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Abstract. Associative memories (AMs) are mathematical models inspired by
the human brain ability to store and recall information. This paper introduces the
fuzzy exponential recurrent neural networks (FERNNs), which can implement
an AM for the storage and recall of fuzzy sets. The novel models are obtained by
modifying the multivalued exponential recurrent neural network of Chiueh and
Tsai. Briefly, a FERNN defines recursively a sequence of fuzzy sets obtained by
averaging the stored fuzzy sets weighted by an exponential of a fuzzy comparison
measure between the current fuzzy set and the stored items. Computational exper-
iments reveal that FERNNs can be effectively used for the retrieval of gray-scale
images corrupted by either Gaussian noise or salt-and-pepper noise.

Keywords: Associative memory, recurrent neural network, fuzzy system, gray-
scale image processing.

1 Introduction

Associative memories (AMs) are mathematical constructs motivated by the human brain
ability to store and recall information [1]. Such as the biological neural network, an AM
should be able to retrieve a memorized information from a possibly incomplete or cor-
rupted item. Formally, an AM is designed for the storage of a finite set {a1,a2, . . . ,ap},
called the fundamental memory set. Afterwards, the AM model is expect to retrieve a
memorized concept aξ in response to the presentation of a partial or noisy version ãξ

of aξ. Applications of AMs cover, for instance, pattern classification and recognition
[2–4], optimization [5], computer vision and image retrieval [6–8], prediction [9, 10],
control [11, 12], and language understanding [13].

The Hopfield neural network is one of the most widely known neural network used
to realize an AM [14]. In spite of its attractive features, including a characterization in
terms of an energy function and a variety of applications [15], the Hopfield network
suffers from a low absolute storage capacity. Specifically, the asymptotic number of
items that can be stored and subsequently recovered exactly by the Hopfield network is
proportional to n/log(n), where n is the length of the vectors aξ, for ξ = 1, . . . , p [16].
A simple but significant improvement in storage capacity of the Hopfield network is
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achieved by the recurrent correlation neural networks (RCNNs) introduced by Chiueh
and Goodman in the early 1990s [17]. In few words, Chiueh and Goodman generalized
the Hopfield network by adding a layer of nodes that compute a correlation measure
between the current state and the fundamental memories. The activation function of the
neurons in this layer characterizes the RCNN. For example, an exponential recurrent
correlation neural network (exponential RCNN) is obtained by considering an exponen-
tial function. The storage capacity of some RCNNs, including the exponential RCNNs,
scales exponentially with the length of the vectors [17]. Besides the very high storage
capacity, these neural networks exhibit excellent error correction capabilities. On the
downside, such as the Hopfield network, the original RCNNs are designed for the stor-
age and recall of bipolar vectors. However, many applications of AMs, including the
retrieval of gray-scale images in the presence of noise, require the storage and recall of
real-valued vectors or fuzzy sets [2–4, 6–12].

In 1993, Chiueh and Tsai extended the bipolar exponential RCNNs for the stor-
age and recall of multivalued vectors [18]. The major components of the novel model
include a weighted average and a kind of similarity measure. Now, since a weighted
average performs an aggregation of fuzzy sets [19] and, considering some well estab-
lished fuzzy similarity measures, in this paper we modified the multivalued exponential
RCNNs for the storage and recall of fuzzy sets in a rather straightforward manner. The
novel models, referred to as fuzzy exponential recurrent neural networks (FERNNs),
outperformed many other AM models from the literature, including two multivalued
exponential RCNNs, in a computational experiment concerning the retrieval of gray-
scale images corrupted by either Gaussian noise or salt-and-pepper noise.

The paper is organized as follows: Section 2 briefly reviews the multivalued expo-
nential recurrent neural network of Chiueh and Tsai. The novel FERNNs are introduced
in Section 3. Computational experiments concerning the retrieval of corrupted gray-
scale images are given in Section 4. The paper finishes with some concluding remarks
in Section 5.

2 Multivalued Exponential Recurrent Neural Network

The multivalued exponential recurrent neural networks (MERNNs) are able to imple-
ment hight-capacity AMs with excellent noise tolerance. These models, introduced by
Chiueh and Tsai in the early 1990s, are obtained by extending the exponential recurrent
correlation neural network for the storage and recall of multi-valued vectors according
to [17, 18]. Formally, a MERNN is designed as follows.

Let K = {κ1, κ2, . . . , κK} denote a K-valued set and α be a positive real number.
Also, consider a fundamental memory set {a1, . . . ,ap} ⊆ Kn, where each aξ is a
multivalued column vector. Given a multivalued input vector x0 ∈ Kn, the MERNN
defines recursively the sequence of vectors x0,x1, . . . according to the equation

xt+1 =

∑p
ξ=1 a

ξeαΨ
(
aξ,xt

)
∑p
ξ=1 e

αΨ
(
aξ,xt

) , ∀t = 0, 1, . . . , (1)

Proceedings of III Brazilian Congress on Fuzzy Systems (III CBSF)
João Pessoa-PB     17-20 Aug.  2014 002



Fuzzy Exponential Recurrent Neural Networks for Gray-scale Image Retrieval

where Ψ
(
aξ,xt

)
measures – in a broad sense – the similarity between aξ and xt. For

example, Ψ may refer to the direction cosine or the Euclidean distance-based similarity
measure given respectively by

ΨC(a
ξ,xt) =

〈
aξ,xt

〉
‖aξ‖2‖xt‖2

and ΨE(a
ξ,xt) =

1

1 + ‖aξ − xt‖2
, (2)

where 〈·, ·〉 denotes the usual inner product and ‖ · ‖2 is the Euclidean norm.
Alternatively, the vector xt+1 produced by the MERNN can be expressed as the

weighted average

xt+1 =

p∑
ξ=1

wtξa
ξ, (3)

where the dynamic weight wtξ is computed by

wtξ =
eαΨ
(
aξ,xt

)
∑p
ξ=1 e

αΨ
(
aξ,xt

) , ∀ξ = 1, . . . , p and t = 0, 1, . . . (4)

3 Fuzzy Exponential Recurrent Neural Network

The MERNNs can be modified in a rather straightforward manner for the storage and
recall of fuzzy sets. Precisely, let α > 0 be a real number and consider a fundamental
memory set {a1,a2, . . . ,ap} ⊆ F(U), where each aξ is a fuzzy set in U . Given an
input fuzzy set x0 ∈ F(U), a fuzzy exponential recurrent neural network (FERNN)
defines the sequence x1,x2, . . . of fuzzy sets in U by means of the equation

xt+1(u) =

p∑
ξ=1

wtξa
ξ(u), ∀u ∈ U and t = 0, 1, . . . (5)

where the weights are computed as follows for all ξ = 1, . . . , p and t ≥ 0:

wtξ =
eαΥ (aξ,xt)∑p
ξ=1 e

αΥ (aξ,xt)
, (6)

and Υ (aξ,xt) denotes a fuzzy comparison measure, such as a similarity or an overlap-
ping measure [19], between the fuzzy sets aξ and xt. For simplicity, in the following
we only consider Υ equals to a similarity measure S. Recall that similarity measures
have a broad range of applications including, for instance, fuzzy neural networks [3],
fuzzy clustering [20], linguistic approximation [21], and fuzzy reasoning [22].

Broadly speaking, a similarity measure S(aξ,xt) indicates the degree to which the
fuzzy sets aξ and xt are equal. Formally, a similarity measure is a function S : F(U)×
F(U) → [0, 1] that satisfies the following four properties for any fuzzy sets a,b, c ∈
F(U):

1. S(a,b) = S(b,a).
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2. S(A,Ac) = 0 for all crisp set A ∈ P(U).
3. S(a,a) = 1.
4. If a ⊆ b ⊆ c, then S(a, c) ≤ S(a,b) and S(a, c) ≤ S(b, c).

We would like to point out that the preceding definition corresponds to a normalized
version of the axiomatic definition given by Xuecheng [23]. Some researchers, such
as Li [24] and Zeng [25], replace condition 2 by S(U, ∅) = 0. Also, condition 3 is
sometimes substituted by the equivalence S(a,b) = 1⇐⇒ a = b.

Examples of similarity measure between two fuzzy sets a,b ∈ F(U) defined on a
finite universe of discourse U = {u1, . . . , un} include [21, 26]:

1. Gregson similarity measure:

SG(a,b) =
∑n
j=1 (a(uj) ∧ b(uj))∑n
j=1 (a(uj) ∨ b(uj))

, (7)

where the symbols “∨” and “∧” denotes respectively to the maximum and mini-
mum operations.

2. Eisler and Ekman similarity measure:

SE(a,b) =
2
∑n
j=1 (a(uj) ∧ b(uj))∑n

j=1 a(uj) +
∑n
j=1 b(uj)

. (8)

3. Relative Hamming distance:

SH(a,b) = 1− 1

n

n∑
j=1

|a(uj)− b(uj)|. (9)

We would like to point out that there are many other similarity measures available at
the literature. For simplicity, however, we consider in this paper only the three functions
given above. We plan to further investigate fuzzy comparison measures and their effects
on FERNNs in the future.

4 Computational Experiments

Let us perform some experiments concerning the retrieval of corrupted gray-scale im-
ages. Specifically, consider the eight gray-scale images that are displayed in Figure 1.
These images have size 128×128 and 256 gray levels. For each of these images, we gen-
erated a column-vector aξ ∈ [0, 1]n, ξ = 1, . . . , 8 and n = 16384, using the standard
row-scan method and dividing the 8-bit intensities by 255. Note that aξ = [aξ1, . . . , a

ξ
n]
T

can be interpreted as a fuzzy set on a finite universe of discourse U = {u1, . . . , un},
that is, the component aξj corresponds to the degree to which the element uj belongs
to the fuzzy set aξ, for any j = 1, . . . , n. Therefore, the eight gray-scale images can
be stored in the FERNNs obtained by considering the similarity measures SG, SE , and
SH . The eight gray-scale images can also be stored in the two MERNNs obtained by
considering the multivalued set K = {0, 1/255, . . . , 254/255, 1} and the measures ΨC
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Fig. 1. Original gray-scale images of size 128× 128 and 256 gray-levels.

Table 1. PSNR rates produced by single-step MERNN and FERNN models upon presentation of
the original images a1, . . . ,a8.

a1 a2 a3 a4 a5 a6 a7 a8

MERNN ΨC 23.29 24.47 18.00 36.89 25.45 23.03 22.95 28.04
MERNN ΨE 166.30 165.61 163.02 163.50 165.37 166.48 165.65 164.78
FERNN SH 38.25 38.60 44.48 43.43 39.42 38.54 38.87 40.77
FERNN SE 39.27 40.66 37.36 58.40 48.62 39.00 37.75 46.38
FERNN SG 63.47 65.49 61.29 87.86 76.28 63.04 61.25 73.66

and ΨE given by (2). In the following experiments, we adopted α = 20 in both FERNN
and MERNN models.

First, we presented the original images a1, . . . ,a8 as inputs to the three FERNN as
well as the two MERNNs. The peak signal-to-noise ratio (PSNR) rates produced by a
single-step memory model is given in Table 1. In this paper, we computed the PSNR
between vectors x ∈ [0, 1]n and y ∈ [0, 1]n by means of the equation

PSNR = 20 log

( √
n

εmach ∨ ‖x− y‖2

)
, (10)

where εmach, introduced to avoid a division by zero, denotes the machine precision. In
our case, εmach is approximately 2.22 × 10−16. Hence, the upper bound for PSNR is
approximately 355.22. Note that the MERNN ΨE outperformed the other networks. The
second largest PSNR rates have been produced by the FERNN SG. The FERNNs based
on the similarity measures SH and SE produced similar PSNR rates while the MERNN
based on the direction cosine yielded the worst results. In spite of the difference in
the PSNR rates, the single-step neural networks produced images visually similar to the
original ones except for the MERNN ΨC . A visual interpretation of the output produced
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MERNN ΨC MERNN ΨE FERNN SH FERNN SE FERNN SG

Fig. 2. Images recovered by a single-step model upon presentation of the original image.

Input OLAM KAM SPAM CSIGM

MERNN ΨC MERNN ΨE FERNN SH FERNN SE FERNN SG

Fig. 3. Airplane image corrupted by Gaussian noise with variance 0.3 followed by the images
retrieved by the memory models.

by the single-step recurrent networks upon presentation of the original image a1 is
provided in Figure 2.

Let us now examine and compare the noise tolerance of the three novel FERNNs
with the MERNN based on ΨC and ΨE . Specifically, we probed each neural network
with gray-scale images corrupted by Gaussian noise with zero mean and variance rang-
ing from 0 to 0.3. We also probed the recurrent neural networks with images corrupted
by salt and pepper noise with densities varying from 0 to 0.8. Again, we considered the
parameter α = 20. Also, we iterated (3) and (5) either until ‖xt+1 − xt‖2 ≤ 10−6 or
t < 20. Figure 5 shows the average PSNR rates produced by the five recurrent networks
averaged in 80 experiments, that is, each original image was distorted 10 times for a cer-
tain noise intensity. As remarked previously, the MERNN ΨE yielded the largest PSNR
rates for undistorted images. Notwithstanding, the FERNN based on Gregson similarity
measure SG outperformed the other recurrent networks for patterns corrupted by either
Gaussian noise or salt-and-pepper noise. In addition, the other two FERNN also pro-
duced average PSNR rates larger than the MERNNs based on ΦE and ΦC . In particular,
the MERNN based on ΦE is exceedingly sensitive to noise, that is, its error correction
capability decreases considerably as the input patten is corrupted by either Gaussian or
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Input OLAM KAM SPAM CSIGM

MERNN ΨC MERNN ΨE FERNN SH FERNN SE FERNN SG

Fig. 4. Airplane image corrupted by salt-and-pepper noise with probability 0.8 followed by the
images retrieved by the memory models.

Table 2. PSNR produced by the images in Figures 3 and 4.

Input OLAM KAM SPAM CSIGM
Gaussian 8.78 20.12 24.21 26.13 7.00

Salt and Pepper 5.91 13.83 2.83 15.43 7.02
MERNN ΨC MERNN ΨE FERNN SH FERNN SE FERNN SG

Gaussian 14.32 10.79 10.48 33.06 60.98
Salt and Pepper 14.32 10.79 10.48 33.11 60.98

salt-and-pepper noise. In contrast, the average PSNR rates produced by the FERNNs
are greater than 30 even for highly corrupted input images. As the reader can see in the
second row of Figures 3 and 4, the images retrieved by the FERNNs SE and SG upon
presentation of the airplane image corrupted by either Gaussian noise with variance 0.3
or salt-and-pepper noise with probability 0.8 are visually similar to the original image.
Table 2 contains the PSNR rates produced by the images shown in Figures 3 and 4. We
would like to point out that the PSNR rates produced by the FERNNs SG and SE are
higher in Table 2 than in Figure 5 because the recurrent network eventually converged
to the wrong gray-scale image. For example, by feeding the FERNN based on Greg-
son similarity measure with the “lena” image corrupted by salt-and-pepper noise with
probability 0.8 yielded as output the image “boat”.

Finally, let us now examine and compare the noise tolerance of the FERNN SG with
other AM models for gray-scale patterns. Namely, let us confront the recurrent net-
work based on Gregson similarity measure with the optimal linear associative memory
(OLAM) [1], the kernel associative memory (KAM) [27], the complex-sigmoid Hop-
field network (CSIGM) [28], and a certain subspace projection autoassociative memory
(SPAM) [29]. Again, we probed the AM models with images corrupted by either Gaus-
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Fig. 5. Average PSNR versus the variance of the Gaussian noise (first row) or salt-and-pepper
probability (second row). The line marked by “×” represents the corrupted images. The lines
marked by the symbols “�”, “∗”, “O”, “4”, and “♦” correspond respectively to the FERNNs
SG, SE , and SH , and the MERNNs ΨE and ΨC .
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Fig. 6. Average PSNR versus Gaussian noise variance (first row) and the probability of salt-and-
pepper noise (second row). The line marked by “×” represents the corrupted images. The lines
marked by the symbols “�”, “∗”, “O”, “4”, and “♦” correspond respectively to the FERNN SG,
OLAM, and KAM, CSIGM, and SPAM.
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sian noise and salt-and-pepper noise with different intensities. In analogy to Figure 5,
Figure 6 plots the average PSNR rates by the noise intensity in 80 simulations. Fig-
ures 3 and 4 shows the image retrieved by all memory models for the “airplane” image
corrupted by either Gaussian noise with variance 0.3 or salt-and-pepper noise with prob-
ability 0.8. Moreover, Table 2 contains the PSNR produced by the images depicted in
Figures 3 and 4.

Note that the CSIGM model of Tanaka and Aihara produced the largest PSNR rates
for images corrupted by Gaussian noise with variance less than 0.14. For larger vari-
ances, the novel FERNN based on Gregson similarity measure outperformed the other
memory models. Similarly, the SPAM yielded the largest PSNR rates for images cor-
rupted by salt-and-pepper noise with probability less than 0.52. Again, the FERNN SG
exhibited the best noise tolerance for gray-scale images corrupted by salt-and-pepper
noise with probability greater than 0.52. Furthermore, by considering PSNR values
greater than 40, in mean the FERNN SG supports Gaussian noise and salt-and-pepper
noise with intensities up to 0.22 and 0.64, respectively. At this point, note from Table 1
and 2 and Figures 2, 3, and 4 that two images are visually similar if PSNR ≥ 40. Thus,
the novel FERNNs have potential applications for the retrieval of gray-scale images
corrupted by either Gaussian noise or salt-and-pepper noise.

5 Concluding Remarks

In this paper, we introduced fuzzy exponential recurrent neural networks (FERNNs),
which can be used for the storage and recall of fuzzy sets. A FERNN first compute a
fuzzy comparison measure between the current fuzzy set with the fundamental fuzzy
sets. The next fuzzy set is defined by the average of the fundamental fuzzy sets weighted
by an exponential of the fuzzy comparison measure values. Computational experiments
revealed that the novel FERNNs equipped with a similarity measure can be effectively
used for the retrieval of corrupted gray-scale images.

In the future, we plant study the convergence of the sequence produced by an
FERNN. We also intent to investigate the effect of the fuzzy comparison measure on
the storage capacity as well as the noise tolerance of a FERNN used to implement an
AM model. The relationship between the novel memories and other fuzzy AM models,
including the bank of fuzzy associative memories of Kosko [11, 12] and the similarity
measure fuzzy associative memory of Esmi and Sussner [3], require further attention.
Finally, since an fuzzy associative memory can be used as a fuzzy inference engine
[12], applications of the FERNN in rule-based systems can be explored in the future.
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