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The Dirac equation is reinterpreted as a constitutive equation for the vacuum, with the electron
modeled as a point singularity in a lightlike toroidal vortex. The singularity generates electric
and magnetic potentials with circular zitterbewegung around the spin axis. These fields are then
propagated by Maxwell’s equation. The result is an integrated Maxwell-Dirac field theory proposed
as a non-perturbative approach to quantum electrodynamics with implications for the electron’s
anomalous magnetic moment and the structure of the photon. Extension to a “Standard Model“ of
elementary particles as vacuum singularities is discussed.
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I. INTRODUCTION

The spectacular success of quantum electrodynamics
(QED) gives physicists great confidence in Maxwell’s
equation on the one hand and Dirac’s equation on the
other, yet something is missing in relations between
them. With his usual penetrating insight, Einstein fo-
cused on the crux of the problem [1, 2]: “It is a delusion
to think of electrons and the fields as two physically dif-
ferent, independent entities. Since neither can exist with-
out the other, there is only one reality to be described,
which happens to have two different aspects; and the the-
ory ought to recognize this from the start instead of doing
things twice.”

This paper proposes a synthesis of Maxwell and Dirac
theories based on a new model for singularities in the
electromagnetic vacuum. The model is suggested by a
remarkable relation between electron mass and vacuum
polarization proposed by Seymour Blinder. The only re-
quirement is consistency with Maxwell’s equation. No
changes in the form of Dirac or Maxwell equations are
necessary, but the two are fused at the source. The solu-
tions seamlessly integrate electron field and particle prop-
erties along lines proposed by de Broglie. They answer
Einstein’s call for a unified electron theory with a unified
Maxwell-Dirac theory.

Singular toroidal solutions of the Dirac equation con-
stitute a new class of wave functions, fairly called ontic
states (or “states of reality” as Einstein might have put
it), because they have a definite physical interpretation
in terms of local observables of the electron and associ-
ated deformation of the vacuum. No probabilities are in-
volved. Electron states are thus characterized by a literal
field-particle duality : field and particle coexist as a real
physical entity. This appears to finesse the notorious self-
energy problem. It implies there is no such thing as the
electron’s own field acting on itself, because particle and
field are two different aspects of one and the same thing.
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Section II reviews the formulation of classical electro-
magnetic theory in terms of Spacetime Algebra (STA) to
provide a context for two important new developments.
The first is Blinder’s concept of a classical vacuum sin-
gularity. The second is Antonio Rañada’s discovery of
toroidal solutions to Maxwell’s equation. The two pro-
vide complementary inputs to a new theory of the elec-
tron and the electromagnetic vacuum.

Section III begins with a review and extension of the
Zitter particle model for the electron clock in [3] and up-
dated in the preceding paper [4]. That sets the stage in
Section IV for the main subject of this paper, namely,
a reconstruction of the Dirac equation as a constitu-
tive equation for the vacuum with the electron as a
point singularity. The singularity generates the elec-
tron’s Coulomb field with circular zitterbewegung and
a toroidal magnetic field with the spin vector as its axis.
I call this approach Maxwell-Dirac theory. It is com-
plementary to the conventional Born-Dirac theory dis-
cussed in [4] in the sense that motion is described by the
same Dirac equation in both. In Born-Dirac the electron
charge is inert and responds only to action of external
fields. In Maxwell-Dirac the charge is active and gen-
erates an electromagnetic field. In this sense, Maxwell-
Dirac may be regarded as an alternative to second quan-
tization, though we do not directly consider its relation
to standard QED. We do show, however, that Maxwell-
Dirac incorporates Oliver Consa’s physical explanation
for the electron’s anomalous magnetic moment with im-
pressive quantitative accuracy [5]. That itself should be
sufficient to justify further study of QED implications.
Moreover, it leads directly to a proposed new theory of
the photon as an electron-positron singular state.

Section V discusses possibilities for modeling all ele-
mentary particles as vacuum singularities, and implica-
tions for gravitation theory are pointed out.

Considering the enormous scope of Maxwell-Dirac the-
ory, our treatment has many loose ends and is best re-
garded as a guide for further research.
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II. CLASSICAL ELECTROMAGNETICS

To place our analysis in the most general context, we
begin with an STA formulation of Maxwell’s electrody-
mamics in accord with the authoritative presentation by
Sommerfeld [6].

In STA an electromagnetic field is represented by a
bivector-valued function F = F (x) on spacetime, appro-
priately called the Faraday. Its split into electric and
magnetic fields is given by

F = E + iB. (1)

In a polarizable medium, the electromagnetic field density
is a bivector field G = G(x) with the split into electric
and magnetic densities given by

G = D + iH. (2)

The important distinction between “field” and “field den-
sity” or “excitation” is emphasized by Sommerfeld. We
are interested in G for describing properties of the vac-
uum.

The most general possible version of Maxwell’s equa-
tion for the electromagnetic field is

�F = Je + iJm , (3)

where Je = Je(x) is the electric charge current and Jm =
Jm(x) is a magnetic charge current. Separating vector
and pseudovector parts, we get

� · F = Je (4)

and

� ∧ F = iJm. (5)

Using the duality between divergence and curl

(� ∧ F )i = � · (iF ) (6)

and the anticommutivity of the pseudoscalar with vec-
tors, the latter equation can be written

� · (iF ) = Jm. (7)

In the most general case, the Faraday F can be derived
from a “complex” pair of vector potentials A = A(x) and
C = C(x), so we have

F = �(A+ Ci). (8)

The scalar and pseudoscalar parts of this equation give
us

� ·A = 0 = � · C, (9)

while equations (4) and (7) give us separate equations for
fields produced by electric and magnetic charges:

�2A = Je, (10)

�2C = Jm. (11)

Though we shall dismiss the magnetic monopole current
Jm as unphysical, we shall see good reason to keep the
complex vector potential for radiation fields.

Squaring the Faraday gives us scalar and pseudoscalar
invariants which can be expressed in terms of electric and
magnetic fields:

F 2 = (E + iB)2 = E2 −B2 + 2iE ·B. (12)

As first shown in [7], if either of these invariants is
nonzero, they can be used to put the Faraday in the
unique invariant form:

F = feiϕ = f cosϕ+ if sinϕ, (13)

where f is a simple timelike bivector, and the exponential
specifies a duality transformation through an angle given
by

tan 2ϕ =
2E ·B
E2 −B2

=
F · F
iF ∧ F

, (14)

Note that (13) determines a rest frame in which the
electric and magnetic fields are parallel without using a
Lorentz transformation. In addition, the squared magni-
tude of f is

f2 = [(E2 + B2)− 4(E×B)2]
1
2 , (15)

which is an invariant of the Poynting vector for F .
A null field can also be put in the form

F = feiϕ with f2 = 0, (16)

so we can write

f = e + ib = e(1 + k̂) = f k̂. (17)

Hence we can put the null field into the form

F = feiϕ = feik̂ϕ, (18)

showing that the duality rotation is equivalent to a ro-
tation of vectors in the null plane. Of course, this is
significant for description of radiation fields.

A. Conservation Laws

Using the identity

� · (� · F ) = (� ∧�) · F = 0, (19)

from (4) and (7), we get the current conservation laws

� · Je = 0 and � · Jm = 0. (20)

An energy-momentum tensor T (n) = T (n(x), x) de-
scribes the energy-momentum flux in direction of a unit
normal n at spacetime point x. As discussed elsewhere
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[8, 9], the electromagnetic energy-momentum tensor is
given by

T (n) =
1

2
〈FnG̃〉1 =

1

4
[FnG̃+GnF̃ ]. (21)

where n is a unit normal specifying the direction of flux.
With some algebra, the tensor can be expressed in the
alternative form, which separates normal and tangential
fluxes:

T (n) =
1

2
[(G · F̃ )n+G · (n · F̃ ) + (G · n) · F̃ ]. (22)

Whence,

∂nT (n) = ∂n · T (n) + ∂n ∧ T (n) = 0. (23)

The vanishing of both scalar and bivector parts in this
expression tells us the linear function T (n) is traceless
and symmetric.

The divergence of the energymomentum tensor is given
by

Ṫ (�̇) = 1
2 〈Ḟ �̇G̃+ F�G̃〉1 = 1

2 [G · Je + F · Jf ], (24)

where current Jf includes any polarization or magneti-
zation currents. Note use of the overdot to indicate dif-
ferentiation to the left.

Physical interpretation of the energymomentum tensor
is perhaps facilitated by using a v-split to put it in the
form

T (v) =
1

4
[FG† +GF †]v. (25)

From this we find the energy density

T (v) · v = 1
2F · G̃ = 1

2 (E ·D + B ·H), (26)

and the momentum density

T (v) ∧ v = 1
2 (D×B + E×H). (27)

For a unit normal n = nv orthogonal to v, we have

T (n)v =
1

4
[FnG† +GnF †], (28)

so

T (n) · v = 1
2 (D×B + E×H) · n, (29)

and the spatial flux in direction n is

T (n) = T (n) ∧ v =
1

4
〈EnD + BnH〉1. (30)

The treatment of energymomentum conservation in this
subsection is completely general, applying to models of
the electromagnetic vacuum considered next as well as
material media. It sets the stage for specific applications
considered next as well as extensions to be considered in
the future.

B. The Classical Vacuum

In a thorough analysis of constitutive equations in
Maxwell’s electrodynamics, E. J. Post [10] identified a
hitherto unrecognized degree of freedom in Maxwell’s
equation for the vacuum. Regarding the vacuum as a
dielectric medium with variable permittivity ε = ε(x)
and permeability µ = µ(x) at each spacetime point x,
Maxwell’s condition for the propagation of light in a vac-
uum is given by

εµ = 1/c2 = ε0µ0. (31)

Obviously, this leaves the impedance

Z =

√
µ

ε
= Z(x) (32)

as an undetermined function. To ascertain its value, Post
further argues that charge should be regarded as an in-
dependent unit qe rather than the derived unit e. The
standard rule for changing units is

e2 =
q2e

4πε0
. (33)

Accordingly, the fine structure constant is given by

αe =
e2

~c
=

q2e
4πε0~c

=
q2e

4π~

√
µ0

ε0
. (34)

Hence, as Post observes, the fine structure constant
can be expressed as a ratio of two generally invariant
impedances:

αe =
Z0

ZH
, where Z0 =

√
µ0

ε0
, ZH =

2h

q2e
. (35)

This suggested to Post that the Hall impedance ZH is an
intrinsic property of the electromagnetic vacuum.

Blinder [11, 12] has shown that polarization of the
vacuum in the neighborhood of a classical electron is
uniquely determined by the very simple assumptions that
(1) the energy density of the electron field is proportional
to the charge density, and (2) the total energy in the field
determines the electron mass. We review Blinder’s argu-
ment to serve as a guide for generalizing it to the Dirac
electron.

For a point charge in its rest frame the electric field E
and electric displacement D are given by

E =
qe

4πε(r)

r

r3
, D = ε(r)E =

qe
4π

r

r3
, (36)

where r = |r|. The total energy in the field is

W =
1

2

∫
E ·D d3r =

1

32π2

∫ ∞
0

1

ε(r)

q2e
r4

4πr2dr. (37)

The charge density % is determined by

%

ε0
=∇ ·E =

−qe
4π

[
ε′(r)

r2[ε(r)]2
+
δ3(r)

ε(0)

]
(38)
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with ε′ = ∂r ε and the normalization∫ ∞
0

%(r) 4πr2dr = −qe
∫ ∞
0

ε0ε
′(r)dr

[ε(r)]2
= qe, (39)

which require that ε(∞) = ε0 and ε(0) =∞.
Finally, assuming that W = mec

2 and the charge den-
sity in (38) is proportional to the energy density in (37),
we get

−ε0ε′(r)
r2[ε(r)]2

=
q2e

32π2mec2ε(r)r4
. (40)

Whence,

ε(r) = ε0 exp

(
λ0
r

)
, (41)

where

λ0 =
q2e

8πε0

1

mec2
=

1

2

e2

mec2
(42)

is recognized as half the classical electron radius and puts
that quantity into new perspective as a radius of vacuum
polarization.

Now we have an explicit expression for the vacuum
charge density:

∇ ·E =
qe

4πε0

λ0
r4
e−λ0/r =

%(r)

ε0
. (43)

Sommerfeld [6] emphasizes that this does not have the
dimensions of charge, and he interprets it simply as “di-
vergence of the electric field.” Of course, he was not privy
to our notion of vacuum polarization or its expression as
a manifestly nonsingular quantity. However, the dimen-
sions of charge and its singularity are explicit in

∇ ·D =
−qe
4π
∇ 2

(
1

r

)
= qeδ

3(r). (44)

Also note that E = −∇ϕe, where

ϕe(r) =
−qe

4πε(r)λ0
. (45)

This suggests a straightforward generalization of Blin-
der’s argument.

By interpreting the variable r as the retarded distance
between each spacetime point x and the path z = z(τ) of
a point charge with velocity v = ż = c−1dz/dτ , the sim-
ple form for the scalar potential in (45) leads immediately
to the following generalization of the Liènard-Wiechert
potential:

A(x) =
qe

4πε(r)

v

λ0
. (46)

Let’s call this the “Coulomb vector potential” to empha-
size its relation to the Coulomb scalar potential. The
retarded distance is defined explicitly by

r = (x− z(τ)) · v = |r| with r = (x− z(τ)) ∧ v (47)

subject to the constraint

(x− z(τ))2 = 0. (48)

Hence, it generates the electromagnetic field

F = � ∧A =
qe

4πε(r)

{
v ∧�

1

r
+

� ∧ v
λ0

}
. (49)

To evaluate the derivatives, we use the constraint (48),
which implies proper time τ = τ(x) as a function of po-
sition with gradient

�τ =
x− z
c r

≡ k, (50)

where null vector k is independent of distance r. Conse-
quently, the curl of v = v(τ(x)) has the simple form

� ∧ v = �τ ∧ ∂τv = c k ∧ v̇. (51)

Similiarly, the gradient of (47) gives us

�r = v(v ∧�r) + �τ (x− z) · v̇c
= vr̂ + crkk · v̇. (52)

Inserting all this into (49), we get

F = � ∧A

=
qe

4πε(r)

{
r

r3
+
ck · v̇
r

v ∧ k +
ck ∧ v̇
λ0

}
. (53)

This differs from the classical retarded field [13] only in
the last term, wherein the distance r in the denominator
is replaced by λ0. At first sight this seems wrong, be-
cause a spherical electromagnetic wave surely attenuates
with distance. That may be why Blinder did not asso-
ciate his vacuum impedance with the electron’s vector
potential. On the other hand, if Blinder’s idea has any
relevance to quantum mechanics it must be expressed
through the vector potential, because that is the only
mechanism for electromagnetic interaction. Indeed, if the
last term contributes to photon emission, it should not
depend on distance. Let us therefore withhold judgment
until we examine how the vacuum impedance might fit
into quantum mechanics.

To wind up our discussion of classical theory, we define
a generalized displacement field by G = εF . Whence its
divergence for a charge at rest is

� ·G = qeδ
3(r)v = qe

∫ ∞
−∞

dzδ4(x− z(τ)) = Je, (54)

in agreement with (44) and (4). These expressions for
F and G = εF suffice to fit Blinder’s model for a point
charge in the vacuum into the general formulation of clas-
sical electrodynamics in the preceding section.

For a more realistic model of the electron, we need to
incorporate electron spin and magnetic moment as well.
Blinder [12] tried that with a dipole model of the mag-
netic moment, and he deduced an exponential form for
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the magnetic permeability µ analogous to that for ε, but
with a different functional dependence. However, that
approach is inconsistent with Maxwell’s condition (31)
relating µ and ε to the speed of light. Instead, from now
on, we impose Maxwell’s condition by introducing the
dimensionless vacuum impedance

ε(x) =

√
ε

µ

√
µ0

ε0
=

ε

ε0
=
µ0

µ
= eλ0/r (55)

I call the inverse of this function with some given value for
λ0 a Blinder function in recognition of Blinder’s seminal
contribution.

C. Toroidal Radiation Fields

A remarkable new family of null solutions to Maxwell’s
equation was discovered by Antonio Rañada in 1989 [14,
15] and subsequently reviewed and extended in [16, 17].
He called them “knotted radiation fields” because electric
and magnetic field lines are interlocked in toroidal knots
that persist as fields propagate. As beautifully described
in [18, 19], this has opened up an exciting new thread of
research on electromagnetic radiation.

Many researchers have discovered advantages in for-
mulating the radiation field as a “complex vector” F =
E + iB with the null condition F 2 = F ◦ F = 0, but
only Enk [20] has formulated it with geometric algebra
to show that the imaginary unit must be interpreted as
the unit pseudoscalar of spacetime. We shall demonstrate
that STA has further advantages preparing the way for
extending the theory to include toroidal fields described
by the Dirac equation in a later Section.

As emphasized by Kholodenko [21, 22], a crucial el-
ement in an electromagnetic knot is a “self-generating”
vector field v = v(x) described by the “eigenvector equa-
tion”

∇× v = κv. (56)

This equation has been known since the nineteenth cen-
tury as the Beltrami equation and employed to model
vorticity in fluids. It appears again in magnetohydrody-
namics, where it is called the force-free equation. And
in superconductivity it is known as the London equation.
Kholodenko [23] has reviewed the vast literature on the
subject across mathematics as well as physics from the
unifying perspective of contact geometry.

The Beltrami equation is even inherent in the free field
Maxwell equation [22]. Indeed, using the spacetime split,
Maxwell’s equation can be written

∂0F = −∇F. (57)

For the unique reference frame and form specified by (13),
we can write

F (x, t) = v(x, t)eiϕ(x,t). (58)

Inserting this into Maxwell’s equation and using an over-
dot for the time derivative, we have

(v̇ + iϕ̇v)eiϕ = −(∇v + i(∇ϕ)v)eiϕ. (59)

Cancelling exponentials and separately equating even
and odd parts, we get

+iϕ̇v = −∇v, (60)

and

v̇ = −i(∇ϕ)v. (61)

Writing κ = −ϕ̇, we put (60) in the form

+κv = −i∇v =∇× v. (62)

As advertised, this is precisely the Beltrami equation,
with a side condition ∇ · v = 0. If κ is constant, we
can differentiate again to get an equation of familiar
“Helmholtz type:”

(∇2 + κ2)v = 0. (63)

Time dependence of the vector field is governed by eq.
(61), which can be written

v̇ = −v×∇ϕ, (64)

with the side condition v · ∇ϕ = 0. Besides identify-
ing a role for Beltrami’s equation, this analysis serves to
demonstrate some advantages of geometric calculus and
the way it incorporates standard vector calculus.

As emphasized by Enk [20], it follows immediately
from Maxwell’s equation (57), that there is a whole hier-
archy of “parabivector” fields Fn ≡∇nF that satisfy

∂0Fn = −∇Fn. (65)

In particular, with F = ∇F0 we can define a vector po-
tential

F0 = A + iC (66)

so that A is the usual magnetic vector potential given by

iB =∇A = i(∇×A) (67)

with ∇ ·A = 0, and C is an analogous vector potential
for the electric field E.

For radiation fields the relation to Beltrami’s equation
is especially simple. When F 2 = 0, we can write

F = E + iB = ρ(e + ib)eiϕ, (68)

where ρ is a single scale factor for both electric and mag-
netic fields so we can set e2 = b2 = 1. Then, from (25),
the Poynting paravector P is given by

P =
1

2
FF † = ρ2[

1

2
(e2+b2)−ieb] = ρ2(1+e×b). (69)
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For monochromatic radiation, all the time dependence
is in the phase, so we can write κ = −ϕ̇ as before, and
Maxwell’s equation (57) becomes

∇F = iκF. (70)

Defining “complex” inner and outer products in terms of
commutator and anticommutator parts, we can split this
into two equations

∇× F = κF, (71)

∇ ◦ F = 0. (72)

Thus we see Beltrami’s equation in a more fundamental
role. Further, defining Fn =∇nF , we get

∇Fn = (iκ)nFn (73)

from (70) with constant κ. Thus we have a whole nest of
Beltrami fields.

With this prelude on the structure of radiation fields,
we turn to Rañada’s seminal insight into the toroidal
structure of magnetic fields provided by the celebrated
Hopf fibration.

Hopf studied smooth maps from the 3-sphere S3 onto
the 2-sphere S2 using classical techniques of complex
variable theory. However, it is simpler and more informa-
tive to exploit the fact that S3 is a 3-dimensional man-
ifold isomorphic to the group SU(2) = {U} of unitary
quaternions or rotors, to use a more descriptive term.

Accordingly, we define a Hopf map as a rotor-valued
function U = U(r) defined on a dimensionless represen-
tation of physical space R3 with a fixed origin r = 0.
Expressed in terms of Euler variables (u0,u) defined and
discussed in [24], the rotor is normalized by

U = u0 + iu with UU† = u20 + u2 = 1. (74)

This determines the orientation of an orthonormal frame
of vectors

ek = UσkU
†, (75)

though the Hopf map requires only that one of them, say
σ3 (designated by dropping the subscript), serves as a
pole σ and unit normal n = UσU† for the sphere S2.

Accordingly, fixing the pole σ on S2 determines a
smooth mapping n(r) of a unit normal on the surface
specified by the rotor function U(r):

n = UσU† = u20σ + 2u0σ× u + uσu

= (u20 − u2)σ + 2[u0σ× u + (u · σ)u], (76)

where the identity uσ = −σu + 2u · σ has been used to
reorder noncommuting vectors. It is crucial to note, how-
ever, that the function n(r) in (76) is uniquely specified
by the rotor function U(r) only up to a rotation about
the pole, as specified by

UϕσU
†
ϕ = σ where Uϕ = eiσϕ/2. (77)

Let’s call this toroidal gauge invariance. This implies
that n = UUϕσU

†
ϕU
† = UσU†, and thus reduces the de-

grees the freedom for n(r) from three to two, while main-
taining its smooth covering of the entire sphere. This
completes our formulation of the Hopf map using rotors
in geometric algebra.

Rañada had the great insight to use the Hopf map to
model magnetic field lines. The essential idea is already
contained in Hopf’s original example for a map. Hopf
recognized that S3 is isomorphic to R3 by stereographic
projection, as expressed by

2x/λ0 =
u

1− u0
, (78)

where λ0 is a length scale factor. Using (74) and writing
2r = x/λ0, this can be inverted to give

u =
2r

r2 + 1
, u0 =

r2 − 1

r2 + 1
with r2 = r2. (79)

Thus, we have the explicit function

U(r) = (r2 + 1)−1[(r2 − 1) + 2ir]. (80)

This can be inserted into (76) to give us an explicit ex-
ample of a Hopf map, which has been thoroughly studied
in [25].

Actually, we can eliminate the stereographic projection
to produce an even simpler version of the Hopf map where
the rotor is normalized by

U(r) =
√
λ(1 + ir) with UU† = λ(1 + r2) = 1. (81)

Then, the normal map n(r) on S2 is given by

n = UσU† = λ{σ + 2σ× r + rσr}
= λ{(1− r2)σ + 2[σ× r + (r · σ)r]}. (82)

Thus, the normalization for the Hopf map is completely
determined by the simple scaling factor λ(r) = 1/(1 +
r2) = 1/(1+r2). The significance of this remarkable scal-
ing factor was implicit in Rañada’s treatment of knotted
radiation fields from the beginning, as is evident in his
treatment of a static magnetic field in [16, 25]. In fact,
Hopf’s original example already suffices to model a mag-
netic field with a suitable power of the scale factor, as we
now demonstrate for purposes of comparison.

Consider the following candidate vector potential:

A(r) = 1
2λ

2(σ× r + σ). (83)

Differentiating

∇λ2 = −2λ3∇r2 = −4λ3r (84)

and

∇(σ× r) = i∇(σ ∧ r) = 2iσ, (85)

we obtain

∇A = −2λ3r(σ× r + σ) + λ2iσ. (86)
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Whence

∇A = −2λ3i[r2σ − r(r · σ) + irσ] + λ2iσ. (87)

The scalar part of this equation gives us a single term

∇ ·A = 2λ3r · σ, (88)

which we will need to eliminate to achieve toroidal gauge
invariance. For the moment, though, we are only inter-
ested in the curl of the vector potential∇×A = i∇∧A.
Accordingly, from (87) we get

∇×A = −2λ3[r2σ − r(r · σ) + σ× r] + λ2σ

= λ3[2σ× r + 2r(r · σ)− 2r2σ + (1 + r2)σ]

= λ3[2σ× r + 2r(r · σ) + (1− r2)σ]. (89)

This is proportional to the normal field n(r) defined in
(82). Hence, with a suitable choice of units, we can iden-
tify it with a magnetic field

B =∇×A = λ2n(r) = λ2UσU†. (90)

To make the vector potential (83) gauge invariant, we
simply need to eliminate terms orthogonal to the pole σ.
This is achieved by

A(r) = 1
2λ

2(σ + σ× (σ× r)), (91)

where the last term is just a fancy way of writing

σ× (σ× r) = σ · (σ× σ) = r− (σ · r)σ ≡ r⊥. (92)

This now satisfies the condition (77) for toroidal gauge
invariance:

UϕA(r)U†ϕ = A(r). (93)

And the toroidal magnetic field is given still by

iB =∇∧A = λ2UiσU†. (94)

This prepares us for a straightforward generalization to
toroidal radiation fields.

As Rañada has demonstrated [15], the structure in a
monochromatic radiation field can be generated by an
orthogonal pair of static vector potentials, as specified
by (66), where

F 2
0 = (A + iC)2 = 2iAC = 2C×A. (95)

Whence the radiation field has the form

F = (∇F0)eiϕ. (96)

Despite its appearance, this quantity is a relativistic in-
variant. Our main interest in this result is its relevance to
modeling the photon, which is considered in a subsequent
Section.

.

D. Geometric Calculus and differential forms

Cartan’s calculus of differential forms is used widely
in mathematics and increasingly in physics, despite some
significant drawbacks. Consequently, it is worth pointing
out here that there is a more general Geometric Calculus
(GC) that articulates smoothly with standard vector cal-
culus and applies equally well to spinor-valued functions.
As a detailed exposition of GC is given in [13, 26], it suf-
fices here to illustrate how it relates to differential forms
in the simplest case of applications to electrodynamics.

In GC, the concept of directed integral is fundamental,
and the volume element for a k-dimensional integral is
a (simple) k-vector dkr = Ikd

kr with magnitude |dkr| =
dkr and direction at r given by unit k-vector Ik = Ik(r).
For a closed k-dimensional surface Sk with boundary Bk,
The Fundamental Theorem of Integral Calculus has the
general form∫

Sk

dkr′ · ∇′f(r′ − r) =

∮
Bk

dk−1r′f(r′ − r), (97)

where f(r′ − r) is an arbitrary (differentiable) function,
not necessarily scalar-valued. This reduces to the fun-
damental theorem for differential forms when the inte-
grands are scalar-valued. Note that the inner product
with the volume element projects away any component
of the vector derivative normal to the surface.

For a multivector-valued function A = A(r) with k-
vector parts Ak =< A(r) >k, a differential k-form, or
just a “k-form,” can be defined by

αk =< dkrA(r) >= dkr ·Ak. (98)

The exterior derivative of a k-form is a (k − 1)-form de-
fined by

dαk =< dkr · ∇A >= (dkr · ∇) ·Ak−1. (99)

The Hodge dual can be defined (up to a choice of sign for
the pseudoscalar i) by

∗αk =< dkrA(r)i >= dkr ·An−k. (100)

Here of a couple of important examples of differential
forms.

The unit “outward” normal n of the directed area el-
ement d2r is defined by d2r = −in d2r. Accordingly, the
element of flux for a magnetic field B(r) is given by

d2r · (iB) = B · n d2r = d2r · (∇∧A), (101)

which integrates to a familiar form of Stokes’ theorem.
An important example of a 3-form is the magnetic he-

licity hm [20], defined as an integral over all space:

hm =

∫
d3rA ·B. (102)

To make the directed volume element and the vector po-
tential explicit, we write

A · (∇×A) = A · (−i∇∧A) = −i(A∧∇∧A). (103)
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Whence,

hm =

∫
d3r · (A∧∇∧A)†. (104)

Rañada [15, 16] recognized that the hm can be identified
with the Hopf index for a multi-valued vector potential
with integer values.

III. KINEMATICS OF THE ELECTRON
CLOCK

As proposed in the Zitter Particle Model for the elec-
tron in [4], we regard the worldline of the electron as a
lightlike circular helix ze = ze(τ) with velocity u = że.
The helix is centered as on a timelike path z = z(τ) with
velocity v = ż normalized to v2 = 1. This sets a time
scale for the proper time parameter τ. A length scale is
set by identifying the radius of the helical path with

|ze(τ)− z(τ)| = λe = c/ωe, (105)

where 2λe = ~/me is the reduced Compton wavelength
and ωe is the frequency of the circular motion called zit-
ter. We refer to the point ze(τ) as the center of charge
(CC) and to z(τ) as the center of mass (CM).

We define a comoving frame of local observables at-
tached to the CM by

eµ(τ) = RγµR̃, (106)

where rotor R = R(τ) is normalized to RR̃ = 1. Then
we identify e0 = v and define re = ze − z = λee1 as the
radius vector for the zitter. Thus we can regard e1 as the
“hand of the electron clock.”

We identify the unit vector e2 as the tangential ve-
locity of the zitter. There are two distinct senses for
the circulation which we naturally identify with the elec-
tron/positron distinction called “chirality.” Accordingly,
we have two null vector tangential velocities:

e± = v ± e2 = Rγ±R̃, with γ± = γ0 ± γ2. (107)

Unless otherwise noted, we restrict our attention to the
electron case here, and our choice of sign for the chirality
is in agreement with [27]. Accordingly, we define the
electron “chiral velocity” u by

u = Rγ+R̃ = v + e2. (108)

The rotational velocity of the zitter is a spacelike bivector
defined by

Ω = 2ṘR̃, . (109)

so that

ėµ = Ω · eµ. (110)

In particular,

ṙe = Ω · re = λeΩ · e1 = (e1e2) · e1 = e2, (111)

in agreement with (108).
As shown in [4], zitter mechanics can be described in

terms of mass current mev, momentum p and spin an-
gular momentum S. The chiral spin bivector S can be
expressed in several equivalent forms:

S = ud = v(d+ is) = ius, (112)

Note that the null velocity u2 = 0 implies null spin bivec-
tor S2 = 0. It follows that the free particle zitter motion
can be reduced to a single equation:

ΩS = pv. (113)

The bivector part of this expression gives us the spin
equation of motion:

Ṡ = Ω× S = p ∧ v. (114)

And the scalar part gives us

mec = p · v = ±Ω · S, (115)

where the sign distinguishes electron/positron chirality.
Note that these equations are consistent with identi-

fying momentum p with either the timelike vector mecv
or the null vector mecu. This ambiguity is resolved in
the next Section, where eu is identified as a charge cur-
rent. On the other hand, the opposite choice was tacitly
introduced in [4] by dividing (114) v to get

p = mecv + Ṡ · v. (116)

Of course, we could not instead divide by the null vector
u. The fact that introduction of electron charge seems to
be needed to resolve this ambiguity about mass may be
an important clue about the relation to charge and mass
in the theory.

The basic solution of the above zitter equations of mo-
tion is a constant spacelike bivector given by:

Ω = ωee2e1, where ωe = 2mec
2/~ (117)

is the zitter frequency. There is, however, a more sub-
tle solution that was recognized only recently by Oliver
Consa [5], who also fully explained its significance. Be-
fore discussing that solution, some preparatory analysis
should be helpful.

Since we are concerned with free particle solutions only,
it is convenient to use the spacetime split defined by v =
e0 to introduce a comoving frame of relative vectors

ek = ek(τ) = UσkU
†, (118)

so that

ėk = ω× ek, where − iω = 2cU̇U† (119)
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is the angular velocity. In the simplest solution, called
circular zitter, the particle orbit is generated by rotating
vector re = λee1 with period τe = 2π/ωe.

In the new solution, called toroidal zitter, the parti-
cle orbit r = r(τ) is composed of a pair of orthogonal
rotating vectors

r = r1 + r2 = r1e1 + r2e2, (120)

and the path circulates on a torus with radius r2. The
motion is governed by a single rotor U = U(τ) in

r = U(r1σ1 + r2σ2)U†, (121)

with the specific form

U = U1U2 = e−iω1τ/2e−iω2τ/2, (122)

where ω1 = ωeσ3 and ω2 = ωeσ1. This differentiates to

U̇ = U̇1U2 + U1U̇2 = − 1
2 [iω1U + Uiω2]. (123)

Since the electron circulates at the speed of light, we have

ṙ2 =
(1

c

dr

dτ

)2
= 1. (124)

Since the circular and toroidal velocities are orthogonal
but have the same frequency, we have

ṙ2 = ṙ21 + ṙ22 = v21 + v22 = (r1ωe)
2 + (r2ωe)

2. (125)

Consequently, the velocity of the circular motion is re-
duced to less than the speed of light by a factor

v1 = c/g, (126)

Consta calls the quantity

g =
√

1 + (r1/r2)2 =
√

1 + (v1/v2)2 (127)

the helical g-factor.
This result enabled Consta to calculate the electron’s

anomalous magnetic moment precisely and unambigu-
ously [5]. Indeed, it appears to improve on Schwinger’s
famous QED calculation. More important, it provides a
clear physical explanation for its origin that is likely to
have further implications for elementary particle theory.

Rotor methods for magnetic resonance measurement
are given in [24], along with many other coordinate-free
applications to rotational dynamics. Generalization to
rotor Frenet equations for lightlike particles is given in
[3].

Though a properly tuned magnetic resonance measure-
ment may activate toroidal zitter, external fields are not
necessary to maintain it. Instead, the electron motion is
analogous to that of a freely precessing top with toroidal
zitter described as nutation. If the toroidal zitter can be
quenched and activated at will, then the electron has
at least two distinguishable internal states and might
thereby serve as the ultimate magnetic storage device.

The kinematic model of the electron formulated in this
Section has been memorably described by Consa [5] as a
superconducting LC circuit composed of two indivisible
elements: “a quantum of electric charge and a quantum
of magnetic flux, the product of which is equal to Plank’s
constant. The electron’s magnetic flux is simultaneously
the cause and the consequence of the circular motion of
the electric charge:”

eφ = h. (128)

Note, however, that this model of the electron is com-
pletely self-contained, ignoring any interaction with ex-
ternal electromagnetic fields. Addressing that limitation
is our main task in the next Section.

IV. MAXWELL–DIRAC THEORY

Born-Dirac theory supports the “Pilot–Wave” inter-
pretation of quantum mechanics originally proposed by
de Broglie [4]. But that is only half of de Broglie’s pro-
posal, which he called double solution theory [28]. In con-
sonance with his realist perspective on quantum mechan-
ics, he proposed that there must be two distinct kinds of
solution to the wave equation. Besides the pilot wave,
there must be some kind of singular solution describing
a real particle without involving probability. In other
words, he proposed a unique kind of wave–particle dual-
ity, or complementarity if you will.

De Broglie insisted that relativity is an essential ingre-
dient of fundamental quantum mechanics, and he noted
that monochromatic plane wave solutions of the relativis-
tic wave equation determine well–defined particle paths,
just as we have seen for the Dirac equation in Born-Dirac
theory. However, he never found a convincing way to de-
fine a singularity that represents a physical particle. In
this section we introduce a new physical interpretation of
the Dirac wave function Ψ that seems to do the trick. The
essential idea is to give back to the electron its charge and
electromagnetic field, which were ignored in the original
neutered version of Dirac theory. This necessarily local-
izes the electron to the point source of its Coulomb field.
The trick is to do it in a way that is consistent with well
established features of Dirac theory.

According to the Born rule, the Dirac current Ψγ0Ψ̃ =

ψγ0ψ̃ = ρv is to be interpreted as a probability current

so the dimensionless function ρ = ρ(x) = ψψ̃ must be a
probability density; therefore eρ(x) should be interpreted
as a “probable” charge density. In the early days of QED,
Furry and Oppenheimer [29] called this proportionality
into question by asserting that eρ(x) must be interpreted
as a physically real charge density to enable comparison
with “real charges” in classical electrodynamics that pro-
duce real electromagnetic fields. Indeed, second quan-
tization was soon invented to do that, but it involves
some dislocation from the original Dirac theory. How-
ever, there is a subtle alternative to this approach that
has not been heretofore considered.
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Our formulation of Born-Dirac as a classical field the-
ory in [4] facilitates comparison with Maxwell’s electro-
magnetics. To coordinate the two to produce a fully in-
tegrated Maxwell-Dirac theory, we need some educated
guesses to guide us. To that end, I propose three funda-
mental anzatz’s,

First, we invoke “de Broglie’s clock ansatz” already
articulated as a kinematic model of the electron clock in
the preceding Section.

Second, we note from Section II that Blinder’s assump-
tion that charge density is proportional to mass density
in Maxwell theory can be carried over to Dirac theory
where both quantities are associated with the Dirac cur-
rent. Hence Blinder’s argument relating electron mass to
impedance of the vacuum should apply to the interpre-
tation of the Dirac wave function in some way. Let me
call this the “Blinder ansatz.”

Third, we recall London’s assumption that for elec-
trons in a superconductor the magnetic vector potential
is proportional to the charge current [30]. As all interac-
tions in the Dirac equation are mediated by vector poten-
tials, we look for a comparable relation to the electron’s
magnetic vector potential. Let’s call that the “London
ansatz.”

We begin by reviewing a general form the real Dirac
equation for the electron that has been thoroughly dis-
cussed in the preceding paper [4]:

�Ψi~− e

c
AΨ = mecΨγ0 . (129)

Here A = A(x) = Aµγ
µ is the electromagnetic vector po-

tential for external sources and the unit bivector i = iσ3

encodes the crucial property of spin. The spinor “wave
function” Ψ = Ψ(x) has the Lorentz invariant decompo-
sition

Ψ = ρ
1
2Reiβ , (130)

where ρ = ρ(x) is scalar-valued density and “rotor” R =

R(x) is normalized to RR̃ = R̃R = 1. The rotor R has a
unique decomposition into the product

R = V Ue−iσ3ϕ, (131)

where rotor V = (vγ0)
1
2 defines a boost to the electron’s

center of mass, the spatial rotor

U = U1U2 = e−iσ3ϕ1e−iσ1ϕ2 , (132)

describes kinematics of spin, and ϕ = ϕ(x) is identified
as the quantum mechanical phase of the wave function.

Now, for reasons explained in [4], we eliminate the
Lorentz invariant “duality factor” eiβ from (130). Then,
to reformulate the Dirac equation (129) in terms of local

observables, we multiply it on the right by Ψ̃ to get

�Ψiσ3~Ψ̃− e

c
Aρ = mecΨγ0Ψ̃, (133)

where ρ = ΨΨ̃ and we recognize

Ψγ0Ψ̃ = ρRγ0R̃ = ρV γ0Ṽ = ρv (134)

as the conserved Dirac current. Finally, by symmetrizing
the first term in (133) and making the phase ϕ = ϕ(x)
therein explicit, we reduce the Dirac equation to the
equivalent form

ρ(P − (e/c)A) = mecρv −� · (ρS), (135)

where the phase gradient P = ~�ϕ is called the canonical
momentum, and the quantity on the right is a conserved
vector field known as the Gordon current :

ρS =
~
2

Ψiσ3Ψ̃ (136)

is the bivector spin density.
This completes our reformulation of the Dirac equa-

tion in terms of local observables. Now, to incorporate
zitter into the Dirac equation in accord with “de Broglie’s
clock ansatz,” we simply replace the timelike velocity

v = Rγ0R̃ in the Dirac current (134) with the lightlike
velocity of the electron’s helical path:

u = R(γ0 + γ2)R̃ = e0 + e2 = że(τ), (137)

This decomposes the zitter into the timelike CM velocity

v = Rγ0R̃ = ż(τ) = ū(τ) (138)

and the fluctuating spacelike velocity e2 = Rγ2R̃ of the
circular zitter with ē2 = 0. In a similar way we identify
the spacelike spin bivector in (136) as the zitter average
S̄ of the lightlike spin bivector (112).

With the electron’s helical path embedded in the wave
function Ψ(x), its functional form reduces to Ψ(x−ze(τ))
and factors into the product:

Ψ = V Uψ, (139)

where zitter kinematics is incorporated in the rotor U =
U(τ) given by (122), while

ψ = ρ1/2e−iϕ = e−(α+iσ3ϕ). (140)

has the familiar form for a Schrödinger wave function,
but, of course, with an imaginary unit specified by the
bivector i = iσ3.

A truly remarkable implication of the wave function
ψ = ψ(x − ż(τ)) given by (140) is its reduction of cou-
pling to the electromagnetic vacuum to a pair of retarded
electric and magnetic scalar functions α(x − ż(τ)) and
ϕ(x− ż(τ)). Details are provided by the complementary
ansatzes of Blinder and London.

The Blinder ansatz identifies the Dirac current mecρv
with the Blinder form for the retarded potential of a point
charge (46) by assuming that the Dirac density ρ = ρ(x)
is reciprocal impedance ε of the vacuum. Thus, it holds
that

ρ = ε−1 = e−α where α = λc/r, (141)
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while the classical electron radius λc = e2/mec
2 serves

as a charge/mass scaling length and r = (x − ze(τ)) · v
is the classical retarded distance from a point singularity
at the position ze(τ) of the electron. In other words, we
identify

e

c
Ac ≡

e2

cλcε
v = mecρv, (142)

or, more simply,

λcAc = eρv, (143)

with the classical “Coulomb vector potential” Ac for a
point charge. Acceptance of this “Blinder ansatz” com-
mits us to solutions of the Dirac equation as a function of
retarded position. Note that the source CC of the electric
field ze(τ) is displaced from the CM z(τ) by the radius
vector

re = ze(τ)− z(τ) = λee1, (144)

where e1 is the electron “clock vector” and λe = ~/2mec
is the zitter radius.

A crucial feature of the Blinder function is that
ρ(ze(τ)) = 0 everywhere along the electron path ze(τ),
and thus at a single point on any 3-D spacelike hyper-
surface. At that point the phase in the wave function is
undetermined, so it can be multivalued. This mechanism
can also serve to pick out a particle path in Pilot Wave
theory.

If indeed the electron’s Coulomb potential is already
inherent in the Dirac equation as the Blinder ansatz re-
quires, then we should expect to find the electron’s mag-
netic potential there as well. This leads us to examine the
Gordon current, where we note that it includes a “magne-
tization current.” Proposing this as a specific realization
of the “London ansatz,” we reinterpret that term as a
“magnetic potential.” Thus, in analogy with the Blinder
potential (143) we write

e

c
Am ∼= −� · (ρS). (145)

The congruence sign ∼= serves to indicate that the two
quantities are mathematically equivalent but have differ-
ent physical interpretations. In Born-Dirac theory pre-
sented in [4] the spin density ρS represents a distribution
of spins associated with distinct particle paths. As will
become evident, in the present Maxwell-Dirac theory the
analogous quantity represents a density of magnetic field
lines. Combining the electron’s electric and magnetic
vector potentials, we have a complete analogy with the
entire Gordon current:

e

c
Ae =

e

c
(Ac +Am) ∼= mecρv −� · (ρS). (146)

According to (143), therefore, this reduces the Dirac
equation to:

ρp = ρ(P − e

c
A) =

e

c
Ae. (147)

Thus, we have boiled down the Dirac equation to a rela-
tion between the electron’s vector potential Ae and what
we can now identify as an energymomentum density of
the vacuum ρP . We note that, as an equation for mo-
mentum balance, it comes close to the ideal of putting
the electron vector potential Ae on equal footing with the
vector potential A for external interactions. The only dif-
ference is that the density ρ is an essential part of Ae but
not of A. Later on, we take this as a clue to a many par-
ticle generalization. For present purposes, we can ignore
external interactions, though we maintain the electron’s
interaction with the vacuum.

Electric and magnetic components of the electron po-
tential Ae are separated by a spacetime split with respect
to the CM velocity v; thus

Aev = Ac · v +Am ∧ v = eρ/λc + Am. (148)

Then a v-split of the canonical momentum P gives us

Pv = P · v + P ∧ v = P0 + P = mec+ ~∇ϕ. (149)

Hence, electron energy is identified with the electric po-
tential

P0 = mec =
e

c
Ac · vρ−1, (150)

while momentum is identified with the magnetic poten-
tial:

P = ~∇ϕ =
e

c
Amρ

−1. (151)

Note that, though electric and magnetic fields are sepa-
rable in the Gordon current (146), they are not indepen-
dent. They are intimately coupled by the vacuum density
ρ = ρ(x), as we now show.

Regarding the zitter average of spin s as constant, we
calculate the magnetic vector potential from:

Amρ
−1 =

−c
eρ
∇ · (ρis) =

c

eρ
∇× (ρs)

=
c

e
∇×

(
−λcs
r

)
= ge

r× s

r3
, (152)

which is the familiar potential for a magnetic dipole,
where λc = e2/mec

2 is the “classical electron radius”
and

ge = cλc/e = e/mec (153)

is the correct g-factor for a Dirac electron. What a sur-
prise! For ge has been derived here from a singular wave
function unknown in conventional Dirac theory. Indeed,
conventional free particle solutions do not even have a
magnetic moment! Moreover, the derivation connects the
magnetic vector potential to the Coulomb potential, as
expected in an integrated model of electric and magnetic
forces in an electron.
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Comparison of equation (151) with (152) shows that ρ
serves as a Lagrange multiplier relating gradient to curl
in the form

~∇ϕ =∇× π. (154)

The general question of when the curl of a vector field π is
equivalent to the gradient of a scalar has been studied by
Kleinert [31]. He shows that is possible when the scalar
function is the projection of an area integral – in physical
terms, a flux generated by a current loop. Moreover, in
general, the flux is multivalued, so we can conclude that

e

c

∮
dx ·Amρ

−1 =

∮
dx ·P = ~

∮
dϕ = nh, (155)

This assigns a definite quantum of flux to the electron’s
magnetic field, as anticipated by London and evidently
measured in the quantum Hall effect [32]. As presented
here, it can be regarded as one more prediction of Dirac
theory, provided the above identification of the electron
vector potential with the Gorden current is accepted. In
that case, the flux quantum ranks with electric charge as
a fundamental property of the electron, as, indeed, many
since London have suggested. More precisely, it supports
interpreting Dirac theory as modeling the electron as a
fundamental singularity of the vacuum.

Since we have concluded that internal quantized states
are inherent in the structure of the electron, some further
remarks about quantized particle states may be helpful.
Two necessary conditions for a stationary state appear
to be: (1) A constant energy P0 = P · γ0 in an inertial
reference frame specified by a constant timelike vector
γ0, and (2) the integrability condition � ∧ P = 0, which
implies

P = p+
e

c
A = ~�ϕ (156)

and, by Stokes Theorem,∮
P · dx = 0. (157)

for any closed spacetime curve. The spacetime split
P · dx = P0dt − P · dx of this equation then suggests
a sufficient condition for quantized states:∫ Tn

0

P0 dt =

∮
P · dx = nh/2, (158)

which incorporates the spatial quantization. Then we
have ∫ Tn

0

P0 dt = P0Tn = nh/2, (159)

which relates the energy to period counts Tn of the elec-
tron clock. This connection between spatial quantization
and temporal period was first proposed and proved in a
special case by Post [33]. It plays a role in the quantum
conditions for hydrogen discussed in [4].

Having established a connection of zitter to quantum
conditions, we can postpone analysis of its implications
to later. In most of quantum mechanics the high fre-
quency zitter fluctuations in electron phase are negligi-
ble, in which case we can adopt the dipole approximation
for the magnetic vector potential.

.

A. Photon topology

Hard on the spectacular successes of Dirac’s electron
theory, de Broglie applied it to model the photon. De
Broglie must have had high hopes for his photon theory,
because he took the unusual step of announcing it with
fanfare and immediately translating it into English [34].
Nevertheless, despite his deep insight and clever analy-
sis, he was never able to bring it to a successful conclu-
sion. Now, however, Maxwell-Dirac theory offers a new
approach to reach the goal.

We have seen how a singularity of the vacuum Dirac
equation can serve as the seat of the electron’s electro-
magnetic potential. For the sake of possible modification
or generalization, let us frame our assumptions in the
most general terms. To that end, we exploit the multi-
plicative structure of the Dirac wave function to cast it
in the general form

Ψ = Rψ = V UZ−1, (160)

where

ψ = ρ1/2e−iϕ/2 = Z−1, (161)

and rotor R describes the spacetime kinematics of the
electron singularity. Here we propose to interpret Z as
a complex impedance of the vacuum, so ψ is the vacuum
admittance. Let us refer to the multiplicative form (160)
for a singular solution of the Dirac equation as vacuum
separability.

It is noteworthy that the complex admittance ψ has the
form of the Schrödinger wave function, which is indeed
an approximation to the Dirac wave function [35, 36].
That suggests that Schrödinger theory is fundamentally
about vacuum singularities.

Later on we shall consider possibilities for generalizing
the “vacuum impedance.” To retain essential physical
features that we have already identified, we place the
following two restrictions on the functional form of ψ.
First, vacuum positivity :

ρ(r) = ψψ̃ ≥ 0, (162)

with ρ(r) = 0 only at r = 0. Second, for agreement with
electrodynamics, we require that ρ reduce to the Blinder
function in the asymptotic region, that is:

ρ(r) = e−λc/r for r � λc. (163)
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These restrictions leave open the possibility of a more
complex functional form for ψ(r) due to short range in-
teractions in the neighborhood of the singularity to be
discussed later.

We note that the Blinder function has an alternative
formulation that strongly suggests it describes a general
property of vacuum singularities, not limited to the elec-
tron or even to charged particles. We write the electron’s
Blinder exponent in the form

λc/r =
e2/~c

mec/~v · (x− ze)
=

αe
ke · (x− ze(τ))

. (164)

This suggests that any particle with kinetic momentum
k = p/~ and position z(τ) will have a Blinder function of
the form

ρ = e−αe/k·(x−z(τ)), (165)

so the particle is located at ρ = 0, so we drop the sub-
script on ke and allow k to be a null as well as timelike.
There is no longer a suggestion here that the exponent
is the Coulomb potential of a charged particle. Here the
fine structure constant αe acts as a kind of general scal-
ing constant for vacuum singularities, so it may play that
role even in strong interactions, as argued by MacGregor
[37]. Throughout this article we will identify the presence
of an electron with a zero of its Blinder function, and we
propose that the same for other elementary particles. In
particular, we propose that there must be a bifurcation
in zeros of the Blinder function for electron and photon
in the photon emission process.

Accepting the formulation of the vacuum impedance
Z−1 in (161) just described for the photon reduces the
photon wave function to the kinematic factor R = V U
in (160). This factor couples electron to positron with a
phase difference to compose the electrically neutral pho-
ton, as we now explain.

As specified in (120), the electron circulates on a peri-
odic toroidal path

r(τ) = r1(τ) + r2(τ) = r(τ + τe). (166)

We assume the positron circulates on the complimentary
path

r+(τ) = r1(τ)− r2(τ) = r+(τ + τe). (167)

Taken together, the electron-positron pair composes an
electric dipole with a fixed charge separation 2r2. As the
dipole circulates it rotates with a frequency commensu-
rate with its orbital frequency. The circulating dipole
sweeps out a 2-dimensional strip of width 2r2 and its
edge is a closed curve with period 2τe, as described in
[38].

This completes the description of our photon model.
Of course, many details remain to be worked out, such
as analysis of photon emission and absorption. That will
be left for another occasion.

B. Field-particle duality

Maxwell-Dirac theory exhibits an ontic version of
wave-particle duality that might be better described as
field-particle duality. We can describe this duality with
the fundamental field equation (147) for balance of mo-
mentum densities:

ρp = ρ(P − e

c
A), (168)

where canonical momentum P = P (x) and external vec-
tor potential A = A(x) are defined as before. With the
electron momentum density ρp identified with its electro-
magnetic field :

ρp =
e

c
Ae ∼= mecρu−� · (ρS), (169)

this equation describes a remarkable duality between the
charge current along the electron path and the electro-
magnetic field it generates and propagates by Maxwell’s
equation:

�(ρ−1�Ae) = 0. (170)

Recall that the Blinder function for ρ, given by (141),
vanishes on the electron path, so it must be factored out
to get an equation for the path from the momentum bal-
ance equation (168).

Because zitter fluctuations are so localized in space and
time, it is often convenient to suppress them. That can
be done systematically by taking a zitter average of Eq.
(169):

ρp̄ =
e

c
Āe ∼= mecρv −� · (ρS̄). (171)

This equation corresponds to the original Gordon current
in Dirac theory. We have identified ū = v = ż as a
center of mass (CM) or (center of momentum) velocity
for electron motion and its image propagated elsewhere
by the wave equation.

According to (184), at the center of mass z(τ), the
Blinder function has the constant value

ρ(z(τ)) = exp[−λc/λe] = e−2αe . (172)

Hence, it can be factored out of (171) and (168) when
evaluated on the CM path to give us an equation of mo-
tion

p = mecv + Ṡ · v = P − e

c
A. (173)

This may be recognized as a generalized Hamilton-Jacobi
(H-J) equation. Indeed, if spin is neglected and P = ~�ϕ
is given by the gradient of electron phase ϕ, then its
square gives us the well-known classical relativistic H-J
equation:

(~�ϕ− e

c
A)2 = m2

ec
2. (174)
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We conclude that the H-J equation (173) is a suitable
equation for the electron path embedded in its own elec-
tromagnetic field.

Note that zero values of the Blinder function deter-
mine a timelike tube with radius λe around the CM path,
which might be related to similar tubes considered in
string theory.

The particle equation (173) should be compared to the
the guidance equation in Pilot wave theory discussed in
[4] It differs in the absence of the “quantum potential”
S ·� ln ρ, because the density ρ used here is defined to be
a specific function for a single electron by (184), whereas
density ρ in Born-Dirac theory has a probability interpre-
tation. In the Section on many particle theory, the two
viewpoints on ρ will be merged and applied to analysis
of electron diffraction.

For the moment, it is worth noting that we now have
two complementary kinds of wave-particle duality to in-
terpret the Dirac equation: the ontic Maxwell-Dirac elec-
tromagnetic wave, and the epistemic Born-Dirac proba-
bility wave. They are united by a common equation de-
scribing particle paths. Born-Dirac treats that equation
as a mechanism for guiding motion of a passive particle
by a “Pilot Wave”. Whereas Maxwell-Dirac regards it as
a particle current actively generating electric and mag-
netic fields – a kind of “Pilot Particle,” if you will, that
generates a “real physical wave.”

To summarize Maxwell-Dirac theory to the present
point: We have proposed a singular solution of the Dirac
equation that models the electron as the seat of an elec-
tromagnetic field:

e

c
Ae =

e

c
(Ac +Am) ∼= mecρu−� · (ρS). (175)

that fluctuates with zitter frequency. The field is propa-
gated from the source by the wave equation, in essential
agreement with de Broglie’s original proposal. Thus, the
electron’s de Broglie wave is electromagnetic! Since zitter
fluctuations are tied to the source and the zitter velocity
is orthogonal to its radius, they do not radiate energy.
The wave equation propagates these fluctuations with-
out a net transfer of energy. Energy transfer requires
emission and absorption of photons, which must be a
separate process involving acceleration of the electron’s
zitter center.

The “Maxwell-Dirac” theory seems to answer Ein-
stein’s call (quoted at the beginning of this paper) to
unify the electron with its electromagnetic field. It is
noteworthy that Dirac [39] made a similar proposal to
modify classical electrodynamics by assuming that the
charge current is proportional to the vector potential (like
the London ansatz).

C. Electron Self-Energy and zitter

Zitterbewegung is said to contribute to electron self-
energy in QED, though that can be questioned because

the integrals are divergent and must be removed by renor-
malization. Weisskopf [40] was the first to discuss the
role of zitterbewegung in QED explicitly. Expressed in
our lingo, he argues that zitter generates a fluctuating
electric field. But when he calculates the zitter contribu-
tion to the energy in the field he gets a divergent result.
In contrast, we show here that calculation with the zit-
ter model is not only simpler, but the result is finite and
equal to the expected result mec

2. This is one reason to
suspect that the zitter model may generate finite results
in QED.

According to the Blinder ansatz proposed in Section
IV the vacuum is characterized by the Blinder form (141)
for the Dirac density ρ = ρ(x) given by

ρ = ε−1 = e−λc/r, (176)

where the polarization radius λc = e2/mec
2 is a

charge/mass scaling length, and

r = (x− ze(τ)) · v (177)

is the classical retarded distance from a point singularity
at the position of the electron.

To study zitter fluctuations, we shift electron position
to the zitter CM. That shift must be done in a way that
preserves the ”retarded distance” property of r.

With the backward Taylor expansion z(τ−τc) ≈ z(τ)+
v(τ)τc, we get

ze(τ) = z(τ − ze) + re(τ), (178)

hence

ze = z(τ) + vτc + re, (179)

where all functions are evaluated at time τ . Requiring
[vτc + re]

2 = 0, we find

τc = λe/c (180)

as the time for a light signal to propagate from the zitter
center to the circulating particle. Accordingly, we have

ze = z + vτc + re = z + λe(v + e1). (181)

Then requiring (x− ze)2 = r2− r2 = 0, for the the zitter
retarded position we get

r = (x− ze) ∧ v = x− (z + re) (182)

with retarded distance

r = |r| = (x− ze) · v = (x− z) · v + λc. (183)

This completes our characterization of the zitter vacuum.
Now, to incorporate the effect of zitter into the elec-

tron’s electromagnetic field, we simply replace velocity v
with u = v+e2 in (137) to get a Coulomb vector potential
of the form

e

c
Ac ≡

e2

cλc

u

ε
= mecρu (184)



PREPRINT July 2018 15

To ascertain the implications of this change on the elec-
tron self energy, we need only consider how it modifies
the Coulomb field of a free electron:

F =
mec

2

e
(�ρ) ∧ u = eρ

r̂

r2
∧ u = E + iB. (185)

Note that r̂ · u = r̂ · (v + e2) = 0, so we have r̂ ∧ u = r̂u.
Hence,

F 2 = E2 −B2 + iE ·B = 0. (186)

Since G = ρ−1F = D + iH, this implies that

1
2E ·D = 1

2B ·H. (187)

Hence, the total energy in the field is

W = 1
2

∫
(E ·D + B ·H) d3r

=

∫
E ·D d3r = mec

2, (188)

exactly twice the result obtained if the electron velocity
were v instead of u. As first suggested by Slater [41],
the reason for the difference is expressed by (187), which
tells us the potential energy density of the circulating
charge is equal to its kinetic energy density. However,
this cannot be regarded as a fully satisfactory resolution
of the notorious electron self-energy problem until the
relation of gravitational to inertial mass is understood.

More generally, we note that r̂uvur̂ = uvu = 2u, hence
the field F has an energymomentum density

T (v) = 1
2Fv G̃ =

e2ρ

r4
u, (189)

where u = v + ṙe exhibits momentum fluctuations due
to the rapidly rotating vector ṙe. Note that these zitter
fluctuations are not radiating, because the zitter velocity
is orthogonal to the zitter radius vector. It remains to be
seen if they can be identified with vacuum fluctuations of
QED or the ubiquitous ground state oscillators proposed
by Planck. Toward that end, let us consider how zitter
fluctuations might account for important QED results.

It appears that zitter fluctuations will not alter the
quantum conditions proposed for stationary states of a
Pilot particle as long as they are resonant with the quan-
tum periods. Indeed, resonance of zitter fluctuations
with orbital motion may be the most fundamental cri-
terion for stationary states.

Though zitter will not alter quantum conditions, it
should alter energy levels by smearing out the Coulomb
potential over the zitter radius λe. This kind of expla-
nation for the Lamb shift was first proposed by Welton
[42]. Moreover, in s-states the Coulomb oscillator so-
lutions of the zitter will carry the electron around the
nucleus at the distance λe instead of right through it. In
the ground state of hydrogen the nucleus just sits inside
the zitter circle. This is an analog of the Darwin term

in wave mechanics. Calculations of the ground state en-
ergy are therefore especially sensitive to the model for
the nucleus.

At a deeper level, if zitter resonances are characteris-
tic of quantized states, they may play a role in electron-
electron interactions. Indeed, it has been suggested [43]
that the Pauli principle and Exchange forces may be ex-
plained by zitter resonances. Possibilities for experimen-
tal test of those ideas are noted in the many electron
theory proposed below.

V. VACUUM UNIVERSALITY

The simplicity and power of modeling the electron as
a vacuum singularity strongly suggests that the space-
time vacuum can be regarded as a universal medium for
the physical world, so all elementary particles can be re-
garded as vacuum singularities of various types. Success
in explaining quantum mechanics and QED for the elec-
tron promises strong support for the general thesis that
the Dirac equation describes spacetime dynamics of vac-
uum singularities. Thus we have new prospects for a
unified vacuum field theory of elementary particles. Here
are two avenues for research in this direction.

The first is a generalization to many electron theory
with a proposal to explain the Pauli principle as a conse-
quence of zitter resonance. A crucial test will be account-
ing for the “exchange force” in Helium. Passing that test
would provide strong grounds for studying effects of zit-
ter resonance in superconductivity and the rest of many
particle physics.

The second avenue is generalizing the “complex
impedance” of the electron to include electroweak inter-
actions and relate it to gravitational field equations. The
general idea is that gravity is about deformation of the
vacuum due to presence and propagation of singulari-
ties described by the Dirac equation. The implication
that all elementary particles and their interactions can
be described by variations and excitations of the vacuum
impedance promises closure to the search for a Unified
Field Theory. This prospect appears be consistent with
the Standard Model but does not leave much room for
extension beyond that.

A. Many Particle Theory

We start with a minimal generalization of Vacuum
Dirac Theory to a many particle theory. We consider
a system of N charged particles regarded as particle sin-
gularities in the vacuum with zitter velocities uk and CM
spacetime paths zk = zk(τk) with proper velocities vk =
żk. We suppose their motions are determined by a spinor
wave function for the vacuum Ψ = Ψ(x, z1, z2, ..., zN ).
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The vacuum density is then given by

ΨΨ̃ = ρ =

N∏
k=1

ρk = ρ̌kρk, (190)

where ρ̌k designate the product with the kth factor omit-
ted, and, as before,

ρk = e−αk , (191)

where αk = α(rk) is a Blinder potential or its generaliza-
tion with retarded position rk = (x− zk) · vk.

As the basic equation for energymomentum density in
the vacuum, we consider a straightforward generalization
of the Gordon current in Born-Dirac theory, namely

ρP =
e

c

N∑
k=1

Akρ̌ = ρ

N∑
k=1

pk, (192)

where, as before,

e

c
Ak = ρkpk = mecρkuk −� · (ρkSk) (193)

is the electromagnetic vector potential (Gordon current)
of the kth particle modeled with or without zitter, and

ρPµ = ~〈(∂µΨ)iΨ̃〉 (194)

defines components Pµ = γµ ·P of the canonical momen-
tum.

Since equation (192) is the core synthesis of Maxwell’s
electrodynamics with Dirac’s electron theory, consolidat-
ing what we have discussed already and providing a plat-
form for extensions to follow, let me christen it with the
name Maxwell-Dirac Equation.

Generalization to include other fermions is discussed
later. Restricting our attention to electrons for the mo-
ment, we note that equation (192) has obvious impli-
cations for the Helium atom, where it will treat both
electrons on equal footing and imply correlations similar
to the “exchange interaction.” Carrying out the calcula-
tions would provide a stringent test of (192) with impli-
cations for the Pauli principle.

Equation (192) also meets Carver Mead’s objective for
a many electron quantum state determined entirely by
vector potentials of all particles in the system [2, 44]. It
goes beyond Mead in anchoring the electron state in a
Dirac wave function, in principle including the contribu-
tion of positive charges in the lattice of a superconductor.
Note that P in (192) can be regarded as kind of “super-
potential” for the entire system. It follows, then, that

F ≡ � ∧ P =

N∑
k=1

� ∧ pk (195)

can be regarded as the total electromagnetic field for the
entire system.

Inside a superconductor we have F = E + iB = 0
(Meissner effect). Hence, as we have seen before, Stokes
Theorem implies that for any closed curve in the region∮

P · dx = 0. (196)

And, as in the single particle case, we get a many particle
quantization condition∫ Tn

0

P0 dt =

∮
P · dx = (n+ 1

2 )h, (197)

with integer n. This agrees with Mead’s formulation of
phase and flux quantization in a superconductor [2, 44].
The relevance of this argument to the Aharonhov–Bohm
effect is also worth noting [45].

Specific application to superconductors is beyond the
purview of this exploratory discussion. However, before
dropping the subject, it is worth noting that the present
model satisfies the additivity of electron phases ϕk =
ϕk(x − zk) that is essential for superconductivity. That
can be made manifest by writing the wave function in
the form

Ψ = R

N∏
k=1

ΨkΛ, (198)

where RR̃ = 1, Λ2 = 0 and

Ψk = e−αk−iϕk . (199)

Evidently, the Pauli principle can be incorporated in
symmetries of the wave function in the usual way, and
that would identify it as a property of the vacuum! The
symmetries need not apply to all particle variables, but
only to particles whose motions are resonant in some
sense, as in the quantized atomic states discussed ear-
lier.

B. Electron Diffraction

Maxwell-Dirac theory has unique implications for the
problem of electron diffraction. We point them out here
without delving into detailed calculations or experimen-
tal tests.

The first and most important point is that, according
to (190), the density ρ = ρ(x) of a single electron factors
into a product

ρ =

N∏
k=1

ρk = ρ̌eρe, (200)

where ρe(x) is the Blinder function of Maxwell-Dirac
theory, and ρ̌e(x) = ρ̌e(x, x1, . . . , xN−1) is the den-
sity expressed with Blinder functions of all other par-
ticles with influence. Since the Blinder function satisfies
0 ≤ |ρk| ≤ 1, we also have 0 ≤ |ρ(x)| ≤ 1. So there are
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no normalization issues, and sufficiently distant particles
automatically have insignificant influence.

One consequence is that the “Quantum potential” in
the Pilot Wave guidance law must have a causal source
in matter composing the diffraction slits. To get the
“acausal density” of Pilot Wave theory, the matter coor-
dinates must be integrated out with some sort of average
〈ρ〉. That leaves the possibility open for fluctuations in
path density, for example, from heating material in the
slits.

We still have the problem of identifying a plausi-
ble mechanism for momentum exchange between each
diffracted particle and the slits, a causal link which is
missing from all accounts of diffraction by standard wave
mechanics or by Pilot Wave theory. Note that mo-
mentum transfer is observable for each scattered parti-
cle, whereas the diffraction pattern conserves momentum
only as a statistical average. Evidently the only way to
account for this fact is by reducing diffraction to quan-
tized momentum exchange between each particle and slit.

Duane was the first to offer a quantitative explanation
for electron diffraction as quantized momentum exchange
[46, 47]. A more general argument using standard quan-
tum mechanics has been worked out by Van Vliet [48, 49].
These explanations suffer from the same disease as Old
Quantum Mechanics in failing to account for the density
distribution in the diffraction pattern. However, we now
have the possibility of curing that disease with relativis-
tic Pilot Wave theory. We only need to explain how the
momentum exchange is incorporated into the Pilot Wave
guidance law.

Now, presuming vanishing electric and magnetic fields
outside the diffraction slits as before, we have �∧A = 0,
so locally, at least, A is a gradient. Assuming the same
for P , we have a gauge invariant phase gradient

�Φ = P − e

c
A. (201)

This provides a promising mechanism for quantized mo-
mentum transfer in diffraction. For we know that quan-
tized states in QM are determined by boundary condi-
tions on the phase. Successful calculation of diffraction
patterns along these lines would provide strong evidence
for the following claim: the vacuum surrounding electro-
magnetically inert matter is permeated by a vector po-
tential with vanishing curl. Remarkably, the same mech-
anism would explain the extended Aharonov-Bohm (AB)
effect [50]. Evidently, then, the causal agents for diffrac-
tion and the AB effect are one and the same: a universal
vector potential permeating the vacuum (or, Aether, if
you will) of all spacetime, much as proposed by Dirac
[51].

Considering the similarity of electron and photon
diffraction patterns, we should expect the same mech-
anism to explain photon diffraction. Indeed, the evolu-
tion of path density for the electron is determined by the
Dirac equation, which gives

�2Φ = −mecż ·� ln ρ. (202)

For a photon with propagation vector k, the analog is

k ·� ln ρ = �2Φ/~, (203)

where, of course, ρ is the path density for photons, just as
it is for electrons. Accordingly, we conclude that diffrac-
tion is “caused” by the vacuum surrounding material ob-
jects. In other words, diffraction is refraction by the vac-
uum!

We have seen that the Blinder form for the vacuum
density ρ = ρ(x), which was originally introduced to gen-
eralize the Coulomb potential, is actually determined by
the momentum at each vacuum singularity independent
of any charge. Evidently it applies to photons as well
as electrons and protons, so it should be regarded as a
universal property of the vacuum. This suggests associ-
ation with a gravitational field. That possibility is best
approached by a gauge theory as proposed below.

Strictly speaking, the density (impedance) of the vac-
uum should be incorporated into any vector potential
by writing A = ρA, with a new notation to distinguish
it from the usual vector potential, whether or not it is
the gradient of a scalar field. The Aether can then be
regarded as a conserved fluid (with � · A = 0) flow-
ing through spacetime with particle singularities (elec-
tron, photon or whatever) in the density swept along.
This picture has a beautiful macroscopic analog describ-
ing diffraction of a macro particle in a classical fluid [52].

C. Vacuum Topology

With electrons modeled as vacuum singularities, it is
natural to consider the topology of more complex vac-
uum singularities to model the whole zoo of elementary
particles, including photons. A promising possibility is
based on the fact that, in a certain sense, the electroweak
gauge group is already inherent in the Dirac equation,
and a gauge theory version of gravitational interactions
is readily included as well. A unified “gravelectroweak
theory” of that kind has already been described in [53].
It suffices to summarize its main features here and discuss
what Vacuum Dirac theory has to add.

A natural extension of the Dirac equation to include
weak interactions rests on the unique fact that the elec-
troweak gauge group SU(2)⊗U(1) is the maximal group
of gauge transformations Ψ → Ψ′ = ΨU that leave the
velocity observable invariant:

ρu = Ψγ0Ψ̃ = Ψ′γ0Ψ̃′, (204)

This gives the gauge group geometric significance as the
invariance group of the Dirac current, thereby insuring
a spacetime path for the zitter center. To incorporate
both gravitational and electroweak interactions in vac-
uum Dirac theory, we require invariance under the group

Ψ → Ψ′ = LΨU, (205)
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where LL̃ = 1. The corresponding gauge invariant
derivative is

DµΨ = (∂µ + 1
2ωµ)Ψ−ΨiWµ, (206)

where the geometric “connexion” ωµ expresses gravita-
tional interaction and the Wµ express electroweak inter-
actions. See [53] for details.

Now let us speculate on possibilities for refining elec-
troweak theory by incorporating geometry enabled by the
present formulation. A simple generalization of the vac-
uum impedance has the form

ψ = ρ1/2e−iσ3ϕ e−iσ1χ. (207)

Now suppose that both angles are harmonically related
functions of proper time ϕ(mτ) and χ(nτ), where (n,m)
is a pair of coprime integers known in knot theory as
writhe and rotation numbers respectively. The angle ϕ
generates circular zitter in the spin plane, while the angle
χ tilts the plane, so together the two angles can be ad-
justed to generate a family of closed toroidal curves (or
helices) with periods in ratio n/m.

Regarding each helix as the path of a point singular-
ity like the electron, we have here a family of singu-
larity types distinguished by quantum numbers (m,n).
Since the interactions are electroweak, we adopt it as
a candidate for the family of Leptons. We know that
the simplest member is the electron, to which the quan-
tum numbers (1, 1) might be assigned to express double-
valuedness of electron phase. The curve (2, 3) is corre-
sponds to a trefoil knot. But it would be premature to
try classifying elementary particles here, as our objective
is only to open up possibilities.

Others have proposed knot theory for classifying ele-
mentary particles, though not with such a direct tie to
the Dirac equation and geometry of the vacuum. Jehle
[54, 55], for one, proposed a classification based on quan-
tized flux that has much in common with the present
approach, but it is weak on connection with field equa-
tions. Finkelstein [56, 57] has developed a detailed match
of knot topology with structure of the Standard Model.
Knot topology can be taken as supplementing the present
approach, which is based on differential geometry.

To the extent that our speculations on geometric
grounding of leptonic states and interactions are credible,

we should surely expect similar grounding for baryons
and strong interactions. So let us indulge in one more
round of speculation to survey possibilities for hadronic
structure.

Since quarks have the same electroweak interactions as
leptons, they might be regarded as leptons that are per-
manently bound into knots such as nucleons. Strong in-
teractions would then be about tying and untying knots.

Since nucleons have the same spin as leptons we guess
that they are also helical current loops, but with three
singularities (quarks) on the loop instead of one. Quarks
are distinguished by different helical structures (gluons)
that connect them. Since the proton’s charge is presum-
ably divided up among the quarks, perhaps charge should
be regarded as a property of the loop rather than singu-
larities on the loop. Perhaps, then, the loop should be
regarded as a stringlike vacuum defect in which the par-
ticle is embedded, rather than a path that the particle
traverses. Shades of string theory!

As to the structure of gauge bosons, we would expect
weak bosons to be open strings, like the photon, that peel
off helical structure from a lepton on emission. Perhaps
gluons are similar strings (or cuts in the fabric of space-
time, if you will), but with different types of attachment
at quark endpoints.

Concerning the density of the vacuum in general, it
should be derivable from (or, at least, consistent with)
the Einstein-Maxwell gravitational field equations. Thus,
the Blinder potential ρ = exp(λc/|x− ze|) must be mod-
ified to include gravity, though it will differ from the
Kerr-Neuman solution in the way it treats the electron
singularity. Presumably, the ideal solution will involve
something like the Higgs mechanism to explain mass, so
it will involve complex structure of the impedance.

Derivation of equations of motion for singularities from
gravitational field equations has been an important the-
oretical objective since Einstein, Infeld and Hoffman at-
tacked it [58]. We have seen something like that for Dirac
theory. Conversely, if we develop a rich theory of singu-
larities along the lines suggested here, that might require
modification of the field equations. Gauge theory may
then be regarded as a means for coordinating singularities
with equations of motion. “Always keeping one principle
object in view, to preserve their symmetrical shape!”
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