x) + ϕ2(x) = 1 ∀x ∈ U, supp(ϕi) := {x ∈ U : ϕi(x) > 0} ⊆ Ui

(see Theorem 6.2 for a proof of the existence of partitions of unity).

Given ω ∈ Ωp(V ), we define:

ωi(x) =

{
ϕj(x)ω(x) if x ∈ V

0 if x ∈ Ui \ V

where i ̸= j. Then ωi is well defined in Ui since ϕj vanishes outside Uj , j ̸= i. Moreover,

(k∗1 − k∗2)(ω1,−ω2) = ω1|V + ω2|V = ϕ2ω + ϕ1ω = ω.
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Therefore (k∗1 − k∗2) is surjective. �

At this point Theorem 3.17 gives:

4.12. Theorem. [Mayer Vietoris sequence for de Rham cohomology] There exists a sequence of linear

maps ∆∗ : Hp(V ) −→ Hp+1(U), such that the sequence below is exact:

· · · −→ Hp(U)
(j∗1 ,j

∗
2 )−→ Hp(U1)⊕Hp(U2)

(k∗1−k
∗
2 )−→ Hp(V )

∆∗

−→ Hp+1(U) −→ · · ·

4.13.Definition. The sequence above is called theMayer-Vietoris sequence for the de Rham cohomology

and the maps ∆∗ are called the Mayer-Vietories coboundaries.

4.14. Remark. The Mayer-Vietoris coboundaries can be decribed explicitly. If [ω] ∈ Hp(V ), ∆∗[ω] is

the class of the form

τ(x) =

{
−d(ϕ2ω)(x) if x ∈ U1

d(ϕ1ω)(x) if x ∈ U2

Since d commutes with induced maps, so does ∆∗. We invite the reader to check the details.

4.15. Example. Let us apply the Mayer-Vietoris sequence to compute the cohomology of Σn := Rn\{x =

(x1, . . . , xn) ∈ Rn : |xi| ≤ 1}.
Consider the open sets:

U1 = {(x1, . . . , xn) ∈ Σn : xn > −1/2}, U2 = {(x1, . . . , xn) ∈ Σn : xn < 1/2}.

The following facts are easy to prove:

• Σn = U1 ∪ U2.

• The Ui’s are contractible. In fact the projection (x1, . . . , xn)  (x1, . . . , xn−1, 2) is a homotopy

equivalence between U1 and the hyperplane xn = 2. The latter is contractible since it is convex.

Similarly for U2.

• U1 ∩U2 is homotopy equivalent to Σ(n−1) (the projection of U1 ∩U2 into the hyperplane xn = 0 is

a homotopy equivalence).

If n = 1, Σ1 is the disjoint union of two contractible sets, hence by Corollary 4.8 and Example 4.3

Hp(Σ1) ∼=

{
R⊕ R if p = 0

{0} if p > 0

For the case n ≥ 2 we will prove that

Hp(Σn) =

{
R if p = 0, n− 1

{0} if p ̸= 0, n− 1

We proceed by induction. Let n = 2. Since Σ2 and the Ui’s are connected, H0(Σ2) ∼= H0(Ui) ∼= R.
Consider the Mayer-Vietoris sequence:

{0} −→ H0(Σ2) −→ H0(U1)⊕H0(U2) −→ H0(Σ1) −→ H1(Σ2) −→ H1(U1)⊕H1(U2) −→
−→ · · · −→ Hp−1(Σ1) −→ Hp(Σ2) −→ Hp(U1)⊕Hp(U2) −→ · · · .

The first row reduces to:

{0} −→ R −→ R⊕ R −→ R⊕ R −→ H1(Σ2) −→ {0}.
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The first arrow is injective hence the kernel of the second one, as well as its image, are 1-dimensional.

Hence the the third one is surjective with 1-dimensional kernel and H1(Σ2) ∼= R.
From the second row we get Hp(Σ2) = {0} if p > 1. Hence the formula is true for n = 2.

Suppose now n ≥ 3 and that the formula is true for n− 1. Consider again the Mayer-Vietoris sequence:

Hp−1(Σn) −→ Hp−1(U1)⊕Hp−1(U2) −→ Hp−1(Σn−1) −→ Hp(Σn) −→ Hp(U1)⊕Hp(U2) −→

If p > 1 we have Hp(Σn) ∼= Hp−1(Σn−1), and, for p = 1 we get

{0} −→ R −→ R⊕ R −→ R −→ H1(Σn) −→ {0}.

Hence H1(Σn) = {0} and the formula holds true for n.

4.16. Remark. Observe that the inclusion Σn −→ Rn \ {0} is a homotopy equivalence (Exercise 7.27).

5. An application: the Jordan-Alexander duality Theorem

It is convenient, as we shall see, in order to avoid special arguments for the 0-dimensional case and to

have more clean statements, to introduce reduced cohomology. Define

Ω−1(U) := R d(−1) : Ω−1(U) −→ Ω0(U), d(−1)(a) := a ∈ Ω0(U).

Then the sequence

{0} −→ Ω−1(U)
d(−1)

−→ Ω0(U)
d−→ Ω1(U) −→ · · ·

is a cochain compex called the augmented de Rham complex.

5.1. Definition. The reduced de Rham cohomology of U, H̃p(U), is the cohomology of the augmented

de Rham complex.

5.2. Remark. It is clear that H̃−1(U) = {0}, H0(U) ∼= H̃0(U) ⊕ R and H̃p(U) = Hp(U), if p > 0. In

particular H̃p(U) = {0}, ∀ p ≥ 0, if U is contractible.

The basic properties, such as homotopy invariance and the Mayer-Vietoris exact sequence, continue to

be true for the reduced cohomology and we will leave the proofs to the reader (see Exercise 7.23).

We will discuss now a nice application of the Mayer-Vietoris argument, the so called Jordan-Alexander

duality principle, that has, as a simple consequence, the celebrated Jordan closed curve Theorem. We will

follow closely [4].

Let Fi, i = 1, 2 be closed subsets of Rn. Suppose that there exists a homeomorphism ϕ : F1 −→ F2.

It is natural to ask if there exists some relation between the complementary sets Rn \ Fi. The illusion

that they are homeomorphic or, at least, homotopy equivalent is soon frustrated. For example consider

F1 = {x ∈ R2 : ∥x∥ = 1} ∪ {x ∈ R2 : ∥x∥ = 2} and F2 = {x ∈ R2 : ∥x∥ = 1} ∪ {x ∈ R2 : ∥x − (3, 0)∥ = 1}.
The complement of F1 is homotopy equivalent to the disjoint union of a point and two circles, while the

complement of F2 is homotopy equivalent to the disjoint union of two points and the wedge 13 of two circles.

It is easily seen that these spaces are not homotopy equivalent.

13Recall that the wedge of two topological spaces is the space obtained from the disjoint union identifying a fixed point in

the first space with one in the second one.
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5.3. Remark. (For the reader familiar with the concept of foundamental group,) The fact that the

complements of two homeomorphic closed set are not homotopy equivalent is important in several contexts,

for example in Knot Theory. Recall that a knot in R3 is a function γ : S1 −→ R3 which is a homeomorphism

onto its image. Two knots are equivalent if there exists an isotopy, i.e. a homotopy through homeomorphisms,

which takes one into the other. One of the most important invariants for equivalence classes of knots is the

fundamental group of the complement of the image. Now, the images of two knots are homeomorphic and

if the complements were homotopy equivalent, they would have isomorphic fundamental group and so the

invariant would be trivial.

There is, however, an interesting relation between the complements of homeomorphic closed sets.

5.4. Theorem. [Jordan Alexander duality Theorem] Let F1, F2 ⊆ Rn, be homeomorphic closed sets.

Then

H̃k(Rn \ F1) ∼= H̃k(Rn \ F2).

Proof. We will consider Rn as the subspace of vectors in Rn+k with the last k coordinates zero. The

proof of the Theorem will be an easy consequence of the following two Lemmas.

5.5. Lemma. Let F ( Rn be a closed subset. Then H̃i+1(Rn+1 \ F ) ∼= H̃i(Rn \ F ), i ≥ −1.

Proof. Consider the subsets of Rn+1:

• Z+ := Rn+1 \ (F × {t ∈ R : t ≤ 0}).
• Z− := Rn+1 \ (F × {t ∈ R : t ≥ 0}).
• Z := Z+ ∪ Z− = Rn+1 \ F.
• Z+ ∩ Z− ∼ Rn \ F.

The orthogonal projection of Z+ onto the hyperplane xn+1 = 1 is a homotopy equivalence. Hence the

reduced cohomology of Z+ vanishes in all dimensions. The same is true for Z− and the Lemma follows from

the Mayer-Vietoris sequence for the reduced cohomology:

H̃i(Z+)⊕ H̃i(Z−) = {0} −→ H̃i(Z+ ∩ Z−) −→ H̃i+1(Z) −→ H̃i+1(Z+)⊕ H̃i+1(Z−) = {0}.

�

5.6. Corollary. If F ⊆ Rn is a closed set, then H̃i+k(Rn+k \ F ) ∼= H̃i(Rn \ F ), ∀ i ≥ −k.

5.7. Lemma. Let Fi ⊆ Rn, i = 1, 2 be closed subsets and ϕ : F1 −→ F2 a homeomorphism. Then

R2n \ F1 × {0} is homeomorphic to R2n \ {0} × F2.

Proof. Let ψ = ϕ−1. The homeomorphisms ϕ, ψ extend, by Tietze’s Theorem14, to continuous maps

Φ,Ψ : Rn −→ Rn. Define:

• L : R2n −→ R2n, L(x, y) = (x, y − Φ(x)).

• R : R2n −→ R2n, R(x, y) = (x−Ψ(y), y).

14Tietze’s Theorem states that a continuous real valued function defined in a closed subset of Rn extends to a continuous

function defined in the all of Rn (this fact is true, more generally, for normal topological spaces).



6. APPENDIX: PARTITIONS OF UNITY AND SMOOTH APPROXIMATIONS 52

The maps L,R are homeomorphisms. In fact L−1(x, y) = (x, y+Φ(x)), R−1(x, y) = (x+Ψ(y), y). Consider

Γ := {(x, y) ∈ R2n : x ∈ F1, y = ϕ(x)} = {(x, y) ∈ R2n : y ∈ F2, x = ψ(y)}. We have L(F1 × {0}) = Γ =

R({0} × F2) and therefore a homeomorphism:

R2n \ (F1 × {0}) L−→ R2n \ Γ R−1

−→ R2n \ ({0} × F2).

�

The proof of the Theorem is, at this point, immediate:

H̃i(Rn \ F1) ∼= H̃i+n(R2n \ F1) ∼= H̃i+n(R2n \ F2) ∼= H̃i(Rn \ F2).

�

As an immediate consequence of the Jordan-Alexander duality we have have the celebrated Jordan curve

Theorem.

5.8. Theorem. [Jordan curve Theorem] Let γ : S1 −→ R2 be a homeomorphism onto its image15. Then

R2 \ γ(S1) has exactly two connected components.

Proof. Consider the unit circle S1 ⊆ R2. It is clear that the complement of S1 in R2 has exactly two

connected components and therefore H̃0(R2 \ S1) ∼= R. By the duality Theorem 5.4, H̃0(R2 \ γ(S1)) ∼= R
and therefore the complement of γ(S1) in R2 has also exactly two connected components. �

5.9. Remark. It is clear that the argument in the proof of Theorem 5.8 may be extended to the case

of a closed hypersurface Mn ⊆ Rn+1 (see Chapter 3 for definitions) any time we have a “model”, i.e. a

closed hypersurface homeomorphic to Mn and information on the complement of the model. For example

this happens in the case of closed oriented surfaces in R3 or in the case of closed hypersurfaces of Rn+1,

homeomorphic to a sphere. A different approach will be discussed in Chapter 4 (Theorem ??).

6. Appendix: partitions of unity and smooth approximations

In order not to interrupt the flow of the arguments, we left, in the previous sections, a couple of “gaps”,

namely the proof of existence of partitions of unity (in the proof of Theorem 4.12) and the approximation

of continuous maps by smooth ones (see Remark 4.10). In this Appendix we will fill these gaps.

Partitions of unity is a basic tool that allows to glue together locally defined objects (such as functions,

forms etc.) in order to obtain a globally defined object. We start with the basic definition.

6.1. Definition. Let U ⊂ Rn be an open set and let {Vα} be an open covering of U . A partition of

unity dominated by the covering {Vα} is a family of smooth functions λi : Rn −→ [0, 1] such that:

(1) For all i there exist α such that supp(λi) := {x ∈ Rn : λi(x) ̸= 0} ⊆ Vα.

(2) For all x ∈ U there exists a neighborhood Ux of x, such that Ux ∩ supp(λi) = ∅ for all but finitely

many of the λi’s.

(3) For x ∈ U,
∑
i λi(x) = 1 (observe that, by (2), the sum is finite).

Our aim is to prove the following result:

15Such a map is usually called a Jordan curve.
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6.2. Theorem. Let U ⊂ Rn be an open set and let {Vα} be an open covering of U . Then there exist a

partition of unity dominated by {Vα}.

Proof. We will use the following notations:

B(p, r) = {x ∈ Rn : ∥x− p∥ < r}, D(p, r) = {x ∈ Rn : ∥x− p∥ ≤ r} = B(p, r) .

We recall (Exercise 4.13 of Chapter 0) that given δ1, δ2 ∈ R, 0 < δ1 < δ2,and p ∈ Rn, there exists a smooth

function ϕ : Rn −→ [0, 1] such that ϕ(x) = 0 in B(p, δ1) and ϕ(x) = 1 in Rn \B(p, δ2).

Claim 1. Let K ⊆ Rn be a compact set and V ⊆ Rn an open set with K ⊆ V . Then there exist a

smooth function ψ : Rn −→ [0, 1] such that ψ(x) = 1, if x ∈ K and ψ(x) = 0 if x ̸∈ V .

Proof. For any p ∈ K consider δ(p) such that D(p, 2δ(p)) ⊆ V . Since K is compact, there is a

finite number of points, p1, . . . , pr ∈ K, such that K ⊆
∪
D(pi, δ(pi)). For each i we have a function

ϕi : Rn −→ [0, 1] such that ϕi(x) = 0, x ∈ D(pi, δ(pi)) and ϕ(y) = 1, y ̸∈ D(pi, 2δ(pi)). Then the function

ψ(x) = 1− ϕ1(x) · · ·ϕr(x)

has the required properties. �

Claim 2. There exist a continuous proper function16 ϕ : U −→ [0,∞).

Proof. Since Rn is homeomorphic to the open ball B(0, 1) (Exercise 4.14, Chapter 0) and the composi-

tion of a proper continuous function with a homeomorphism is still proper, we can assume that U ⊆ B(0, 1).

For x ∈ U , define d(x) to be the distance of x to the boundary of U . Then d : U −→ R is a positive continuous

function. Consider ϕ : U −→ [0,∞), ϕ(x) = d(x)−1. Then ϕ is continuous and for all n ∈ N, ϕ−1[0, n] is a

closed bounded set in U , hence compact. So ϕ is proper. �

We will now prove the Theorem. Consider a proper function ϕ : U −→ [0,∞) and set

An = ϕ−1[n, n+ 1], Wn = ϕ−1(n− 1

2
, n+

3

2
).

Then An is compact and therefore may be covered with a finite number of balls Bk,n such that each disk

Dk.n := Bk,n is contained in some Vα∩Wn. For each such disk we have a smooth function ϕk,n : U −→ [0, 1]

vanishing outside Vα ∩Wn and identically 1 in Dk,n. It is clear from the construction that the An’s cover

U and so, for all x ∈ U , there is at least one of the ϕn.k’s not vanishing at x. Also Wn ∩Wn+2 = ∅ so the

supports of the ϕn,k are a locally finite covering and
∑
k,n ϕk,n(x) <∞, ∀x ∈ U . So the family of functions

λn,k =
ϕn,k∑
i,j ϕi,j

is a well defined partition of unity dominated by the covering Vα. �

6.3. Remark. Observe that the partition of unity we constructed is a countable set of smooth functions.

We shall prove now that a continuous function may be approximate by a smooth function, homotopic

to it. The proof is a good example of how to use partition of unity.

16A function is proper if the inverse image of a compact set is compact.
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6.4. Theorem. Let U ⊆ Rn be an open set and let F : U −→ W ⊆ Rm be a continuous function which

is smooth on a closed subset N ⊆ U . Then, given a real valued positive continuous function δ : U −→ R
there exists a smooth function G : U −→ W such that ∥F (x) − G(x)∥ < δ(x), ∀x ∈ U and F (x) = G(x) if

x ∈ N . Moreover G ∼ F .

Proof. We recall that F smooth on N means that for all x ∈ N there exists a neighborhood Vx of

x and a smooth extension hx of F |[Vx∩N ]. For x ∈ U we consider a neighborhood Vx of x and a function

hx : Vx −→ R with the following conditions:

(1) F (Vx) is contained in a subset of an open ball contained in W .

(2) If x ∈ N, hx is a smooth extension of F |[Vx∩N ] and ∥hx(y)− F (x)∥ < δ(x)

2
.

(3) If x ̸∈ N, Vx ∩N = ∅ and hx(y) = F (x), ∀y ∈ Vx.

(4) ∀y ∈ Vx, ∥F (y)− F (x)∥ < δ(x)

2
< δ(y).

Consider a smooth partition of unity, λi, dominated by the covering Vx. Then ∀ i there exists x = x(i)

with supp(λi) ⊆ Vx(i). For every i fix such a x(i) and set

G(z) =
∑
i

λi(z)hx(i)(z).

Then G is a smooth function since in a neighborhood of a point G is a finite sum of smooth functions.

Let z ∈ N and λi1 , . . . λik be the functions of the partition which do non vanish at z. Then hx(ij) is an

extension of F , hence equal, in z, to F (z). Hence G(z) = F (z) and G is an extension of F |N .

Let y ∈ U \N . If λi(y) ̸= 0, y ∈ supp(λi) ⊆ Vx(i). Hence ∥F (y)− hx(i)∥ < δ(x(i))/2. Hence

∥F (y)−G(y)∥ = ∥
∑
i

λi(y)F (y)−
∑
i

λihx(i)(y)∥ ≤
∑
i

λi(y)∥F (y)− hx(i)(y)∥ <
δ(x(i))

2
< δ(y).

Finally H(x, t) = tF (x) + (1− t)G(x) is the required homotopy (observe that, by (1), H(x, t) ∈W ).

�

6.5. Corollary. If two smooth maps F,G : U −→ W are homotopic via a continuous homotopy, then

they are homotopic via a smooth one.

7. Exercises

7.1. Prove that the tensor product of tensors is associative and distributive.

7.2. Prove that ω ∈ Ep is an exterior form if and only if

ω(x1, . . . , xi, . . . , xj , . . . xp) = −ω(x1, . . . , xj , . . . , xi, . . . xp).

7.3. Prove that the exterior product is distributive with respect to the sum.

7.4. Complete the proof of Proposition 1.20.

7.5. Prove that ϕ1, . . . , ϕp ∈ E∗ are linearly independent if and only if ϕ1 ∧ · · · ∧ ϕp ̸= 0.

7.6. Prove that two sets of linearly independent elements of E∗, {ϕ1, . . . , ϕp} and {ψ1, . . . , ψp} span the

same subspace of E∗, if and only if ϕ1 ∧ · · · ∧ ϕp = d ψ1 ∧ · · · ∧ ψp, d ∈ R. In this case, d is the determinant

of the matrix that gives the change of basis for the subspace.
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7.7. Let ω ∈ Λ∗(E), ω =
∑n

0 ωi, ωi ∈ Λi(E). Prove that ω is invertible in Λ∗(E)17 if and only if ω0 ̸= 0.

7.8. Let E be a n-dimensional vector space. Let π : E∗ × · · · × E∗ −→ Λp(E) be the p-linear extension

of (ϕ1, . . . , ϕp) −→ ϕ1 ∧ · · · ∧ ϕp. Prove that the following universal property of the exterior algebra holds:

• (UP∧) If K is a vector space and b : E∗ × · · · × E∗ −→ K is an alternated p-linear map, then there

exists a unique linear map l : Λp(E) −→ K such that l ◦ π = b.

7.9. Prove that the universal property (UP∧) characterizes Λp(E) i.e., given a vector space L and a

p-linear map π̃ : E∗ × · · · × E∗ −→ L such that (π̃,L) verifies UP∧, then L ∼= Λp(E).

7.10. Prove that Λp(E∗) ∼= [Λp(E)]∗.

7.11. Let E be a n-dimensional vector space and let {ϕ1, . . . , ϕn} be a basis for E∗. Define

Φ : E −→ Λn−1(E), Φ(x1)(x2, . . . , xn) = det[ϕi(xj)].

(1) Prove that Φ is an isomorphism.

(2) Let {e1, . . . , en} ⊆ E be the dual basis. Prove that Φ(e1) = ϕ2 ∧ · · · ∧ ϕn.

7.12. Let v ∈ Λn(E) \ {0}. Define a map:

bv : Λ
p(E)× Λ(n−p)(E) −→ R, bv(ω, τ)v := ω ∧ τ.

(1) Prove that bv is non degenerate and hence defines an isomorphism b̃v : Λ
p(E) −→ [Λ(n−p)(E)]∗.

(2) For p = 1 relate the map b̃v with the map Φ of exercise 7.11.

7.13. A form ω ∈ Λp(E) is decomposable if ω = ϕ1 ∧ · · · ∧ ϕp, ϕi ∈ E∗. By Proposition 1.20, any p-form

is a sum of decomposable forms.

(1) Show that, if dim(E) = n, any (n− 1)-form is decomposable (hint: see exercise 7.11).

(2) Show that, if dim(E) = 4 and {ϕ1, . . . , ϕ4} is a basis of E∗, then ϕ1∧ϕ2+ϕ3∧ϕ4 is not decomposable.

7.14. Let ϕ1, . . . , ϕr ∈ E∗ be linearly independent. Let ψ1, . . . , ψr ∈ E∗ be such that
∑
i ϕi ∧ ψi = 0.

Prove that ψi =
∑
j aijϕj with aij = aji.

7.15. Let E be a n-dimensional vector space. A vector space G(E), with an associative product denoted

by ∧, is called a Grassman algebra for E if

(1) G(E) contains a subspace isomorphic to R⊕ E and is generated, as an algebra, by this subspace,

(2) 1 ∧ x = x, x ∧ x = 0, ∀x ∈ E,
(3) dim(G(E)) = 2n.

Prove that G(E) is isomorphic, as an algebra, to Λ∗(E∗).

7.16. Prove, using the functorial properties, that if L : E −→ F is an isomorphism, L∗ : Λ∗(F) −→ Λ∗(E)
is an isomorphism (see Remark 1.24).

17i.e. there exists ω−1 ∈ Λ∗(E) such that ω ∧ ω−1 = 1.
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7.17. Let ϕ ∈ E∗ \ {0} and ω ∈ Λp(E). Show that, if ϕ ∧ ω = 0, then there exists τ ∈ Λp−1 such that

ω = ϕ ∧ τ . Conclude that the sequence:

· · · −→ Λp−1(E) ϕ∧−→ Λp(E) ϕ∧−→ Λp+1(E) −→ · · ·

is exact. Hint: choose a basis containing ϕ.

7.18. Prove directly, i.e. without using Theorem 3.13, Proposition 3.14.

7.19. Let L be a finite dimensional real Lie algebra, i.e. a finite dimensional real vector space with a

bi-linear map [ , ] : L× L −→ L, (X,Y ) −→ [X,Y ] such that, ∀ X,Y, Z ∈ L we have:

(1) [X,Y ] = −[Y,X],

(2) [[X,Y ]Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).

Define a map dp : Λp(L) −→ Λp+1(L),

dp(ω)(X1, . . . , Xp+1) =
∑
i<j

(−1)i+jω([Xi, Xj ], X1 . . . , X̂i, . . . , X̂j , . . . , Xp+1).

Show, at least for p = 1, that dp+1 ◦ dp = 0. In particular the sequence {Λp(L),dp} is a cochain complex

and its cohomology is called the cohomology of the Lie algebra L.

7.20. Let E = {{0} −→ En −→ · · · −→ E0 −→ {0}} be a chain complex. Assume that the Ei’s are finite
dimensional and let Hi be the homology groups of the complex. Prove that

χ(E) :=
n∑
0

(−1)i dim(Ei) =
n∑
0

(−1)i dim(Hi).

χ(E) is called the Euler characteristic of the complex.

7.21. Let E ,F be chain complexes as in Exercise 7.20, and let ϕ : E −→ F be a morphism. Prove that:

λ(ϕ) :=
∑

(−1)itrace(ϕi) =
∑

(−1)itrace(ϕ∗,i).

λ(ϕ) is called the Leftchetz number of ϕ (this number is of great importance in fixed point theory).

7.22. Show that the (algebraic) Mayer-Vietoris sequence (Theorem 3.17) is exact and the (co)boundaries

are natural (Proposition 3.21).

7.23. Show that the Mayer-Vietoris sequence for the reduced cohomology (see Definition 5.2) is exact.

7.24. Give details of the proof of Proposition 2.12.

7.25. Use Example 4.15 and Remark 4.16 to prove the Theorem of invariance of dimension:

Theorem: If h : Rn −→ Rm is a homeomorphism, then n = m.

7.26. Redo the computations in Example 4.15, using reduced cohomology.

7.27. Prove the Claim in Remark 4.16

7.28. Consider the points pi = (0, . . . , 0, i) ∈ Rn, i = 1, . . . , 25. Compute H̃k(Rn \ {p1, . . . , p25}.
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7.29. Let U ⊆ Rn be an open set and let ω ∈ Ω1(U) be a closed 1-form such that ω(x) ̸= 0, ∀x ∈ U .

Consider a smooth function f : U −→ R and the 1-form τ = fω. Prove that τ is closed if and only if there

exists a function g : U −→ R such that df = gω.

7.30. Let U = {(x, y) ∈ R2 : x > 0}.

(1) Consider τ = −yx−2dx + x−1dy ∈ Ω1(U). Prove that τ is exact and find a function f : U −→ R
such that τ = df .

(2) Consider ω = −y(x2+y2)−1dx+x(x2+y2)−1dy ∈ Ω1(U). Prove that ω is exact and find a function

g : U −→ R such that ω = dg.

Remark. The form ω is defined in W = R2 \ (0, 0). It is closed but not exact in W (see next Chapter).

7.31. Let U ⊆ Rn be an open set and v = dx1 ∧ · · · ∧ dxn be the volume form. We will identify vectors

fields and 1-forms via the “musical isomorphisms” ♭ : H(U) −→ Ω1(U) and its inverse ♯ : Ω1(U) −→ H(U).

Also ∗ will denote the Hodge operator. We define the classical differential operators of calculus:

• The gradient ∇ : F(U) −→ H(U), ∇f := ♯df =
∑ ∂f

∂xi

∂

∂xi
.

• The divergence div : H(U) −→ F(U), div

(∑
Xi

∂

∂xi

)
=

∑ ∂Xi

∂xi
.

• The (geometers) Laplacian ∆ : F(U) −→ F(U), ∆f = −div∇f .
• The rotational rot : Ω1(U) −→ Ωn−2(U) rot ω = ∗dω.

.

Prove that:

(1) ∆f = −d ∗ (df) = −
n∑
1

∂2f

∂x2i
.

(2) ∆(fg) = g∆f + f∆g − 2⟨∇f,∇g⟩.
(3) ω is closed if and only if rot ω = 0.

(4) rot ∇f = 0.

(5) If n = 3 compute rot
∑

Xi
∂

∂xi
and show that div rot ω = 0.

7.32. Let U ⊆ Rn be an open set. Show that Hn(U) = {0} if and only if ∀ f ∈ F(U) there exists a

vector field X ∈ H(U) such that divX = f .

Remark: It can be shown that the Laplacian ∆ : F(U) −→ F(U) is surjective (this is a non trivial

fact). In particular the equation divX = f has a solution ∀ f ∈ F(U). Hence Hn(U) = {0}.

7.33. Identify R2 with the complex line C, (x, y) −→ x + iy, i =
√
−1. If U ⊆ R2 is an open set and

f : U −→ C, we will write f(z) := f(x, y) = u(x, y) + iv(x, y), u, v ∈ F(U). f is said to be holomorphic if it

is C1 and
∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
(Cauchy-Riemann equations).

It can be shown that a holomorphic function is smooth, and, even more than that, complex analytic, i.e. it

is locally the sum of its (complex) Taylor series.

(1) Show that the Cauchy-Riemann equations just say that the differential df(z) : R2 −→ R2 is C-linear
(i.e. commutes with multiplication by i =

√
−1).
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(2) Define complex 1-forms:

dz := dx+ idy, fdz := (u+ iv)dz := (udx− vdy) + i(udy + vdx).

and the complex derivative f ′(z) by the identity f ′(z)dz = df . Prove that f is holomorphic if and

only if the real and imaginary parts of fdz are closed. In this case f ′(z) =
∂u

∂x
− i

∂u

∂y
.

(3) Prove that if f = u + iv is holomorphic, then u, v : U −→ R are harmonic functions (i.e. ∆u =

∆v = 0).

(4) Show that, if U is star shaped, given a harmonic function u : U −→ R, there exists a harmonic

function v : U −→ R such that f(x, y) = u(x, y)+iv(x, y) is holomorphic. The function v is unique,

up to an additive constant (if U is connected), and is called the harmonic conjugate of u.

7.34. Let E be a real m-dimensional inner product vector space and J : E −→ E an isometry such that

J2 = −11.

(1) Prove that the dimension of E is even, say m = 2n, and J induces a structure of complex vector

space on E.
(2) Prove that there exist orthonormal vectors {e1, . . . , en} ⊆ E such that the set {ei, J(ei), i = 1, . . . n}

is an orthonormal basis for E.
(3) Prove that ω(x, y) := ⟨x, J(y)⟩ is an exterior form.

(4) Let ϕi = ♭ei, ψi = ♭J(ei). Prove that ω = −
∑
ϕi ∧ ψi.

(5) Prove that ωn = (−1)nn! ∗ 1

7.35. Let U ⊆ Rn be an open. Let {X1, . . . , Xn} ⊂ H(U) be vector fields linearly independent at every

point of U and let {ω1, . . . , ωn} ⊆ Ω1(U) be the dual basis. Consider the k-dimensional distribution D

spanned by {X1, . . . , Xk} (see Definition 3.27 of Chapter 0).

Let ω ∈ Ω∗(U), ω =
∑
ωl, ωl ∈ Ωl(U). We will say that ω annihilates D, if ωi(V1, . . . , Vi) = 0

whenever the vectors are in D. Define the annihilator of D,

I(D) = {ω ∈ Ω∗(U) : ω annihilates D}.

(1) Prove that I(D) is an ideal of Ω∗(U).

(2) Prove that I(D) is generated (as an algebra) by {ωk+1. . . . , ωn}.
(3) Prove that an ideal of Ω∗(U) is generated by n− k linearly independent 1-forms if and only is it is

the annihilator of a (unique) k-dimensional distribution.

(4) Prove that the distribution D is involutive if and only if for ω ∈ I(D), dω ∈ I(D). In this case the

ideal I(D) is called a differential ideal.



CHAPTER 2

Integration and the singular homology of open sets of Rn

In Remark 1.8 of Chapter 1, we observed that p-forms are “p-dimensional (oriented) volume elements”

and hence the natural integrands for the (oriented) multiple integrals. In this Chapter we will make this

statement precise, we will introduce the singular homology of open sets in Rn and see how integration gives

a duality between singular homology and the de Rham cohomology.

1. Integration on singular chains and Stokes Theorem

1.1. Definition. Let U ⊆ Rn be an open set and ω = f(x)dx1 ∧ · · · ∧ dxn ∈ Ωn(U). Let D ⊆ U be the

closure of an open bounded set. We define∫
D

ω =

∫
D

f(x1, . . . , xn)dx1 · · · dxn,

where the integral on the right hand side is the usual Riemann integral.

1.2. Remark. The integral defined above is “oriented” in the sense that if ωσ = f(x)dxσ(1) ∧ · · · ∧
dxσ(n), σ ∈ Σ(n), then ∫

D

ω = |σ|
∫
D

ωσ.

In particular the integral depends on the ordering of the coordinates, i.e., it depends on the choice of an

orientation in Rn, while the usual Riemann integral of a function does not depend on such a choice (see also

Exercise 7.3).

In order to define the integral of a p-form, we first define the “domain of integration”.

1.3. Definition.

• A p-simplex in Rn is the convex hull1 of (p+ 1) points {v0, . . . , vp} ⊂ Rn in general position2. The

points vi are called the vertices of the simplex. Such a simplex will be denoted by [v0, . . . , vp]. Any

subset of q + 1 (distinct) vertices determines a q-simplex called a face of the original one.

• Let {e1, . . . , ep} be the canonical basis of Rp and e0 = 0. The standard p-simplex, ∆p ⊂ Rp is the

simplex with vertices {e0, e1, . . . , ep}.
• A differentiable (or smooth) singular p-simplex in U is a smooth map σ : ∆p −→ U (i.e. σ extends

to a smooth map of an open neighborhood of ∆p) . If it is clear from the context we shall omit the

term differentiable.

1We recall that the convex hull of a subset of Rn is the smallest convex set that contains the given set. More precisely, it

is the intersection of all convex sets that contain the given set.
2The points {v0, . . . , vp} are in general position if they are not contained in any affine subspace of dimension less than p.

This is equivalent to the fact that the vectors {vi − v0 : i = 1, . . . p} are linearly independent.

59
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1.4. Remark. Given a p-simplex [v0, . . . , vp], a point v in the simplex can be written in a unique way

in the form v =
∑p
i=0 λivi with λi ∈ [0, 1] ⊂ R and

∑p
i=0 λi = 1. The numbers λi are the barycentric

coordinates of v. The barycenter of of the simplex is the point b = (p+ 1)−1
∑p

0 vi (see Exercise 7.1).

1.5. Example. An important example of a singular simplex is the following: Let {v0, . . . , vp} be points

of Rn, not necessarily in general position. Define L(v0, . . . , vp) to be the singular simplex of Rn that maps

the point of ∆p with barycentric coordinates {λ0, . . . , λp} to the point
∑p
i=0 λivi ∈ Rn. This simplex will

be called the linear simplex with vertices {v0, . . . , vp}.

1.6. Definition. Let ω ∈ Ωp(U) be a differential p-form and σ : ∆p → U a singular p-simplex. We

define the integral of ω over σ as ∫
σ

ω :=

∫
∆p

σ∗ω,

where the integral on the right hand side is in the sense of Definition 1.1.

1.7. Example. If f ∈ F(U) is a smooth function, i.e. a 0-form, and let p be a point in U , i.e. a

0-simplex. Then the integral of the form on the simplex is just f(p).

1.8. Example. If ω =
∑
ωidxi ∈ Ω1(U) is a 1-form and σ : ∆1 −→ U a smooth 1-simplex, then

σ∗ω = ω̃(t)dt, with ω̃(t) = σ∗ω(t)(1) = ω(σ(t))(dσ(t)(1)) = ω(σ(t))(σ̇(t)) =
n∑
i=1

ωi(σ(t))σ̇i(t),

where σi(t) = ⟨σ(t), ei⟩ is the ith coordinate of σ. Hence∫
σ

ω =

∫ 1

0

[
n∑
i=1

ωi(σ(t))σ̇i(t)

]
dt.

The fundamental result in the elementary integration theory is Stokes Theorem. It relates the integral

of a p-form on a domain to the integral of a primitive on the boundary. For p = 1 Stokes Theorem is just

the fundamental Theorem of calculus∫ b

a

df =

∫
∂[a,b]

f = f(b)− f(a) (see Example 1.7).

We will define now the ingredients necessary to state this Theorem in higher dimensions. We start by

introducing more general domains of integration for a p-form.

1.9. Definition. A singular p-chain is a (formal, finite) linear combination of singular p-simplices in U ,

with real coefficients. The set Cp(U) of all such p-chains is a real vector space, with the obvious operations.

If ω ∈ Ωp(U), c ∈ Cp(U), c =
∑
aiσi, we define the integral of ω on c by:

I(c, ω) :=

∫
c

ω :=
∑

ai

∫
σi

ω.

Next we have to define the boundary of a p chain. Intuitively, the boundary of a singular simplex will

be the restriction of the simplex to the boundary of the standard p-simplex ∆p (which is a chain and not a

simplex). More precisely
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1.10. Definition. The boundary operator ∂p : Cp(U) −→ Cp−1(U) is defined as the linear extension of

∂p σ :=

p∑
0

(−1)iσ ◦ Fi,

where σ is a singular p-simplex and Fi : ∆
p−1 −→ ∆p is the linear simplex Fi = L(e0, . . . , êi, . . . , ep).

1.11. Remark. The signs in the definition above guarantee that the (p− 1) faces of ∆p are taken with

the induced orientations.

1.12. Example. For a linear simplex, we have the formula

∂pL(v0, . . . , vp) =

p∑
i=0

(−1)iL(v0, . . . , v̂i, . . . , vp).

In our context we have the following version of the classical Stokes Theorem:

1.13. Theorem. [Stokes Theorem] If c ∈ Cp+1(U), ω ∈ Ωp(U), then

I(∂c, ω) :=

∫
∂c

ω =

∫
c

dω := I(c,dω).

Proof. By linearity, it is sufficient to prove the Theorem when c is a singular simplex σ : ∆p+1 −→ U .

In this case ∫
σ

dω =

∫
∆p+1

σ∗dω =

∫
∆p+1

dσ∗ω

(see Theorem 2.9 of Chapter 1 for the last equality). Also∫
∂σ

ω =

∫
∂∆p+1

σ∗ω,

where ∂∆p+1 is the linear chain
∑p+1
i=0 (−1)iL(e0, . . . , êi, . . . ep+1) ∈ Cp(∆

p+1).

Now η := σ∗ω =
∑
i fi(x1, . . . , xp+1)dx1 ∧ · · · ˆdxi · · · ∧ dxp+1. Again by linearity, it is sufficient to prove

the Theorem for each monomial. Since we can permute coordinates, up to sign, it is not restrictive to assume

η = f(x1, . . . , xp+1)dx1 ∧ · · · ∧ dxp.

Then:

dη = (−1)p
∂f

∂xp+1
dx1 ∧ · · · ∧ dxp+1.

Hence, by Fubini’s Theorem∫
∆p+1

dη = (−1)p
∫
∆p+1

∂f

∂xp+1
dx1 · · ·dxp+1 = (−1)p

∫
∆p

[∫ 1−
∑p

i xi

0

∂f

∂xp+1
dxp+1

]
dx1 · · · dxp =

= (−1)p
∫
∆p

[
f(x1, . . . , xp, 1−

p∑
i=1

xi)− f(x1, . . . , xp, 0)

]
dx1 · · ·dxp,

where ∆p is the standard simplex {e0, . . . ep} ⊆ Rp ⊆ Rp+1.

Now ∂∆p+1 = L(e1, . . . ep+1) + (−1)p+1L(e0, . . . , ep) + γ where γ is a chain of linear simplices that are

faces of ∆p+1 containing both e0 and ep+1. Since on each of such faces at least one of the first p coordinates

vanishes, η = 0 on γ. Hence:∫
∂∆p+1

η =

∫
L(e1,...ep+1)

η + (−1)p+1

∫
L(e0,...ep)

η =
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= (−1)p
∫
∆p

f(x1, . . . , xp, 1−
p∑
i=1

xi)dx1 · · · dxp + (−1)p+1

∫
∆p

f(x1, . . . , xp, 0)dx1 · · ·dxp =
∫
∆p+1

dη.

�

2. Singular homology

We will now look a little deeper into the boundary operator.

2.1. Lemma. ∂(p−1) ◦ ∂p = 0.

Proof. Let σ be a singular simplex. From Example 1.12 we have

∂p(σ) =

p∑
i=0

(−1)iσ ◦ L(e0, . . . , êi, . . . , ep).

Therefore:

∂(p−1)∂p(σ) =

p∑
i=0

(−1)i
∑
j<i

(−1)jσ ◦ L(e0, . . . , êj , . . . , êi, . . . , ep)+

+

p∑
i=0

(−1)i
∑
j>i

(−1)(j−1)σ ◦ L(e0, . . . , êi, . . . , êj , . . . , ep).

Note that the term σ ◦L(e0, . . . , êi, . . . , êj , . . . , ep), i, j fixed, appears twice in the above sum with opposite

signs, and therefore ∂(p−1)∂p(σ) = 0.

�

In particular the sequence:

· · · −→ C(p+1)(U)
∂(p+1)−→ Cp(U)

∂p−→ C(p−1)(U)
∂(p−1)−→ · · · ,

is a chain complex and we define:

• Zp(U) := ker ∂p the group of p-dimensional cycles.

• Bp(U) := Im ∂(p+1) the group of p-dimensional boundaries.

• Hp(U) := Zp(U)/Bp(U) the pthdimensional (singular smooth) homology group.

From Stokes Theorem 1.13 we get

2.2. Theorem. If a ∈ Zp(U), I(a,dω) = 0. If σ ∈ Zp(U), I(∂b, σ) = 0. Therefore I : Cp(U)×Ωp(U) →
R induces a bilinear map

Ĩ : Hp(U)×Hp(U) −→ R, Ĩ([c], [ω]) := I(c, ω).

2.3. Remark. The classical Theorem of de Rham states that the linear map induced by Ĩ,

dRU : Hp(U) −→ [Hp(U)]∗, dRU ([ω])([c]) =

∫
c

ω,

is an isomorphism, called de de Rham isomorphism. We will prove this Theorem in the next section.
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Let F : U ⊆ Rn → V ⊆ Rm be a smooth map. Then F induces a linear map F∗ : Cp(U) −→ Cp(V ),

obtained by extending by linearity the map which sends a singular simplex σ : ∆p −→ U to the singular

simplex F ◦ σ : ∆p → V . It is easy to check that F∗ commutes with the boundary operator and hence it is

a morphism between chain complexes. Therefore it induces a morphism in homology, that we will denote

with the same symbol,

F∗ : Hp(U) −→ Hp(V ).

The following functorial properties are easily established3

• (11U )∗ = 11Hp(U),

• (G ◦ F )∗ = G∗ ◦ F∗.

An important feature of the de Rham map is that it is natural, in the following sense:

2.4. Proposition. Let F : U −→ V be a smooth map. Then

[F∗]
∗(dRV (ω)) = dRU (F

∗ω).

Proof. Let σ ∈ Cp(U), ω ∈ Ωp(V ). Then∫
F◦σ

ω =

∫
σ

F ∗ω

(essentially by definition), and the conclusion follows. �

Now we will look at some examples that are the analogues, for homology, of Examples 4.1 4.2, and 4.3

of Chapter 1.

2.5. Example. Let U = R0. Then there is a unique singular p-simplex, the constant one. Its boundary

is the alternated sum of (p+ 1) elements, all equal to the (unique) (p− 1)-simplex. Therefore the boundary

operator is null if p is odd and it is the identity if p is even. The complex of singular chains is given by:

−→ C(2p+1)(U) = R 0−→ C2p(U) = R 11−→ C(2p−1)(U) = R 0−→ · · · 0−→ C0(U) = R −→ {0}.

Therefore:

Hp(R0) ≃

{
R if p = 0

{0} if p > 0

2.6. Remark. It might appear more natural and, in fact, some times more convenient, to define chains

and homology using singular cubes, i.e., smooth maps of the unit cube [0, 1]p ⊆ Rp into U . Since a p-cube

has always an even number of (p − 1)-faces, this construction gives, for U = R0, a chain complex with

p-dimensional chain group R and null boundary operators. The homology is isomorphic R in all dimensions,

something unpleased if we wont the cohomology to be the dual of homology. However if we take the quotient

of the complex of singular cubes by a suitable subcomplex, we obtain a new complex whose homology is the

same as the homology of the complex of singular simplices.

3This means that the homology is a covariant functor from the category of open sets of Rn and smooth maps into the

category of (graded) vector spaces and linear maps.
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2.7. Example. Let U =
⨿
α Uα be the disjoint union of the open sets Uα. Since ∆p is connected, the

image of a singular simplex is contained in some Uα. Therefore Cp(U) =
⊕

α Cp(Uα) (direct sum) and the

boundary maps preserve the decomposition, i.e. if c = {cα}, ∂c = {∂cα}. It follows that

Hp(U) ∼=
⊕
α

Hp(Uα).

2.8. Remark. We observe explicitly that we are dealing with finite linear combinations of simplices,

hence we have a direct sum instead of a direct product, as in the case of cohomology. Furthermore, this is

in agreement with the de Rham Theorem 2.3, since the dual of the direct sum of vector spaces is the direct

product of the duals.

2.9. Example. Let us analyze the 0-dimensional homology. Let us suppose first that U is connected.

A singular 0-simplex is a constant map, i.e. a point in U . Such a simplex is a cycle, by definition. On the

other hand, given two points in U they can be joined by a smooth curve, i.e. a 1-simplex4. The boundary of

such simplex is the difference of the two points, so the two points are in the same homology class. It follows

that H0(U) ∼= R. Also, as in the case of cohomology, if U ⊆ Rn, V ⊆ Rm are connected open sets and

F : U −→ V is a smooth map, the induced map F∗ : H0(U) −→ H0(V ) is an isomorphism.

If U is not connected, let us say with connected components Uα, it follows from Example 2.7 that

H0(U) ∼=
⊕
α

R.

Next we will prove the homotopy invariance for homology:

2.10. Theorem. Let F,G : U → V be homotopic smooth maps. Then F∗ = G∗.

Proof. Let H : U × [0, 1] → V be a homotopy between F and G. We will construct an algebraic

homotopy between the induced maps, i.e. a map H̃p : Cp(U) −→ C(p+1)(V ) such that

(3) ∂ ◦ H̃(σ) = G∗(σ)− F∗(σ)− H̃ ◦ ∂σ.

The Theorem then follows since if c ∈ Zp(U), G∗(c)− F∗(c) ∈ Bp(V ), i.e. [G∗(c)] = [F∗(c)] in Hp(V ).

Consider the product ∆p × [0, 1] ⊂ Rp+1. If σ is a singular p-simplex of U , we consider the map

H ◦ (σ × 11) : ∆p × [0, 1] −→ V . The problem is that ∆p × [0, 1] is not a simplex5. The strategy will be to

subdivide ∆p × [0, 1] into simplices and to take a suitable alternated sums of the restrictions of H ◦ (σ × 11)

to such simplices.

Consider vi = (ei, 0), wi = (ei, 1), and the linear (p+1)-simplices L(v0, . . . , vi, wi, . . . wp). If σ : ∆p −→ U

is a singular p-simplex, we define

H̃(σ) =

p∑
i=0

(−1)iH ◦ (σ × 11) ◦ L(v0, . . . , vi, wi, . . . , wp) ∈ Cp+1(V ).

Extending the formula by linearity we get a morphism H̃ : Cp(U) −→ Cp+1(V ).

4A connected open set U ⊆ Rn is path connected.
5This is a case in which would be more convenient to work with singular cubes instead that simplices since the product of

two cubes is a cube (Remark 2.6).
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We observe that, geometrically, the left hand side of equation (3) is the restriction of σ × 11 to the

boundary of the prism ∆p × [0, 1] while the right hand side is, with appropriate signs, the restriction of

σ × 11 to the bases of the prism, ∆ × {0, 1}, essentially G∗(σ) − F∗(σ), plus the restriction of σ × 11 to the

“lateral faces” ∂∆p×[0, 1]. So “morally” H̃ is an algebraic homotopy. Formally, using 1.12 and the functorial

properties, we get:

∂H̃(σ) =
∑
i

∑
j≤i

(−1)i(−1)jH ◦ (σ × 11) ◦ L(v0, . . . , v̂j , . . . , vi, wi, . . . wp)+

+
∑
i

∑
j≥i

(−1)i(−1)j+1H ◦ (σ × 11) ◦ L(v0, . . . , vi, wi, . . . , ŵj , . . . , wp).

For i = j the terms on the right hand side cancel except for

H ◦ (σ × 11) ◦ L(v̂0, w0, . . . , wp) = G ◦ σ and −H ◦ (σ × 11) ◦ L(v0, . . . , vp, ŵp) = −F ◦ σ.

The rest of the sum is the opposite of

∑
i

∑
j<i

(−1)i−1(−1)jH ◦ (σ × 11) ◦ L(v0, . . . , v̂j , . . . , vi, wi, . . . wp)+

+
∑
i

∑
j>i

(−1)i(−1)jH ◦ (σ × 11) ◦ L(v0, . . . , vi, wi, . . . , ŵj , . . . , wp) = H̃∂(σ).

Hence H̃ is then an algebraic homotopy. �

From Theorem 2.10 and the funtorial properties we have

2.11. Corollary. If F : U −→ V is a homotopy equivalence, then F∗ : Hp(U) → Hp(V ) is an

isomorphism. In particular, a contractible space has the same homology as R0.

2.12. Remark. As in the case of cohomology, the homotopy invariance allows us to define the map

induced in homology by a continuous map (see Remark 4.10 in Chapter 1).

We also have a Mayer-Vietoris exact sequence for homology. Let Ui ⊆ Rn, i = 1, 2 be open sets and

define U = U1 ∪ U2, V = U1 ∩ U2. Consider the sequence of chain complexes

{0} −→ Cp(V )
((j1)∗,(j2)∗)−→ Cp(U1)⊕ Cp(U2)

((k1)∗−(k2)∗)−→ Cp(U) −→ {0},

where ji : V → Ui, ki : Ui → U are the inclusions and the boundary maps are the obvious ones.

We would like to proceed like in the case of cohomology. The problem we have here is that the sequence

above is not exact. More precisely, ((k1)∗ − (k2)∗) is not surjective, since a chain in U might not be the sum

of chains in Ui. To overcome this problem, we consider the chain complex Cp(U1 +U2) ⊆ Cp(U) spanned by

the singular simplices of U1 and U2. Substituting Cp(U) with this complex, we have a short exact sequence

of chain complexes. The point that makes this idea work is the following result

2.13. Theorem. [Small simplices Theorem] The inclusion Cp(U1 + U2) −→ Cp(U) induces an isomor-

phism in homology.
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The proof requires some new constructions and we will give it in the Appendix in order not to interrupt

the flow of our discussion.

Using Theorem 2.13 and Theorem 3.17 of Chapter 1, we deduce, as for cohomology

2.14. Theorem. There are linear maps ∆∗,p : Hp(U) −→ H(p−1)(V ) such that the sequence

· · · −→ Hp(V )
((j1)∗,(j2)∗)−→ Hp(U1)⊕Hp(U2)

((k1)∗−(k2)∗)−→ Hp(U)
∆∗,p−→ H(p−1)(V ) −→ · · ·

is a (long) exact sequence. Again, we will often write ∆∗ or ∆p for ∆∗,p.

2.15. Definition. The exact sequence above is called the Mayer-Vietoris sequence for singular homology

and the maps ∆∗, the Mayer-Vietoris boundary operators.

2.16. Remark. As in the case of cohomology (Remark 4.14), we can give an explicit description of

the maps ∆∗ : Hp(C∗(U1 + U2)) −→ Hp−1(U1 ∩ U2). Let c1 + c2 be a p-cycle in Cp(U1 + U2). Then

∂(c1 + c2) = 0, hence ∂c1 = −∂c2 ∈ Cp−1(U1 ∩ U2). Moreover ∂∂c1 = 0 hence ∂c1 defines a homology class

[∂c1] ∈ Hp−1(U1 ∩U2). Then ∆([c1 + c2]) = [∂c1]. We leave to the interested reader the task of proving this

claim. It is also clear, from this interpretation, that ∆∗ commutes with morphisms induced by smooth maps.

3. The de Rham Theorem for open sets of Rn

Let U ⊆ Rn be an open set. As we have seen, integration induces a linear map:

dR : Hp(U) −→ [Hp(U)]∗, dR([ω])([c]) =

∫
c

ω.

We have already announced that this map is an isomorphism and the aim of this section is to prove this

fact. We will start with a Lemma, known as the Mayer Vietoris argument, useful in several situations.

3.1. Lemma. [Mayer Vietoris argument]6 Let U ⊆ Rn be an open set and P a statement about the open

subsets V ⊆ U . Suppose that:

(1) P is true for open convex sets,

(2) If P is true for disjoint sets, then it is true for their union,

(3) If P is true for two sets and for their intersection, then it is true for their union.

Then P is true for U .

Proof. First we observe that P is true for the union of n convex sets. In fact, for n = 2 this follows

from (3) observing that the intersection of two convex sets is convex. Suppose that P is true for the union

of (n− 1) convex sets. Let V1, . . . , Vn be convex sets and V = V1 ∪ . . . ∪ V(n−1). Then P is true for Vn and,

by the inductive hypothesis, for V . But it is also true for V ∩ Vn since

V ∩ Vn = (V1 ∩ Vn) ∪ . . . ∪ (V(n−1) ∩ Vn)

is the union of (n− 1) convex sets. From (3), P is true for the union of all the Vi’s.

Let ϕ : U −→ [0,∞) be a proper function (see Claim 2. in the proof of Theorem 6.2, Chapter 1). Define:

An = ϕ−1([n, n+ 1]).

6The lemma is also called the onion lemma and the reason for this will be clear from the proof (see [2]).
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Since ϕ is proper, An is compact and we can cover it with a finite number of open convex sets, Uk,n, contained

in ϕ−1
(
(n− 1

2 , n+ 3
2 )
)
. Let Un = ∪kUk,n. Now P is true for Un, since it is a finite union of convex sets.

Let us consider Ueven = ∪nU2n and Uodd = ∪nU2n+1. Then, by (2), P is true for Ueven and Uodd since

each one is a disjoint union of sets for which P is true. Finally Ueven ∩ Uodd = ∪n,k,hUk,2n ∩ Uh,2n+1 and

therefore it is a disjoint union of sets that are finite unions of convex sets. Therefore, by (3), P is true for

U = Ueven ∪ Uodd. �

We can now prove the de Rham Theorem.

3.2. Theorem. The map dRU : Hp(U) −→ [Hp(U)]∗ is an isomorphism.

Proof. We are going to use Lemma 3.1. Let V ⊆ U be an open set and consider the statement

P(V ) := dRV : Hp(V ) −→ [Hp(V )]∗ is an isomorphism.

Clearly the statement is true for convex sets. In fact they are contractible and we have only to check

the statement in dimension 0, which is trivial. Also, if it is true for a family of disjoint open sets, it is also

true for their union (recall that the dual of the direct sum is the direct product).

Let us suppose that P is true for the open sets V,W and for V ∩W . Consider the diagram:

· · · // Hp(V ∩W ) //

dRV ∩W

��

Hp+1(V ∪W ) //

dRV ∪W

��

Hp+1(V )⊕Hp+1(W ) //

dRV ⊕dRW

��

· · ·

· · · // [Hp(V ∩W ))]∗ // [Hp+1(V ∪W )]∗ // [Hp+1(W )]∗ ⊕ [Hp+1(W )]∗ // · · ·

where the upper row is the Mayer-Vietoris sequence for cohomology and the lower row is the dual of the

Mayer-Vietoris sequence in homology. The latter is exact by Proposition 3.14 of Chapter 1. Since integration

commutes with induced maps (Proposition 2.4), the diagram above are commutative. Since dRV ∩W and

dRV ⊕ dRW are isomorphisms by hypothesis, it follows from the five Lemma (Lemma 3.7 of Chapter 1)

that dRV ∪W is an isomorphism. So P verifies the hypothesis of Lemma 3.1 and hence dR = dRU is an

isomorphism. �

3.3. Remark. Starting with the singular complex C(U) = {Cp(U), ∂p}, we can consider the dual complex

C∗(U) = {Cp(U)∗, ∂∗p} (see Remark 3.12 of Chapter 1). The cohomology of C∗(U) is called the singular

cohomology of U and it is isomorphic, by Theorem 3.13 of Chapter 1, to the dual of the singular homology

of U . So the de Rham Theorem states that the singular cohomology and the de Rham cohomology are

isomorphic. The de Rham cohomology H∗(U) = ⊕p≥0H
p(U) has a natural product, induced by the exterior

product of forms, which is distributive, associative and graded commutative, (see Remark 2.13 of Chapter

1). In the singular cohomology it is possible to introduce, by geometric arguments, a product, also called

the cup product, which is distributive, associative and graded commutative. The de Rham Theorem actually

says that dR, extended by linearity, is an isomorphism of algebras.

3.4. Remark. Singular homology is usually defined by starting with continuous simplices i.e., continuous

maps σ : ∆p −→ U 7. The singular (continuous) chain complex C0(U) = {C0
p(U), ∂p} is defined in the obvious

7Here U can be any topological space.
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way, i.e. the space C0
p(U) is the vector space with basis the singular continuous simplices and the boundary

operator is defined just as in the smooth case. The basic properties, such as homotopy invariance and the

Mayer-Vietoris exact sequence, are also proved just as in the smooth case. The inclusion C(U) −→ C0(U) is a

morphism of chain complexes, so it induces a map between the homology groups. Using the same arguments

as in the proof of the de Rham Theorem, it is easy to prove that the inclusion induces an isomorphism in

homology.

4. Tensor product of vector spaces and the Künneth’s Theorem

A natural problem is the following: given open sets U1 ⊆ Rn and U2 ⊆ Rm find a relation between the

cohomology groups of U1, U2 and U1 × U2 ⊆ Rn × Rm. In order to describe this relation we need some

preliminary algebraic facts. To start with we need a slightly different approach to tensors.

4.1. Definition. Let E,F be two real vector spaces (not necessarily finite dimensional). Consider the

vector space freely generated by {(x, y) : x ∈ E, y ∈ F} and the subspace generated by the elements

• (x1 + x2, y)− (x1, y)− (x2, y), (x, y1 + y2)− (x, y1)− (x, y2), xi ∈ E, yi ∈ F.
• r(x, y)− (rx, y), r(x, y)− (x, ry), x ∈ E, y ∈ F, r ∈ R.

The quotient space is called the tensor product of E and F and will be denoted by E⊗ F. The class of (x, y)

in E⊗ F will be denoted by x⊗ y.

In other words we may think of E ⊗ F as the vector space of finite (formal) linear combinations of

elements of the type x⊗ y with the “calculus rules”

• (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2, ∀x, x1, x2 ∈ E, y, y1, y2 ∈ F
• r(x⊗ y) = rx⊗ y = x⊗ ry ∀x ∈ E, y ∈ F, r ∈ R.

The following facts are easily verified

4.2. Proposition.

(1) E⊗ F ∼= F⊗ E, E⊗ R ∼= E.
(2) (E⊗ F)⊗ P ∼= E⊗ (F⊗ P).
(3) E⊗ (F⊕ P) ∼= E⊗ F⊕ E⊗ P.
(4) If {ei}, {fj} are bases for E,F respectively, then {ei⊗fj} is a basis for E⊗F. In particular, if E, F

are finite dimensional, dim(E⊗ F) = dim(E) dim(F).
(5) If E is finite dimensional, E∗ ⊗ E∗ ∼= E2.

Let π : E× F −→ E⊗ F be the bi-linear extension of π(x, y) = x⊗ y.

4.3. Proposition. The following universal property of the tensor product holds

• (UP⊗) If K is a vector space and b : E× F −→ K, is a bilinear map, then there exists a unique linear

map l : E⊗ F −→ K such that l ◦ π = b.

Proof. Set l(x ⊗ y) = b(x, y). By the “calculus rules”, l extend to a linear map of E ⊗ F into K such

that l ◦ π = b. If l′ : E⊗ F −→ K is a linear map with l′ ◦ π = b, then l′(x ⊗ y) = b(x, y) = l(x ⊗ y). Since

the elements of the type x⊗ y span E⊗ F, we have l = l′. �
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The general philosophy is that objects defined by universal properties are unique.

4.4. Proposition. Let H be a vector space and let π̃ : E × F −→ H be a bi-linear map such that UP⊗
holds for (π̃,H). Then H ∼= E⊗ F.

Proof. From the universal property for π : E× F −→ E⊗ F follows that there is a unique linear map

l : E ⊗ F −→ H such that l ◦ π = π̃. From the universal property of π̃ : E × F −→ H follows that there

is a unique map l′ : H −→ E ⊗ F such that l′ ◦ π̃ = π. Now, l ◦ l′ : H −→ H is such that π̃ ◦ (l ◦ l′) = π̃.

But also π̃ ◦ 11 = π̃. Hence, by uniqueness, (l ◦ l′) = 11. Analogously l′ ◦ l = 11, hence l and l′ are inverse

isomorphisms. �

The important feature of the tensor product is that it allows us to transform a bi-linear problem into a

linear problem, which is, in general, easier to solve.

Let Ei, Fi, i = 1, 2 be vector spaces and let Li : Ei −→ Fi be linear map. We define

L1 ⊗ L2 : E1 ⊗ E2 −→ F1 ⊗ F2, L1 ⊗ L2(v ⊗ w) := L1(v)⊗ L2(w).

We will need the following result, whose proof we will leave to the reader (Exercise 7.32)

4.5. Proposition. Let

· · · −→ E1
ϕ−→ E2

ψ−→ E3 −→ · · ·

be an exact sequence and let F be a vector space. Then the sequence

· · · −→ E1 ⊗ F ϕ⊗11−→ E2 ⊗ F ψ⊗11−→ E3 ⊗ F −→ · · ·

is exact.

We go back now to our question. Let U1 ⊆ Rn, U2 ⊆ Rm be open sets. Set U = U1 × U2 ⊆ Rn+m. Let

πi : U −→ Ui be the projection maps. Define a map

κU : Ωp(U1)⊗ Ωq(U2) −→ Ωk(U), k = p+ q, κU (ω ⊗ τ) = π∗
1ω ∧ π∗

2τ.

Since the π∗
i ’s commutes with d, κU induces a morphism in cohomology. Summing up these morphism

for p+ q = k, we get a map, still denoted by κU ,

κU : ⊕p+q=kHp(U1)⊗Hq(U2) −→ Hk(U).

4.6. Definition. The map κU is called the Künneth map

An important feature of the Künneth’s map is that it is natural in the following sense (which is an

immediate consequence of the definitions)

4.7. Lemma. Let Ui ⊆ Rni , Vi ⊆ Rmi , i = 1, 2, be open sets in the corresponding spaces, U =

U1 × U2, V = V1 × V2. Let Fi : Ui −→ Vi be smooth maps. Then

κU (F
∗
1 ω ⊗ F ∗

2 τ) = (F1 × F2)
∗κV (ω ⊗ τ)

The result we have promised, called the Künneth Theorem, or also the Künneth formula, is the following

4.8. Theorem. [Künneth’s Theorem] κU is an isomorphism
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Proof. We will use the Mayer-Vietoris argument very much as the the proof of the Theorem of de

Rham. Let W ⊆ U1 be an open set and consider the statement

P(W ) = κW×U2 is an isomorphism.

We want to prove that P(U1) is true. For this we will show that the conditions of the Lemma 3.1 are

verified. Clearly P(W ) is true if W is convex. Also, if Wα are disjoint open sets for which P(Wα) is true,

the same holds for W = ∪αWα. It remains to show that if V,W ⊆ U1 are open sets such that P(V ), P(W )

and P(V ∩W ) are true, them P(V ∪W ) is true. Consider the Mayer-Vietoris sequence

· · · −→ Hp(V ∪W ) −→ Hp(V )⊕Hp(W ) −→ Hp(V ∩W )
∆∗

−→ Hp+1(V ∪W ) −→ · · ·

Tensoring with Hq(U2) and summing for p+ q = k we obtain the diagram

· · · −→ ⊕p+q=kHp(V ∩W )⊗Hq(U2)
⊕∆∗⊗11−→ ⊕p+q=kHp+1(V ∪W )⊗Hq(U2) −→ · · ·

↓ κ(V ∩W )×U2
↓ κ(V ∪W )×U2

· · · −→ Hk((V ∩W )× U2)
∆∗

−→ Hk+1((V ∪W )× U2) −→ · · ·

The upper line is exact by Proposition 4.5 and the lower one is exact being the Mayer-Vietoris sequence of

V ×U2,W ×U2 ⊆ (V ∪W )×U2. Moreover κ(V ∩W )×U2
and κV×U2 ⊕κW×U2 are isomorphisms, by hypothesis.

So we can use the five Lemma to conclude that κ(V ∪W )×U2
is an isomorphism, once we show that the squares

commute. This is simple to show. For example, for the square above, we have

• κ(V ∪W )×U2
◦ (∆∗ ⊗ 11)(ω ⊗ ϕ) = π∗

1∆
∗ω ∧ π∗

2ϕ,

• ∆∗ ◦ κ(V ∩W )×U2
(ω ⊗ ϕ) = ∆∗π∗

1ω ∧ π∗
2ϕ.

and conclusion follows from the fact that ∆∗ commutes with induced maps (Remark 4.14 in Chapter 1). �

4.9. Remark. An important feature of the Künneth’s map is that it is multiplicative. We explain what

this means. Consider H∗(Ui) = ⊕Hp(Ui). Then H∗(Ui) is a vector space and we can consider the tensor

product H∗(U1) ⊗ H∗(U2) = ⊕k[⊕p+q=kHp(U1) ⊗ Hq(U2)]. We define a product in H∗(U1) ⊗ H∗(U2),

denoted by ·, suitably extending ([α]⊗ [β]) · ([γ]⊗ [δ]) := (−1)|β||γ|[α ∧ γ]⊗ [β ∧ δ] where |τ | = p if τ ∈ Ωp.

This operation induces an algebra structure in H∗(U1)⊗H∗(U2) and, as it is easily seen, the Künneth’s map

κU : H∗(U1)⊗H∗(U2) −→ H∗(U) is an algebra isomorphism.

4.10. Example. Consider U1 = Rn\{0}, U2 = Rm\{0}. Let α, β be generators ofHn−1(U1), H
m−1(U2).

Then H∗(U1)⊗H∗(U2) is generated by 1, α⊗ 1, 1⊗ β and α⊗ β, with the relations (α⊗ 1)2 = 0 = (1⊗ β)2.

4.11. Remark. Two open sets may have cohomologies that are isomorphic, as vector spaces, but not

as algebras. So the algebra structure helps differentiating not homotopically equivalent open sets. We will

propose, in Exercise 7.33, an example of an open set with the same cohomology, as vector space, of the one

of (R2 \ {0})× (R2 \ {0}), but not as algebras. In particular these two spaces are not homotopy equivalent.
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5. Integration of 1-forms and some applications

Let U ⊆ Rn be an open set. A smooth curve γ : [a, b] −→ U can be seen as the smooth 1-simplex

γ̃ = γ ◦ L(a, b) where L(a, b) = (1− t)a+ tb. If ω ∈ Ω1(U) is a 1-form, we define∫
γ

ω :=

∫
γ̃

ω =

∫ 1

0

[∑
ωi(γ̃(t)) ˙̃γi(t)

]
dt =

∫ b

a

[∑
ωi(γ(t))γ̇i(t)

]
dt,

where the second integral is the integral of ω on the 1-simplex γ̃ and the last equality comes from the formula

of change of variable in 1-dimensional integrals (see also Example 1.8). For the rest of this section, when

clear from the context, we will make no difference between the curve γ and the 1-simplex γ̃.

Let γ : [a, b] ⊆ R −→ U be a piecewise smooth curve, i.e. a continuous curve such that there exists a

partition t0 = a < t1 < · · · < tk = b of [a, b] such that γi := γ|[ti, ti+1] is smooth. Then γ can be viewed either

as the (smooth) 1-chain γ =
∑
γi or as a continuous 1-simplex. Clearly, in both cases, ∂γ = γ(b)− γ(a).

Let γ : [a, b] ⊆ R −→ U be a continuous closed curve, i.e. γ(a) = γ(b). Consider the map π : [a, b] −→
S1 := {x ∈ R2 : ∥x∥ = 1}, π((1 − t)a + tb)) = (cos 2πt, sin 2πt). Since γ is closed, γ = γ ◦ π−1 is a well

defined continuous map of S1 into U . Conversely, any such map defines a continuous closed curve. From this

point of view, continuous closed curves and continuous maps of the circle into U look like the same thing.

However, there are some differences:

• If γ is a smooth curve γ will be just piecewise smooth. It will be smooth if and only if the derivatives

of all orders of γ at a, coincide with the derivatives of the corresponding order of γ at b.

• Any curve γ : [a, b] −→ U is homotopic to a constant (see Exercise 7.4). This is not the case for maps

of S1 into U . The following result,whose proof is quite obvious, relates the two situations:

5.1. Lemma. Let γi : S
1 −→ U, i = 0, 1 be continuous maps and γi be the corresponding closed curves.

Then γ0 ∼ γ1 if and only if there is a homotopy H : [a, b] × [0, 1] −→ U between γ0 and γ1 such that

H(a, s) = H(b, s) ∀s ∈ [0, 1].

5.2. Remark. A homotopy like the one in Lemma 5.1 is called a free homotopy and the maps γi are

said to be freely homotopic. The word “free” is to distinguish this concept from the one of based homotopy,

frequently used in homotopy theory, for example in the definition of the fundamental group.

When clear from the context we will make no distinction between γ and γ.

Let γ : [a, b] −→ U be a closed piecewise smooth curve. If we think of γ as a smooth 1-chain, ∂γ = 0

and therefore γ determines an element [γ] ∈ H1(U).

5.3. Lemma. If γ0 and γ1 are freely homotopic piecewise smooth closed curves, then [γ0] = [γ1] in H1(U).

Proof. Let H : [a, b]× [0, 1] −→ U be a free homotopy between the two curves. Subdividing [a, b]× [0, 1]

into triangles and using linear simplices as in the proof of homotopy invariance for singular homology (see

Theorem 2.10), we get a chain H̃ with ∂H̃ = γ1 − γ0. �

The following (well known) facts follow easily from the Theorem of de Rham (we invite the reader to

give a more elementary proof, see Exercise 7.14).

5.4. Proposition. Let ω ∈ Ω1(U) be a closed 1-form.
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(1) If γi, i = 0, 1 are freely homotopic piecewise smooth closed curves then:∫
γ0

ω =

∫
γ1

ω.

(2) ω is exact if and only if for all closed curves γ∫
γ

ω = 0.

5.5. Definition. A connected open set U ⊆ Rn is simply connected if every closed curve is freely

homotopic to a constant curve 8.

From Proposition 5.4 we have:

5.6. Corollary. If U is simply connected, then H1(U) = {0}.

5.7. Remark. A natural question is whether H1(U) = {0} implies that U is simply connected. The

answer to this question is affirmative for n = 2 (see Exercise 7.18) and negative if n ≥ 3. For example there

are, in R3, (complicated) closed sets, homeomorphic to the 3-dimensional closed disk, whose complements

are not simply connected (for example the so called “horned disks”). The complement of such a disk has,

by the Jordan-Alexander duality (see Theorem 5.4 of Chapter 1), the same cohomology as the complement

of the standard 3-dimensional disk, hence vanishing first cohomology group (see Example 4.15 of Chapter

1). We do not know of any simpler example in dimension 3. For n ≥ 4 there are simpler examples that we

will discuss in Chapter 4.

We will focus now on closed curves in U = R2 \ {0}. In U there is an important 1-form, the angle form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy.

It is easily seen that dω = 0, in fact, locally, ω = darctan(y/x) (see Exercise 7.30 of Chapter 1). But ω is

not exact since, if γ(t) = (cos 2πt, sin 2πt),∫
γ

ω =

∫ 1

0

2π[sin2(2πt) + cos2(2πt)]dt = 2π ̸= 0.

In particular, dRU ([ω])([γ]) = 2π. Since H1(U) ∼= R, by Examples 4.15 of Chapter 1, [ω] spans H1(U)

and [γ] spans H1(U) ∼= R.

5.8. Definition. Let γ : [0, 1] −→ U be a piecewise smooth curve. An angular function for γ is a

piecewise smooth function θ : [0, 1] −→ R such that θ(t) is one of the determinations, in radians, of the

(oriented) angle between e1 and γ(t).

5.9. Lemma. Any piecewise smooth curve γ : [0, 1] −→ U admits angular functions and two angular

functions for γ differ by an entire multiple of 2π.

8The concept of simply connectedness is usually defined in terms of the vanishing of the fundamental group. In this group,

two freely homotopic closed curves are in the same conjugacy class (and conversely), but they may not be the same element of

the group. However, the vanishing of the fundamental group is equivalent to the fact that every two closed curves are freely

homotopic (see Remark in Exercise 7.28).
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Proof. Let θ0 ∈ [0, 2π) be the angle between e1 and γ(0), and ω the angle form. Consider

θ(t) =

∫
γ|[0,t]

ω + θ0.

Since, locally, ω = darctan(y/x) (see Exercise 7.30 of Chapter 1), θ is an angular function for γ. Finally we

observe that two angular functions are, at a given time, determinations of the same angle, so they differ, at

that time, by an entire multiple of 2π. This multiple does not depend on the time since the difference of the

two angular functions, divided by 2π, is an integers valued continuous function defined on a connected set,

hence constant. �

5.10. Remark. The advantage of having angular functions is that we can write γ in polar coordinates

γ(t) = ∥γ(t)∥ eiθ(t) = ∥γ(t)∥ (cos θ(t), sin θ(t)).

Let γ : [0, 1] −→ U be a closed curve and θ an angular function. Since γ(0) = γ(1), θ(1) − θ(0) is an

entire multiple of 2π.

5.11. Definition. The winding number of γ is the integer

w(γ) =
θ(1)− θ(0)

2π
.

5.12. Remark. Since two angular functions differ by a multiple of 2π, the winding number does not

depend on the particular angular function. Moreover

w(γ) =
1

2π

∫
γ

ω.

5.13. Example. Consider the curve ξn(t) = (cos 2πnt, sin 2πnt), t ∈ [0, 1], n a given integer. Then

θ(t) = 2πnt is an angular function and w(ξn) = n.

The main fact about winding numbers is the following

5.14. Theorem. [Homotopy classification] Two piecewise smooth closed curves γi : [0, 1] −→ U, i = 0, 1,

are freely homotopic if and only if they have the same winding number.

Proof. If the two curves are freely homotopic, by Proposition 5.4 and Remark 5.12, they have the same

winding number. Let γ be a piecewise smooth closed curve with angular function θ and winding number

w(γ) = n ∈ Z. Let ξn be as in Example 5.13. Define

H : [0, 1]× [0, 1] −→ U, H(t, s) = [s∥γ(t)∥+ (1− s)](cos(sθ(t) + (1− s)2πnt), sin(sθ(t) + (1− s)2πnt)).

Then H(t, 0) = ξn(t), H(t, 1) = γ(t) and the condition w(γ) = n implies H(0, s) = H(1, s), ∀ s ∈ [0, 1].

Hence H is a free homotopy between ξn and γ. This concludes the proof since the relation of being freely

homotopic is an equivalence relation. �

5.15. Remark. Any continuous curve in U admits continuous angular functions. Once we have angular

functions, we can define the winding number for a continuous closed curve. Theorem 5.14 holds true in this

more general situation (see Exercise 7.25).
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We will see now some applications of the homotopy invariance of the winding number.

Let D2(r) := {x ∈ R2 : ∥x∥ ≤ r} be the disk of radius r and let S1(r) := {x ∈ R2 : ∥x∥ = r} be

its boundary. Consider a smooth function9 f : D2(r) −→ R2. A basic question is to find solutions of the

equation f(x) = 0. In the case of a function f : [−r, r] ⊆ R −→ R, the celebrated Theorem of Bolzano states

that if f(r)f(−r) < 0 then the equation f(t) = 0 has a solution in (−r, r). We will prove a similar result

for our case, similar in the sense that we shall give a condition on f , at the boundary of the disk, that is

sufficient (but not necessary, in general) for the existence of solutions of our equation.

5.16. Definition. Let f : D2(r) −→ R2 be a smooth function. Suppose f(x) ̸= 0 if ∥x∥ = r. The

degree of f , dg(f), is defined as the winding number of the closed curve:

γf : [0, 1] −→ U := R2 \ {0}, γf (t) = f(r(cos 2πt, sin 2πt))

.

5.17. Example. Consider the complex plane C ∼= R2 with complex variable z = x + iy, and the map

g(z) = zn. Then γg(t) = r(cos 2πnt, sin 2πnt). Hence dg(g) = n.

The announced result is the following

5.18. Theorem. If dg(f) ̸= 0 then the equation f(x) = 0 has a solution.

Proof. Suppose dg(f) ̸= 0, f(x) ̸= 0 ∀ x ∈ D2(r). Consider the map

H : [0, 1]× [0, 1] −→ R2 \ {0}, H(t, s) = f(sr(cos 2πt, sin 2πt)).

Since f(x) ̸= 0, for ∥x∥ ≤ r, H is a free homotopy, in R2\{0}, between γf and the constant curve α(t) = f(0).

Therefore, by Theorem 5.14, dg(f) := w(γf ) = w(α) = 0, a contradiction. �

In order to compute degrees, the following fact is often useful

5.19. Lemma. [Poincaré-Bohl] Let γi : [0, 1] −→ R2 \ {0}, i = 0, 1 be two closed curves. If ∥γ0(t) −
γ1(t)∥ < ∥γ0(t)∥ ∀ t ∈ [0, 1], the two curves are freely homotopic.

Proof. Consider the map:

H : [0, 1]× [0, 1] −→ R2, H(t, s) = sγ1(t) + (1− s)γ0(t).

The condition ∥γ0(t) − γ1(t)∥ < ∥γ0(t)∥ implies that the segment joining γ0(t) and γ1(t) does not contain

the origin. Hence H([0, 1]× [0, 1]) ⊆ R2 \ {0} and H is a free homotopy (in U) between the two curves. �

As an application of Theorem 5.18, we prove now the Fundamental Theorem of Algebra:

5.20. Theorem. Let f(z) = zn + a1z
n−1 + · · ·+ an−1z + an be a polynomial in the complex variable z.

If n ≥ 1, f has a complex root.

9By Remark 5.15 we only need continuity of the function.
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Proof. Let r > 1 +
∑n

1 |ai|. If f(z) = 0, for some z ∈ S1(r), there is nothing to prove. Suppose

f(z) ̸= 0 for ∥z∥ = r and consider the function g(z) = zn. For ∥z∥ = r we have:

∥f(z)− g(z)∥ ≤
n∑
1

|ai|∥z∥n−i < rn = ∥g(z)∥.

Hence, by Lemma 5.19, f and g have the same degree and dg(g) = n ̸= 0, by Example 5.17. Hence, by

Theorem 5.18, the polynomial f has a root in D2(r). �

5.21. Remark. We can take a slightly different approach to the winding number. Let γ : S1 −→ R2\{0}
be a closed smooth curve. Then we can extend γ to a map

Γ : R2 \ {0} −→ R2 \ {0}, Γ(tx) = tγ(x), x ∈ S1.

Hence we have an induced map

Γ∗ : H1(R2 \ {0}) ∼= R −→ H1(R2 \ {0}) ∼= R

which is multiplication by a real number, which is, as it is easily seen, the winding number of γ. In this

context the winding number is also called the degree of γ and is denoted by dg(γ). This point of view is

useful in extending the concept to higher dimensions (see Exercise 7.29).

6. Appendix: baricentric subdivision and the proof of Theorem 2.13

Let U1, U2 be open sets in Rn and U = U1 ∪U2. We want to show that the inclusion i : Cp(U1 +U2) −→
Cp(U) induces an isomorphism in homology. The idea of the proof goes as follow: consider a singular simplex

σ : ∆p −→ U and the covering of ∆p given by σ−1(Ui) , i = 1, 2. We “subdivide” ∆p into subsimplices of

very small diameter so that σ sends each one of the small simplices into U1 or U2. With this operation we

pass from a chain c ∈ Cp(U) to a chain c̃ ∈ CP (U1 + U2). Finally we must show that if c is a cycle, c̃ is also

a cycle and represents, in Hp(U), the same class of c and that, if c̃ is the boundary of a chain in Cp+1(U),

it is also the boundary of a chain in Cp+1(U1 + U2).

We will describe the subdivision process in three steps.

Step 1. Barycentric subdivision of a simplex.

Let Γ = [v0, . . . , vp] be a p-simplex in Rn and let b := bΓ := (p+ 1)−1
∑p

0 vi be its barycenter.

6.1. Definition. A barycentric subsimplex of Γ is a simplex of the form [b0, . . . bk] where bi is the

barycenter of a face Fi of Γ with Fk % Fk−1 % · · · % F0.

The set of barycentric subsimplices of Γ, denoted by Γ(1), is called the (first) barycentric subdivision of Γ.

Inductively we define the rth barycentric subdivision of Γ, Γ(r), as the collection of barycentric subsimplices

of simplices in Γ(r−1).

The effect of the barycentric subdivisions of Γ, that we are interested in, is that the diameters of the

simplices of Γ(r) go to zero when r → ∞ (Corollary 6.3).

6.2. Proposition. Let Γ = [v0, . . . , vp]. If ∆ ∈ Γ(1), diam(∆) ≤ p(p+ 1)−1 diam(Γ).
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Proof. First we observe that, since the diameter of a subset of Rn coincides with the one of its convex

hull, the diameter of a simplex is the maximum of the distance between its vertices.

We will proceed by induction. Clearly the claim is true for p = 0. Suppose the claim true for k−simplices,

k < p and set ∆ = [b0, . . . , bh], where bi is the barycenter of a face Fi of Γ, F0 % · · · % Fh. If dim(F0) = k < p,

we have, by induction,

∥bi − bj∥ ≤ k(k + 1)−1 diam(F0) ≤ p(p+ 1)−1 diam(F0) ≤ p(p+ 1)−1 diam(Γ).

Let us suppose now that b = b0 is the barycenter of Γ.

Claim. ∥vi − b∥ ≤ p(p+ 1)−1 diam(Γ).

Proof. We can assume i = 0. Then

∥v0 − b∥ = ∥v0 − (p+ 1)−1

p∑
0

vi∥ = ∥v0 − (p+ 1)−1v0 − (p+ 1)−1

p∑
1

vi∥ =

= ∥p(p+1)−1v0−(p+1)−1

p∑
1

vi∥ ≤ (p+1)−1∥
p∑
1

(v0−vi)∥ ≤ p(p+1)−1 sup{∥v0−vj∥} ≤ p(p+1)−1 diam(Γ).

�

In particular Γ, hence ∆, is contained in the ball with center b and radius p(p + 1)−1 diam(Γ) and

∥b0 − bi∥ ≤ p(p + 1)−1 diam(Γ). Since, by the inductive hypothesis, the distance between any other two

vertices of ∆ is also, at most, p(p+ 1)−1 diam(Γ), the conclusion follows.

�

6.3. Corollary. Given ϵ > 0, there exists r0 such that diam(∆) < ϵ, ∀ ∆ ∈ Γ(r), r ≥ r0.

Proof. The claim follows from the fact that, if ∆ ∈ Γ(s), diam(∆) ≤ ps(p+1)−s diam(Γ) (by induction

using Proposition 6.2) and the latter quantity is monotone decreasing with limit zero as s goes to ∞. �

Step 2. Barycentric subdivision of linear chains.

Let U ⊆ Rn be a convex open set. We will denote by LCp(U) the linear subspace of Cp(U) spanned by

the linear simplices. Clearly ∂(LCp(U)) ⊆ LCp−1(U), (see Example 1.12) and therefore {LCp(U), ∂|LCp(U)}
is a subcomplex of {Cp(U), ∂}.

Let v ∈ U . We define the cone operator with vertex v extending, by linearity, the map

L(v0, . . . , vp) CvL(v0, . . . , vp) := L(v, v0, . . . , vp).

Since U is convex, Cv is well defined.

6.4. Lemma. If c ∈ LCp(U), ∂Cv(c)) = σ − Cv(∂c).

Proof. It is sufficient, by linearity, to prove the Lemma in the case that c = L(v0, . . . , vp) is a linear

simplex. Since the “boundary of the cone” is the base, essentially c, union the cone on the boundary of c,

the formula is “morally true”. Formally,

∂Cv(c) = ∂L(v, v0, . . . , vp) = L(v0, . . . , vp) +

p∑
i=0

(−1)i+1L(v, v0, . . . , v̂i, . . . , vp) =
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= c− Cv(

p∑
i=0

(−1)iL(v0, . . . , v̂i, . . . , vp)) = c− Cv(∂c).

�

6.5. Definition. The barycentric subdivision Sp : LCp(U) −→ LCp(U) is defined, inductively, extend-

ing, by linearity,

S0(σ) = σ, Sp(σ) = Cbσ (S(p−1)(∂σ)), if p > 0,

where σ is a linear p-simplex and bσ is its barycenter, i.e. if σ = L(v0, . . . , vp), bσ = (p+ 1)−1
∑
vi.

Our next task is to show that S is a chain morphism that induces an isomorphism in homology. This

will follow from the next two Lemmas.

6.6. Lemma. If c ∈ LCp(U), ∂S(c) = S(∂c).

Proof. If p = 1 and σ = L(v0, v1), both sides are equal to ∂σ and the formula is true. Suppose, by

induction, that the formula is true for linear chains of dimension ≤ p− 1 and let σ be a linear p-simplex.

∂S(σ) = ∂(CbσS(∂σ)) = S∂σ − Cbσ∂S(∂σ) = S∂σ − CbσS(∂∂σ) = S∂σ,

where the second equality follows from Lemma 6.4 and the third one from the inductive hypothesis. �

We define, by induction, a linear map T : LCp(U) −→ LCp+1(U),

T (L(x)) = L(x, x), if p = 0, T (σ) = Cbσ (σ − T (∂σ)), if p ≥ 1.

6.7. Lemma. ∂T (c) + T (∂c) = c− S(c). In particular T is an algebraic homotopy between S and 11.

Proof. Again by induction. The formula holds for p = 0. Suppose that it holds for linear chains of

dimensions at most p− 1. Then, if σ is a linear p-simplex,

∂T (σ) = ∂(Cbσ (σ − T (∂σ)) = σ − T (∂σ)− Cbσ∂(σ − T (∂σ)) = σ − T (∂σ)− Cbσ (∂σ) + Cbσ (∂T (∂σ)) =

= σ − T (∂σ)− Cbσ (∂σ) + Cbσ (∂σ − S(∂σ)− T∂(∂σ)) = σ − T (∂σ)− CbσS(∂σ) = σ − T (∂σ)− S(σ),

where the second equality follows from Lemma 6.4, the fifth by induction and the last by definition of S.

Again, by linearity, the Lemma holds for linear chains. �

Step 3. Subdivision of singular chains.

We will extend the operators S, T to act on singular chains in an arbitrary open set U ⊆ Rn.
Let 11 : ∆p −→ ∆p be the identity singular simplex. Since ∆p is convex, S(11) ∈ LCp(∆

p) and T (11) ∈
LCp+1(∆

p) are well defined10.

If σ : ∆p −→ U is a singular simplex, we define S(σ) := σ∗(S(11)), T (σ) := σ∗(T (11)). Then, by linear

extensions, we have maps

S : Cp(U) −→ Cp(U), T : Cp(U) −→ Cp+1(U).

As for the case of linear chains we have

10To be more precise we should consider 11 as a singular simplex on a convex open neighborhood of ∆p ⊆ Rp.
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6.8. Lemma. S is a chain map and T an algebraic homotopy between S and 11.

Proof. Let σ : ∆p −→ U be a singular simplex. Then

∂S(σ) = ∂σ∗S(11) = σ∗∂S(11) = σ∗S(∂11) = S(∂σ),

where the tird equality follows from Lemma 6.6. This prove the first claim. For the second one we have

∂T (σ) + T (∂σ) = ∂σ∗(T (11)) + T∂σ∗(11) = σ∗(∂T (11) + T (∂11)) = σ∗(11− S(11)) = σ − S(σ),

where the third equality follows from Lemma 6.7. �

.

We define the support of a singular simplex σ : ∆p −→ U as support(σ) = σ(∆p). The support of a

singular chain c =
∑
riσi will be the union of the supports of the simplices σi. Then we have

6.9. Lemma. If c ∈ Cp(U), support(S(c)) = support(c), support(T (c)) = support(c).

We go back now to our problem. Let U1, U2 be open sets in Rn and U = U1 ∪ U2.

6.10. Lemma. If z ∈ Cp(U) is a cycle, then S(z) is a cycle and z − S(z) = ∂w, w ∈ Cp+1(U). In

particular [z] = [S(z). Moreover, if z ∈ Cp(U1 + U2), w can be chosen in Cp+1(U1 + U2).

Proof. Since ∂T (z) + T (∂z) = z − S(z), it follows that z − S(z) = ∂T (z). Moreover, if z ∈ Cp(U1 +

U2), T (z) ∈ Cp+1(U1 + U2), by Lemma 6.9. �

We define, by induction, the rth subdivision operator S(r) : Cp(U) −→ Cp(U), S(0) = S, S(r) =

S ◦ S(r−1). Clearly, also S(r) is a chain map and, in particular, if z is a cycle, S(r)(z) is also a cycle.

6.11. Lemma. If z ∈ Cp(U), there exists r = r(z) such that S(r)(z) ∈ Cp(U1 + U2).

Proof. Suppose first that z = σ : ∆p −→ U is a singular simplex. If m ≥ 1, S(m)(σ) = σ∗(S
(m)(11)).

The simplices that appears in S(m)(11) are linear homeomorphisms between ∆p and barycentric subsimplices

of ∆p. By the Lebesgue Lemma11 and Corollary 6.3 there exist an r = r(σ) such that the simplices of [∆p](r)

are contained in one of the open sets σ−1(Ui). Hence S(r)(σ) ∈ Cp(U1+U2), by Lemma 6.9. This shows that

the lemma holds for simplices. If z =
∑k
i=1 tiσi, where σi : ∆

p −→ U are singular simplices, we can take

r(z) = max{r(σi)} and the result follows, again, from Lemma 6.9. �

At this point we can prove our result

2.13. Theorem. [Small simplices Theorem] The inclusion Cp(U1 + U2) −→ Cp(U) induces an isomor-

phism in homology.

Proof. We have to show two things

(1) If z is a cycle in Cp(U) then z is equivalent in Hp(U) to a cycle in Cp(U1 + U2).

(2) If z is a cycle in Cp(U1 + U2) which is the boundary of a chain in Cp+1(U), then it is also the

boundary of a chain in Cp(U1 + U2).

11The Lemma states that if K ⊆ Rn is a compact set and U is an open covering of K, then there exists δ > 0 such that

any subset of K of diameter less than δ is contained in one of the sets of the covering.
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For (1) we consider z′ = S(r)(z), with r as in Lemma 6.11. Then z′ is a cycle in Cp(U1 +U2) equivalent,

in Hp(U), to z (Lemma 6.10 and induction).

For (2), we suppose z = ∂c, c ∈ Cp+1(U). Let r be such that S(r)(c) ∈ Cp+1(U1 +U2). Then ∂S
(r)(c) =

S(r)(z). Also, by Lemma 6.10 (and induction), z − S(r)(z) is the boundary of a chain d ∈ Cp+1(U1 + U2)

and therefore S(r)(c) + d ∈ Cp+1(U1 + U2). Finally

∂(S(r)(c) + d) = S(r)(z) + ∂d = S(r)(z) + z − S(r)(z) = z.

�

7. Exercises

7.1. Consider the p-simplex ∆̃p = [e1, . . . , ep+1] ⊂ Rp+1 where {ei}, is the canonical basis of Rp+1.

(1) Prove that ∆̃p = {(t1, . . . , tp+1) ∈ Rp+1 : ti ∈ [0, 1],
∑p+1
i=1 ti = 1}.

(2) Let {v1, . . . vp+1} ⊆ Rn be points in general position. Prove that the map L̃(t1, . . . , tp+1) =∑p+1
1 tivi is a homeomorphism of ∆̃p onto [v1, . . . , vp+1].

(3) Deduce the existence of barycentric coordinates for the points of a p-simplex (see Remark 1.4).

Remark. In many texts it is ∆̃p that is called the standard simplex. This has the advantage that every

face of ∆̃p is a “standard (p− 1) simplex”, which is not true with our definition of standard simplex.

7.2. Let ω = dx1 ∧ · · · ∧ dxp ∈ Ωp(Rn) and let ∆p be the standard p-simplex. Show that∫
∆p

ω =
1

p!
(= volume of ∆p).

7.3. Let U, V ⊆ Rn be connected open sets and F : U −→ V be a diffeomorphism. Let D ⊆ U be the

closure of a bounded open set and f : V −→ R a smooth function. Prove that, if ω ∈ Ωn(V ),∫
F (D)

ω = ±
∫
D

F ∗ω,

with the sign + (resp. −) if F preserves (resp. reverse) the orientation, i.e. det(dF ) > 0 (resp. det(dF ) < 0).

7.4. Let U ⊆ Rm, V ⊆ Rm be open sets and F : U −→ V a continuous map.

(1) Prove that if U (resp. V ) is contractible, then F is homotopic to a constant map.

(2) prove that if V is contractible, any two maps F,G : U −→ V are homotopic.

(3) It is true that, if U is contractible, any two maps F,G : U −→ V are homotopic?

7.5. Let Dn+1 = {x ∈ Rn+1 : ∥x∥ ≤ 1}, Sn = {x ∈ Rn+1 : ∥x∥ = 1} = ∂Dn+1 and V ⊆ Rm. Show that

a continuous map F : Sn −→ V is continuously homotopic to a constant map if and only if it extends to a

continuous map F̃ : Dn+1 −→ V .

7.6. Prove that a map F : Sn −→ Sn which is not surjective is homotopic to a constant. Give an

example of a surjective map F : Sn −→ Sn which is homotopic to a constant.

7.7. Prove that an open set U ⊆ Rn is connected if and only if H0(U) ∼= R (see Example 2.9).

7.8. Let U ⊆ Rn, V ⊆ Rm be open sets and F : U −→ V a smooth map. Prove that if U is connected,

F∗ : H0(U) −→ H0(V ) is injective. Study the case in which U is not connected (see Example 2.9).
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7.9. For an open set U ⊆ Rn define the reduced homology, H̃p(U), as the homology of the augmented

chain complex

· · · −→ Cp(U) −→ Cp−1(U) −→ · · · −→ C0(U) −→ R −→ {0},

where the last map sends any singular 0-simplex to 1 ∈ R and is extended by linearity (the other maps are

the usual boundaries). Find the relation between Hp(U) and H̃p(U) and prove the homotopy invariance and

the exactness of Mayer-Vietoris sequence for reduced homology.

7.10. Compute the homology of Σn ⊆ Rn using the Mayer Vietoris sequence for reduced homology (see

Example 4.15 of Chapter 1 for the definition of Σn).

7.11. Let U ⊆ Rn be an open set and p ∈ U . Assume known that Hn(U) = {0} (see Remark in Exercise

7.32 of Chapter 1). Find the relation between Hk(U \ {p}) and of Hk(U).

7.12. Prove the claim made in Remak 3.4 that the homology of the complex spanned by the continuous

singular simplices is isomorphic to the homology of the complex spanned by the smooth singular simplices.

7.13. Let U ⊆ Rn be an open set. Two curves γi : [0, 1] −→ U are homotopic relative to the end points

if there exists a homotopy H : [0, 1]× [0, 1] such that H(0, s) = γi(0), H(1, s) = γi(1), ∀ s ∈ [0, 1].

(1) Prove that U is simply connected if and only if any two curves in U , with the same endpoints, are

homotopic relative to the endpoints.

(2) Let ω ∈ Ω1(U) be a closed 1-form and γi, i = 1, 2 be curves homotopic relative to the endpoints.

Prove that ∫
γ1

ω =

∫
γ2

ω.

7.14. Give a proof of Proposition 5.4 using Stokes Theorem (instead that the Theorem of de Rham).

7.15. Let ω = a(x, y)dx + b(x, y)dy be a smooth closed 1-form in R2 \ {0}. Suppose that, for 0 <

x2 + y2 ≤ K, the functions a, b are bounded. Prove that ω is exact (hint: use homotopy invariance to show

that for all closed curves γ : S1 −→ R2 \ {0},
∫
γ
ω = 0).

7.16. Let γ : [0, 1] −→ R2 \ {0} be a regular12 smooth closed curve and ξ a unit vector. Then γ

is transverse to the ray rξ = {tξ : t ≥ 0} if, at any intersection point γ(t0), γ̇(t0) and ξ are linearly

independent. Moreover, such an intersection point is said to be positive if {ξ, γ̇(t0)} is a positive basis for

R2, and negative otherwise. Suppose γ intersects rξ transversally.

(1) Prove that the intersection points are isolated, in particular the number of such points is finite.

(2) Prove that w(γ) = P −N where P (resp. N) is the number of positive (resp. negative) intersection

points.

Remark. It is known that “most” rays intersect γ transversally.

7.17. Let p ∈ R2. Consider the angle form based at p,

ωp =
−(y − y(p))

(x− x(p))2 + (y − y(p))2
dx+

(x− x(p))

(x− x(p))2 + (y − y(p))2
dy ∈ Ω1(R2 \ {p}).

12i.e. γ̇(t) ̸= 0.
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Let γ : [0, 1] −→ R2 be a closed smooth curve and p ∈ R2 \ γ([0, 1]). Define the index of p (relative to γ) as

i(p) =

∫
γ

ωp.

(1) Prove that i(p) is a locally constant function, in particular is constant on each connected component

of R2 \ γ([0, 1]).
(2) Prove that, if γ is a smooth Jordan curve, i(p) = 0 (resp. i(p) = ±1), if p is in the unbounded

(resp. bounded) component of R2 \ γ([0, 1]).

7.18. Let γ : [0, 1] −→ R2 be a Jordan curve. Then, by Theorem 5.8 of Chapter 1, R2 \ γ([0, 1]) has two
connected components. It is easily seen that one component is bounded and the other is unbounded (see

Exercise 7.16). Assume the following (non trivial) result

Theorem. [Shoenflies Theorem] The bounded component of R2 \ γ([0, 1]) is homeomorphic to a disk.

Let U ⊆ R2 be an open set such that H1(U) = {0}. Prove that any smooth Jordan curve γ : S1 −→ U is

homotopic, in U , to a constant curve (hint: by the Theorem above, γ(S1) is the boundary of a disk D ⊆ R2.

If the disk is contained in U , the curve is contractible in U , by Exercise 7.5. If not, use the angle form based

at p ∈ D \ U to get a contradiction).

Remark: This fact implies that U is simply connected (see Remark 5.7) hence diffeomorphic to R2, by

the Riemann mapping Theorem.

7.19. Let γ : S1 −→ R2 \ {0} be an odd closed curve, i.e. γ(−t) = −γ(t), ∀ t ∈ S1. Prove that w(γ) is

an odd integer.

7.20. Prove the following Theorem of Borsuk: if f, g : S2 −→ R are odd continuous functions, there

exists p ∈ S2 such that f(p) = 0 = g(p) (hint: use the projection of the closed upper hemisphere onto the

unit disk to define a function of the disk in R2).

7.21. Let f, g : S2 −→ R be continuous functions. Prove that there exists p ∈ S2 such that f(p) =

f(−p), g(p) = g(−p).

7.22. Prove that there are no injective continuous functions F : S2 −→ R2.

7.23. Let U ⊆ R2 be an open set and X : U −→ R2 a smooth vector field. Let Dϵ ⊆ U be a disk of

radius ϵ, with center p ∈ U , and assume that X(q) ̸= 0, ∀q ∈ Dϵ \ {p}. The point p is called an (isolated)

singularity of X. The index of X at p, i(X, p), is defined as the degree of X|Dϵ , i.e. the winding number of

the curve X(p+ ϵ cos 2πt, p+ ϵ sin 2πt), t ∈ [0, 1].

(1) Let γ : [0, 1] −→ U be a piecewise smooth, positively oriented closed Jordan curve bounding a disk

in U and containing p in its interior. Prove that i(X, p) is the winding number of X ◦ γ.
(2) If X(x, y) = (f(x, y), g(x, y)), prove that

i(x, p) =
1

2π

∫
γ

θ,

where γ is as in the preceding item and

θ =
−gdx
f2 + g2

+
fdy

f2 + g2
= X∗ω,

where ω is the angle form.
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(3) Prove that if X(p) ̸= 0, then i(X, p) = 0.

(4) Let X : R2 −→ R2 be a linear isomorphism. Prove that i(X, 0) = 1 if detX > 0 and i(X, 0) = −1

if detX < 0.

(5) Assume that X(p) = 0 and dX(p) is invertible. In this case we say that p is a simple singularity

of X, positive, if det dX(p) > 0, negative otherwise. Prove that a simple singularity is isolated

and i(X, p) = ±1, depending on whether p is a positive or negative simple singularity (hint:

by Taylor’s formula X(q) = dX(0)(q) + R(q)∥q∥, with limq→0R(q) = 0. Prove that H(q, s) =

dX(0)(q) + (1− t)R(q)∥q∥ ̸= 0, if ∥q∥ is sufficiently small. Hence...).

(6) Prove the following formula, called the Kronecker formula.

Let D ⊆ R2 be a closed disk, with center q and radius r, and X : D −→ R2 be a vector field with

only simple singularities, none of which is in ∂D. Then

1

2π

∫
γ

θ = P −N,

where γ(t) = p+r(cos 2πt, sin 2πt), P is the number of the positive singularities and N the number

of the negative ones.

Remark: The condition i(X, p) = 0 does not imply X(p) ̸= 0 (find an example!). However, if i(X, p) =

0, given ϵ > 0, we can find a vector field X̃ which coincides with X outside a disk of radius ϵ and center p

and has no zeros in that disk.

7.24. Let f : U ⊆ C = R2 −→ C be a holomorphic function (see Exercise 7.33 of Chapter 1), f = u+ iv.

(1) Prove the following result

Theorem: [Cauchy Theorem] If U is simply connected and γ : S1 −→ U is a closed piecewise

smooth curve then∫
γ

f(z)dz :=

∫
γ

(udx− vdy) + i

∫
γ

(udy + vdx) = 0.

(2) Suppose that f ′(z) ̸= 0 for z in a disk D ⊆ U and f(z) ̸= 0 for z ∈ ∂U . Prove that the number of

zeros in D is given by
1

2πi

∫
∂D

df

f

(hint: prove that the singularities of the vector field X(x, y) = (u(x, y), (v(x, y)) are all simple and

positive. Then....).

7.25. Prove that any continuous curve γ : [a, b] −→ R2 \ {0} admits angular functions (hint: use polar

coordinates to prove the claim when the image of γ is contained in a half plane. Then...). Extend Theorem

5.14, Definition 5.16 and Theorem 5.18 to the case of continuous functions.

7.26. (For this and the next two Exercises, U can be any topological space) Let U ⊆ Rm be an open set

and let α, β : [0, 1] −→ V be continuous curves with α(1) = β(0). Define the product α ∗ β as

α ∗ β(t) =

{
α(2t) se 0 ≤ t ≤ 1

2

β(2t− 1) se 1
2 ≤ t ≤ 1

and α−1(t) = α(1− t). Assuming that the products below are well defined, prove that
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(1) If α1 ∼ β1, α2 ∼ β2, then α1 ∗ α2 ∼ β1 ∗ β2.
(2) (α ∗ β) ∗ γ ∼ α ∗ (β ∗ γ).
(3) α ∗ ϵp ∼ α ∼ ϵp ∗ α.
(4) α ∗ α−1 ∼ ϵp ∼ α−1 ∗ α.

where the homotopies are relative to the endpoints and ϵp is the constant curve ϵp(t) = p.

Hint: consider the homotopies

(1)

H(t, s) =

{
H1(2t, s) se 0 ≤ t ≤ 1

2

H2(2t− 1, s) se 1
2 ≤ t ≤ 1

where Hi are homotopies between αi e βi.

(2)

H(t, s) =


α( 4t

s+1 ) se 0 ≤ 4t ≤ s+ 1

β(4t− s− 1) se s+ 1 ≤ 4t ≤ s+ 2

γ( 4t−s−2
2−s se s+ 2 ≤ 4t ≤ 4

(3)

H(t, s) =

{
ϵp(t) se 0 ≤ 2t ≤ 1− s

α( 2t−1+s
1+s ) se 1− s ≤ 2t ≤ 2

(4)

H(t, s) =


α(2t) se 0 ≤ t ≤ 1−s

2

α(1− s) se 1−s
2 ≤ t ≤ 1+s

2

α−1(2t− 1) se 1+s
2 ≤ t ≤ 1

7.27. Let U ⊆ Rn be an open set and p ∈ U . Consider the set Ω(U, p) = {γ : [0, 1] −→ U :

γ is continuous and γ(0) = γ(1) = p}. Prove that ∗ induces a group structure on the quotient set

π1(U, p) := Ω(U, p) modulo the equivalence relation α ∼ β if and only if α, β are homotopic relative to

the endpoints (see Exercise 7.13).

Remark. With this structure, π1(U) is called the fundamental group of U with respect to p.

7.28. Prove that an open set U ⊆ Rn is simply connected if and only if π1(U) is trivial.

Remark. The equivalence relation that defines π1(U, p) is the one of based homotopy, i.e. two closed

curves in Ω(U, p) are equivalent if there is an homotopy H between them such that H(0, s) = H(1, s) = p.

This is not the same as free homotopy between closed curves. It is easy to see, and we invite the reader to

prove it, that if two curves α, β ∈ Ω(U, p) are freely homotopic, as closed curves, then they define conjugate

elements in π1(U, p), i.e. there exist [γ] ∈ π1(U, p) such that [α] = [γ][β][γ]−1.

7.29. Let F : Sn −→ Sn be a smooth function and F̃ : Rn+1 \ {0} −→ Rn+1 \ {0}, F̃ (tx) = tF (x).

Then we have an induced linear map F̃∗ : Hn(Rn+1 \ {0}) ∼= R −→ Hn(Rn+1 \ {0}) ∼= R. This map is

multiplication by a real number dg(F ), called the degree of F . It is known that dg(F ) ∈ Z 13 . Let Dn+1

be the unit disk and G : Dn+1 −→ Rn+1 a smooth function not vanishing on the unit sphere Sn = ∂Dn+1.

13It follows, from homotopy invariance, that homotopic maps have the same degree. A basic fact in homotopy theory is

the Theorem of Hopf: if two maps from Sn to Sn have the same degree, then they are homotopic.
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Then the degree of G, dg(G), is defined as the degree of the map G̃(x) = G(x)
∥G(x)∥ . Prove that, if dg(G) ̸= 0,

then the equation G(x) = 0 has a solution.

7.30. Prove that there are no smooth maps F : Dn+1 −→ Sn = ∂Dn+1 such that F (x) = x ∀x ∈ Sn.

Use this fact to prove the celebrated result

Theorem. [Brouwer fixed point Theorem] Any continuous map G : Dn+1 −→ Dn+1 has a fixed point,

i.e. a point x ∈ Dn+1 such that G(x) = x

(hint for the Brouwer fixed point Theorem: suppose G(x) ̸= x ∀ x ∈ Dn+1. For x Dn+1 consider the ray

starting at G(x) containing x and define F (x) to be the intersection of this ray with Sn. Then ...).

7.31. Use Exercise 7.29 to define the index of a vector field X : U ⊆ Rn −→ Rn at a point p ∈ U and

try to extend, as much as you can, the facts claimed in Exercise 7.23 for this situation.

7.32. Let L : E1 −→ E2 be a linear map and let F be a given vector space. Prove that ker(L ⊗ 11) =

ker(L)⊗ F and Im(L⊗ 11) = Im(L)⊗ F. Prove Proposition 4.5.

7.33. Consider, in R3, the points P0 = (0, 0, 0), P1 = (−1, 0, 0), P2 = (1, 0, 0). Let Si = Pi+te3, i = 1, 2.

Consider the open set U = R3 \ {P0 ∪ S1 ∪ S2}. Let Vj , j = 0, 1, 2 be the open sets

V0 = {(x, y, z) ∈ R3 : −2

3
< x <

2

3
}∩U, V1 = {(x, y, z) ∈ R3 : x < −1

3
}∩U, V2 = {(x, y, z) ∈ R3 : x >

1

3
}∩U.

Clearly U = V0 ∪ V1 ∪ V2.

(1) Prove that V0 ∼ R3 \ {0}, Vi ∼ R3 \ Si, i = 1, 2, V0 ∩ Vi ∼ R3, i = 1, 2.

(2) Use the Mayer Vietoris sequence (twice) to prove that the restriction homomorphism

rp : Ω
p(U) −→ Ωp(V0)⊕ Ωp(V1)⊕ Ωp(V2), rp(ω) = (ω|V0 , ω|V1 , ω|V2),

indices an isomorphism in cohomology. Conclude that H∗(U) is spanned, as a vector space, by

1 ∈ H0(U), r∗1([α1]), r
∗
1 [α2] ∈ H1(U) and r∗2([ω]) where [αi] is a generator of H1(Vi) and [ω] is a

generator of H2(V0).

(3) Prove that [α1 ∧ α2] = 0 ∈ H2(U). Conclude that U and W = R2 \ {0} × R2 \ {0} ⊆ R4 have

cohomology that are isomorphic as vector spaces, but not as algebras. In particular the two sets

are not homotopy equivalent (see Example 4.10 and Remark 4.11).

Remark. Naturally U,W do not have the same dimension. To have an example of open sets of the same

dimension, with isomorphic cohomology (as vector spaces) but not homotopy equivalent, just take U × R.
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