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In general relativity, the Einstein equation is obtained by taking the

variation of

1

16π

∫
R +

∫
L

where R is the scalar curvature of the spacetime and L is the

Lagrangian of matter coupled to gravity.

The variational equation has the form

Rij −
1

2
R gij = Tij

where Rij is the Ricci tensor, and

Tij is the matter energy-momentum tensor.
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In classical relativity, the matter tensor satisfies the weak energy

condition

∑
Tij l i l j ≥ 0

for any four-vector l i that is time-like∑
gij l i l j < 0 .
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The Einstein equation is nonlinear and there is no global symmetry

to apply Noether ’s theorem to find energy momentum tensor for

gravitation.

The equivalence principle implies that all interesting quantities

have to be invariant under change of coordinate at each point.

Since the first derivative of metric can always be set to be zero at

one point, it is not possible to find local energy density.

On the other hand, it is important to look into some sort of energy

that can be localized in a suitable way so that the standard energy

method in non linear hyperbolic equation can be applied.
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Let us look at the Kerr metric:

ds2 = −∆

U

(
dt − a sin2 θ dφ

)2
+ U

(
dr 2

∆
+ dθ2

)
+

sin2 θ

U

(
a dt − (r 2 + a2) dφ2

)2

U = r 2 + a2 cos2 θ

∆ = r 2 − 2 M r + a2

−∞ < t <∞ , M +
√

M2 − a2 < r <∞ ,

0 < θ < π, 0 < φ < 2π .
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The spacetime has a null hypersurface

r = M +
√

M2 − a2

which is the event horizon of the black hole. This is the spacetime

boundary of the black hole where any event occurring inside can

not be detected by an outside observer.

The vector field ∂
∂t is a Killing vector field; it preserves the metric.
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The Killing field ∂
∂t is time-like (i.e. g( ∂∂t ,

∂
∂t ) < 0) when

r 2 − 2 M r + a2 cos2 θ > 0

but space-like (i.e. g( ∂∂t ,
∂
∂t ) > 0) when

r 2 − 2 M r + a2 cos2 θ < 0 .

This last region is called the ergosphere.

It is a bounded region outside the event horizon except at

θ = 0 and π.
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We can consider the dynamics of a scalar field Φ(t, r , θ, φ) in the

Kerr spacetime. Its propagation is described by a scalar wave

equation.

Since the spacetime has a Killing vector field ∂
∂t , the Lagrangian∫

|∇Φ|2 associated to the wave equation defines a local energy

density. It has the form

E =

((
r 2 + a2

)2

∆
− a2 sin2 θ

)
|∂tΦ|2 + ∆ |∂r Φ|+ sin2 θ |∂cos θΦ|2

+

(
1

sin2 θ
− a2

∆

)
|∂φΦ|2

This density is positive except within the ergosphere, where it is

negative.
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In the Kerr geometry, no first-order or higher-order positive

conserved energy density exists for the scalar wave equation as was

observed by Finster, Kamran, Smoller and Yau (2005)

The energy method for the scalar wave equation breaks down due

to the negativity of the energy density within the ergosphere,

unless the angular momentum is small relative to the mass. (In this

case, Dafermos and Rodnianski proved the solution is bounded in t

if the initial data has compact support outside the event horizon.)
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The decay of the solution of the scalar wave equation is a special

case of the decay of solutions to the Teukolsky equation (1974)

which describes the linear stability of the Kerr black hole.

Frolov and Novikov (1998):

Linear stability of the Kerr black hole is one of the few truly

outstanding problems that remain in the field of black hole under

gravitational wave perturbations.

The problem of linear stability of Kerr is still open and it is not

even clear whether linear stability of the Kerr holds true if the

angular momentum is not small relative to the mass.
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The Teukolsky equation is separable by the ansatz

e−iωt−ikφ R(r) Θ(θ)

Chandrasekhar called this property of Kerr geometry

“having the aura of the miraculous.”

Finster, Kamran, Smoller, Yau (2002)

The propagation of waves described by a Dirac equation in Kerr

space decays in time like t−5/6.
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For the scalar wave equation, the wave with fixed angular

momentum mode k also decays.

In principle, we can sum up the modes to conclude the decay of

the scalar wave equation. This can be done for the Schwarzschild

geometry. However, the negativity of the energy density in the

ergosphere of the Kerr geometry causes problems.

The ergosphere has many strange properties including the energy

extraction process proposed by Penrose. The wave analogue was

due to Zeldovich (1972) and Starobinsky (1973). It is called

superradiance. A complete rigorous treatment for the latter case

was finally achieved recently by Finster, Kamran, Smoller and Yau.
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Now we see that in the ergosphere, the energy density of the scalar

wave can be negative.

The problem comes from the fact that the gravitational field itself

must have energy. After all, the potential energy of a pair of

gravitating particles depends on their separation distance. Hence

the total energy depends on the gravitational field configuration.
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In 1982, Penrose listed the search for a definition of such

quasi-local mass as his number one problem in classical general

relativity [in S.-T. Yau, Seminar on Differential Geometry (1982)].

There are many reasons to search for such a concept. Many

important statements in general relativity make sense only with the

presence of a good definition of quasi-local mass. For example, it

allows us to talk about the binding energy of two bodies rotating

around each other.

More importantly, a good definition of quasi-local mass should help

us to control the dynamics of the gravitational field. Hopefully,

this may be used to generalize the energy method in hyperbolic

equations where difficulties were encountered even in the study of

linearized stability of the Kerr metric.
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There are various proposals for the definition of quasilocal mass:

S.W. Hawking, J. Math. Phys. (N.Y.) 9, 598 (1968).

R. Penrose, Proc. R. Soc. A 381, 53 (1982).

R. Bartnik, R. Phys. Rev. Lett. 62(20), 2346–2348 (1989).

J. D. Brown and J. W. York, Phys. Rev. D 47, 1407 (1993).
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Properties we require for a valid definition:

(1) The ADM or Bondi mass should be recovered as spatial or null

infinity is approached.

(2) The correct limits need be obtained when the surface

converges to a point.

(3) Quasilocal mass must be nonnegative in general (under local

energy condition) and zero when the ambient spacetime of the

surface is the flat Minkowski spacetime.

(4) It should also behave well when the spacetime is spherically

symmetric.

16



The hoop conjecture of Thorne (1972):

“Horizons form when and only when a mass m gets compacted

into a region whose circumference in every direction is C = 4πM.”

Schoen-Yau (1983):

If µ− |J| ≥ Λ holds on a bounded region Ω ⊂ N for a spacelike

hypersurface N in a spacetime, and Rad(Ω) ≥
√

3
2
π√
Λ

, then N

contains an apparent horizon.

I was unsatisfied with the result as it is too local, and does not

involve boundary effect.
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Yau (2001):

Suppose the mean curvature H of ∂Ω is strictly greater than

|tr∂Ω(p)|. Let c = min(H − |tr∂Ω(p)|). If Rad(Ω) ≥
√

3
2
π√
Λ

where

Λ = 2
3 c2 + µ− |J|, then Ω must admit an apparent horizon in its

interior.

I want to replace mass of the region by quasilocal mass of the

boundary surface, and the circumference of the hole by either the

diameter as measured by the square root of area or some other

type of length that can be described as circumference.

Gibbons (2009) reformulated the hoop conjecture in terms of the

Birkhoff invariant or length of the shortest closed geodesic.
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There were many attempts to give the definition of quasi-local

mass. We shall use an approach which seems to be most promising.

Recall that for a Lorenztian manifold M with boundary ∂M, the

action in general relativity should be

I (g ,Φ) =

∫
M

(
1

16π
R + L(g ,Φ)

)
+

1

8π

∫
∂M

K

where K is the trace of the second fundamental form of ∂M.

The last term is needed to give rise to the right variational

equation if we fix the metric and the matter field on the boundary.
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If we demand that a certain background (g0,Φ0) is a static

solution to the field equation, we replace I by

I (g ,Φ)− I (g0,Φ0) .

Hence, for flat spacetime background, we use∫
M

(
1

16π
R + L(g ,Φ)

)
+

1

8π

∫
∂M

(K − K0) .
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Suppose we take a family of space-like surface Σt and a time-like

vector field t such that tµ∇µt = 1 . We can write

tµ = N nµ + Nµ

where nµ is the normal to Σt ,

N is called the lapse function,

Nµ is called the shift vector.

In this notation,

I (g ,Φ) =

∫
N dt

[
1

16π

∫
Σt

(
R + pµνpµν − p2 + 16πL

)
+

1

8π

∫
S2

t

2K

]

where pµν is the second fundamental form of Σt and p is its trace,
2K is the mean curvature of ∂Σt = St .
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If one introduces the canonical momenta kµν , k conjugate to
3gµν ,Φ, we can rewrite the action to be

∫
dt

∫
Σt

(
kµν ġµν + kΦ̇− NH− NµHµ

)
+

1

8π

∫
St

(
N 2K − Nµpµνrν

)
where H is the Hamiltonian constraint

T00 −
1

2

(
R − pµνpµν + p2

)
and Hµ is the momentum constraint

T0µ − pµν,ν + p,µ .

Note that H = 0 and Hµ = 0 when the equation of motion is

satisfied.

rν is spacelike unit normal to St and tangent to Σt .
22
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The Hamiltonian is then derived to be

H =

∫
Σt

(NH+ NµHµ)− 1

8π

∫
St

(
N 2K − Nµpµνrν

)
.

If we take the background so that pµν = 0 , we see that the

Hamiltonian relative to the background is given by

∫
Σt

(NH+ NµHµ)− 1

8π

∫
St

(
N(2K − 2K0)− Nµpµνrν

)
.
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Hence associated to each time-like vector field t, we have the

physical Hamiltonian

− 1

8π

∫
St

(
N(2K − 2K0)− Nµpµνrν

)
.

This expression was derived by Brown-York and Hawking-Horowitz.

They proposed to simply choose N = 1,Nµ = 0 for the definition

of quasi-local mass. In general, the definition does not give

positivity except in the time symmetric case (pµν = 0) which was

proved by Shi-Tam.
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The definition of Brown-York is gauge dependent. Liu-Yau defined

a gauge independent mass to be

− 1

8π

∫
S

(√
(2K )2 − (trSp)2 − 2K0

)
and proved that it is positive whenever the mean curvature vector

of S is space-like and the Gauss curvature is positive.

The proof combined arguments of Schoen-Yau and Witten. We

needed to handle metrics where the mean curvature may jump

along the boundary. The discontinuity of the Dirac spinor required

nontrivial analysis.

√
(2K )2 − (trSp)2 is the Lorentian norm of the mean curvature

vector

H = −2K rν + (trSp)nν .
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Let me now describe the work that I did with Mu-Tao Wang.

Given a surface S , we assume that its mean curvature is positive.

We embed S isometrically into R3,1.

Given any constant unit future time-like vector w (observer) in

R3,1, we can define a future directed time-like vector field w along

S by requiring

〈H0,w〉 = 〈H,w〉

where H0 is the mean curvature vector of S in R3,1

and H is the mean curvature vector of S in spacetime.
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Note that given any surface S in R3,1 and a constant future

time-like unit vector wν , there exists a canonical gauge nµ (future

time-like unit normal along S) such that∫
S

N 2K0 + Nµ(p0)µνrν

is equal to the total mean curvature of Ŝ , the projection of S onto

the orthogonal complement of wµ ,

wµ = N nµ + Nµ,

rµ is the space-like unit normal orthogonal to nµ ,

p0 is the second fundamental form calculated by the three surface

defined by S and rµ.
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From the matching condition and the correspondence

(wµ, nµ)→ (wµ, nµ), we can define a similar quantity from the

data in spacetime ∫
S

N 2K + Nµ(p)µνrν .

We write E (w) to be

8πE (w) =

∫
S

N 2K + Nµ(p)µνrν −
∫

S
N 2K0 + Nµ(p0)µνrν

and define the quasi-local mass to be

inf E (w)

where the infimum is taken among all isometric embeddings into

R3,1 and timelike unit constant vector w ∈ R3,1.
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The Euler-Lagrange equation for minimizing E (w) is

divS(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − V )

− (Ĥσ̂ab − σ̂ac σ̂bd ĥcd)
∇b∇aτ√
1 + |∇τ |2

= 0

where sinh θ = −∆τ

|H|
√

1+|∇τ |2
, V is the tangent vector on Σ that is

dual to the connection one-form 〈∇N
(·)

J
|H| ,

H
|H|〉 and σ̂, Ĥ and ĥ are

the induced metric, mean curvature and second fundamental form

of Ŝ in R3.

In general, the above equation should have an unique solution τ .
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We prove that E (w) is non-negative among admissible isometric

embedding into Minkowski space.

In the proof, we use the techniques and results of the positivity of

the Liu-Yau quasi-local mass. First we prove an inequality about

total mean curvature for solutions of Jang’s equation. Then we

prove positivity of E (W ) by comparing the defined mass to a

similar quantity defined on the graph of the solution to Jang’s

equation whose boundary condition is the given time function.
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In summary, given a closed space-like 2-surface in spacetime whose

mean curvature vector is space-like, we associate an

energy-momentum four-vector to it that depends only on the first

fundamental form, the mean curvature vector and the connection

of the normal bundle with the properties

1. It is Lorentzian invariant;

2. It is trivial for surfaces sitting in Minkowski spacetime and

future time-like for surfaces in spacetime which satisfies the

local energy condition.
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Spherical symmetric spacetime are foliated by the orbits of SU(2).

We can define a function on the spacetime by associating to its

orbit the area 4πr 2.

The mean curvature vector of the orbit is

−2

r
∇r

where ∇ is with respect to the quotient Lorentzian (1, 1) metric.

If this vector is space-like, the quasi-local mass of this orbit sphere

is

M = r (1− |∇r |) .
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Note that in 1964, Misner and Sharp defined a mass

m =
r

2

(
1− |∇r |2

)
which is the same as the Hawking mass (1968)√

A

16π

(
1− 1

16π

∫
S
|H|2

)
.

The relation with our mass is

m = M − M2

2r
.
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From the formula of quasi-local mass, which we proved to be

positive, we derived a corollary that the mass m (Hawking mass) is

also positive. (This was proved by Christodoulou (1995) under

extra assumptions.)

Note that
1

2
M ≤ m ≤ M .

On the apparent horizon M = 2m ,

and at space-like infinity M = m .

Hence our quasi-local mass is equivalent to the standard definition

in the case of spherically symmetric spacetime.
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In the spatial direction, the Hawking mass is monotonically

increasing along the inverse mean curvature flow (Geroch) and this

is important in Huisken-Ilmanen’s work.

The quasi-local mass is not monotonically increasing in this sense.

However, the spherical symmetric case indicates that such property

may still hold, up to a constant depending on the initial surface.
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In the future time-like or null direction, the quasi-local mass is

expected to decrease up to a constant depending on the initial

surface if we choose the equation of motion for the 2-surfaces

carefully.

In the case when pij ≡ 0, there is also a definition of quasi-local

mass by Bartnik which is obtained by minimizing the ADM mass

among all asymptotically flat extension of the data which does not

contain an apparent horizon and which extends the original data.
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Our quasi-local mass also satisfies the following important

properties:

3. When we consider a sequence of spheres on an asymptotically

flat space-like hypersurface, in the limit, the quasi-local mass

(energy-momentum) is the same as the well-understood ADM

mass (energy-momentum);

4. When we take the limit along a null cone, we obtain the

Bondi mass(energy-momentum).

5. When we take the limit approaching a point along null

geodesics, we recover the energy-momentum tensor of matter

density when matter is present, and the Bel-Robinson tensor

in vacuum.
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These properties of the quasi-local mass is likely to characterize

the definition of quasi-local mass, i.e. any quasi-local mass that

satisfies all the above five properties may be equivalent to the one

that we have defined.

Strictly speaking, we associate each closed surface not a

four-vector, but a function defined on the light cone of the

Minkowski spacetime. Note that if this function is linear, the

function can be identified as a four-vector.

It is a remarkable fact that for the sequence of spheres converging

to spatial infinity, this function becomes linear, and the four-vector

is defined and is the ADM four-vector that is commonly used in

asymptotically flat spacetime. For a sequence of spheres

converging to null infinity in Bondi coordinate, the four vector is

the Bondi-Sachs four-vector.
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It is a delicate problem to compute the limit of our quasi-local

mass at null infinity and spatial infinity. The main difficulties are

the following:

(i) The function associated to a closed surface is in non-linear in

general;

(ii) One has to solve the Euler-Lagrange equation for energy

minimization.
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For (i), the following observation is useful:

For a family of surfaces Σr and a family of isometric embeddings

Xr of Σr into R3,1, the limit of quasi-local mass is a linear function

under the following general assumption that the mean curvature

vectors are comparable in the sense

lim
r→∞

|H0|
|H|

= 1

where H is the the spacelike mean curvature vector of Σr in N and

H0 is that in the image of Xr in R3,1.
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Under the comparable assumption of mean curvature, the limit of

our quasi-local mass with respect to a constant future time-like

vector T0 ∈ R3,1 is given by

lim
r→∞

1

8π

∫
Σr

[
− 〈T0,

J0

|H0|
〉(|H0| − |H|)

− 〈∇R3,1

∇τ
J0

|H0|
,

H0

|H0|
〉+ 〈∇N

∇τ
J

|H|
,

H

|H|
〉
]

dΣr

where τ = −〈T0,Xr 〉 is the time function with respect to T0.

This expression is linear in T0 and defines an energy-momentum

four-vector at infinity.
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At the spatial infinity of an asymptotically flat spacetime, the limit

of our quasi-local mass is

lim
r→∞

1

8π

∫
Σr

(|H0| − |H|) dΣr = MADM

lim
r→∞

1

8π

∫
Σr

〈∇N
−∇Xi

J

|H|
,

H

|H|
〉dΣr = Pi

where

(
M
Pi

)
is the ADM energy-momentum four-vector, assuming

the embeddings Xr into R3 inside R3,1.
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At the null infinity, the limit of quasi-local mass was found by

Chen-Wang-Yau to recover the Bondi-Sachs energy-momentum

four-vector.

On a null cone w = c as r goes to infinity, the limit of the

quasi-local mass is

lim
r→∞

1

8π

∫
Σr

(|H0| − |H|)dΣr =
1

8π

∫
S2

2m dS2

lim
r→∞

1

8π

∫
Σr

〈∇N
−∇Xi

J

|H|
,

H

|H|
〉dΣr =

1

8π

∫
S2

2mXi dS2

where (X1,X2,X3) = (sin θ sinφ, sin θ cosφ, cos θ).
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The following two properties are important for solving the

Euler-Lagrange equation for energy minimization:

(a) The limit of quasi-local mass is stable under O(1)

perturbation of the embedding;

(b) The four-vector obtained is equivariant with respect to

Lorentzian transformations acting on Xr .

We observe that momentum is an obstruction to solving the

Euler-Lagrange equation near a boosted totally geodesics slice in

R3,1. Using (b), we find a solution by boosting the isometric

embedding according to the energy-momentum at infinity. Then

the limit of quasi-local mass is computed using (a) and (b).
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In evaluating the small sphere limit of the quasilocal energy, we

pick a point p in spacetime and consider Cp the future light cone

generated by future null geodesics from p. For any future directed

timelike vector e0 at p, we define the affine parameter r along Cp

with respect to e0. Let Sr be the level set of the affine parameter r

on Cp.

We solve the optimal isometric equation and find a family of

isometric embedding Xr of Sr which locally minimizes the

quasi-local energy.

With respect to Xr , the quasilocal energy is again linearized and is

equal to
4π

3
r 3T (e0, ·) + O(r 4)

which is the expected limit.
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In the vacuum case, i.e. T = 0, the limit is non-linear with the

linear term equal to

1

90
r 5Q(e0, e0, e0, ·) + O(r 6)

with an additional positive correction term in quadratic expression

of the Weyl curvature.

The linear part consists of the Bel-Robinson tensor and is precisely

the small-sphere limit of the Hawking mass which was computed

by Horowitz and Schmidt.

The Bel-Robinson tensor satisfies conservation law and is an

important tool in studying the dynamics of Einstein’s equation,

such as the stability of the Minkowski space

(Christodoulou-Klainerman) and the formation of trapped surface

in vacuum (Christodoulou)
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