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Abstract

Fuzzy associative memories (FAMs) are between-cube fuzzy system. They are often
defined as artificial neural networks whose inputs, outputs, and connection weights are
fuzzy valued. Recently, Valle and Sussner observed that many FAM models are equipped
with neurons that perform elementary operations of mathematical morphology such as
dilation or erosion. Thus, they can be classified as fuzzy morphological associative mem-
ories (FMAMs). Although complete lattices provide a general framework for FMAMs, in
this paper we note that these models can be completely characterized in a mathematical
structure called clodum or complete lattice-ordered double monoid. Precisely, in a clo-
dum, a between-cube fuzzy system - and consequently an FMAM model - can be viewed
a fuzzy logic neural network if, and only if, it yields a mapping that performs either a
dilation or an erosion that is invariant under a certain type of membership regraduations.
Furthermore, we show that fuzzy learning by adjunction yields a continuous FMAM if all
the association pairs are memorized correctly.

Keywords: Fuzzy associative memories, fuzzy learning by adjunction, artificial neural net-
works, mathematical morphology, complete lattices.

1 Introduction

Associative memories (AMs) are models inspired in the human brain ability to store and
recall information [8, 10]. In other words, AM are input-output systems able to store a
set {(x',y'),...,(x" y*)} of association pairs. In mathematical terms, an AM corresponds
to a mapping A : X — ), where X and ) denote the sets of input and output patterns,
respectively. In principle, the mapping A is required to satisfy A(x¢) = y¢ forall ¢ = 1,...,k,
which means that the item y¢ can be retrieved upon presentation of x¢. In addition, such as
the brain, AMs should be able to retrieve a memorized information from a possible incomplete
or corrupted item. Therefore, the mapping A should be continuous in the sense that A(%¢)
equals y¢ even for noisy or incomplete versions x¢ of x¢. This feature makes AMs suitable for
a wide variety of applications such as classification [21, 34], biometric technologies [32, 33|,
image processing [7, 25, 26], and prediction [23, 20]. Due to the biological motivation, most
AM models are given by artificial neural networks [8, 10].

We speak of a fuzzy associative memory (FAM) if the mapping A correspond to a fuzzy
system and the patterns x¢ € [0, 1]” and y¢ € [0, 1] represent fuzzy sets for every £ = 1,...,k
[12, 16]. Thus, in theory, a FAM model is a between-cube continuous fuzzy system. In general,



FAMs are given by fuzzy logic neural networks (FLNN) [16]. For example, the famous max-
min and max-product FAMs of Kosko are equipped with fuzzy logical neurons that compute
the maximum of minimums and the maximum of products, respectively [12]. Similarly, the
generalized FAMs (GFAMs) of Chung and Lee and the implicative fuzzy associative memories
(IFAMs) have neurons that compute the maximum of triangular norms [2, 22]. Despite
successful applications of FLNN-FAMs to problems such as backing up a truck and trailer
[6, 11, 12] and forecasting the average monthly streamflow of a large hydroelectric plant
[20, 24, 23], we are faced with a number of mathematical questions. For example, which
properties an FLNN-FAM exhibit? Are FLNN-FAMs indeed continuous mappings?

Recently, Valle and Sussner observed that many FLNN-FAMs are equipped with fuzzy
neurons that perform an elementary operation of mathematical morphology such as dilation
or erosion [24, 29]. Thus, they can be classified as belonging to the broad class of fuzzy
morphological associative memories (FMAMs). In this paper, we point out that the most
important FMAM models in the literature, including GFAMs and IFAMs, can be well defined
in a mathematical structure called clodum or complete lattice-ordered double monoid [13].
Also, we note that they yield a mapping that is invariant under a certain type of membership
regraduations. Conversely, we have that if an FMAM A : [0, 1]™ — [0, 1] performs either a
dilation or an erosion invariant under membership regraduations, then it is given by a FLNN.
Finally, we address the continuity of FMAMs on a clodum. Precisely, we show that an FMAM
model trained by means of the fuzzy learning by adjunction (FLA) is continuous if and only
if A(x¢) =7y forall € =1,...,k. In other words, an FMAM with FLA is continuous if and
only if it is able to memorize all the association pairs (x¢,y¢) correctly.

The paper is organized as follows. Section 2 briefly reviews the clodum framework. Section
3 introduces the classes of max-x and min-* FMAMSs. This section also provides a proposition
which characterizes these FMAM models. Section 4 briefly recalls a recording recipe which
can be used for the storage of patterns in max-* and min-* FMAMs. Section 5 establishes
a relationship between the continuity of max-+ FMAMs and the fact that the model is able
to store correctly the association pairs. The paper finishes with the concluding remarks in
Section 6.

2 A Brief Review on Mathematical Morphology and Clodums

Mathematical morphology (MM) is a theory that is concerned with the processing and analysis
of objects using operators and functions based on topological and geometrical concepts |9,
18, 19]. This theory can be very well conducted in complete lattices [9, 19].

A complete lattice I constitutes a partially ordered set in which every subset has an
infimum and a supremum in L [1, 9]. The infimum and the supremum of X C L are denoted
by A X and \/ X, respectively. We speak of an infinitely distributive complete lattice if the
following equations hold true for every a € L. and X C L:

a/\(\/X):\/(a/\:L‘) and aV(/\X)z/\(a\/:U). (1)
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The unit interval [0, 1] and the class of all fuzzy sets defined on a finite universe of discourse,
i.e., the hypercube [0, 1]", are examples of infinitely distributive complete lattices [14].

Two important operators of MM are erosion and dilation [9, 19]. Given complete lattices
L and M, an erosion is a mapping € : . — M that commutes with the infimum operation.
Similarly, an operator § : . — M that commutes with the supremum is called a dilation.
Mathematically, an operator € represents an erosion and an operator § represents a dilation
if, and only if, the following equalities hold for every subset X C L:

e(/\X) = A\ (z) and 5(\/)() = \/ (). (2)

reX zeX



In the context of fuzzy logic and fuzzy sets, we usually consider the infinitely distributive
complete lattice [0, 1] equipped with triangular norms and co-norms, which are used to define
the intersection and the union of fuzzy sets [14, 16]. Thus, let us consider an infinitely
distributive complete lattice L with two binary operations * and +” such that both (IL, x) and
(L, ") are monoids [1]. In other words, suppose that the operations x and x" are associative
and both have an identity element. For simplicity, let us also assume that these two operations
are commutative. For example, we may consider L. = [0, 1] and identify the operations x and
x" with a triangular norm and a triangular co-norm, respectively. Another example is given
by the unit interval [0, 1] equipped with two kinds of uninorm operators [16, 31]. If, in
addition, the operation x performs a dilation and the operation x’ yields an erosion, then
the mathematical structure (L, V, A, x, ') is called clodum or complete lattice-ordered double
monoid. Clodums have been introduced by Maragos in order to unify several approaches
toward MM, including binary, fuzzy, and gray-scale MM [13]. This paper shows that clodums
also provide an appropriate mathematical framework for FMAMs.

Finally, consider a clodum ([0,1],V,A,*,+). Given a € [0,1] and a fuzzy set x =
[z1,...,2,]7 €[0,1]", we define a regraduation of x by « as the fuzzy set y = [y1,...,ya]" €
[0,1]" given by y; = a % x; for every j = 1,...,n. Note that y is obtained by redefining the
membership values of the fuzzy set x. We say that a between-cube mapping ¢ : [0,1]" —
[0,1]™ is invariant under regraduations if ¢(a * x) = a * p(x) for every a € [0,1]. Dually, a
dual regraduation of x by « is the fuzzy set [a ¥ x1,...,a* x,] € [0,1]" and an operator ¢
is called invariant under dual regraduations if p(a+' x) = a+" ¢(x) for all « € [0, 1].

3 Fuzzy Morphological Associative Memories Invariant under Regraduations

Let us begin this section by introducing two classes of FLNN-FAMs, referred to as the class of
maz-+ FMAMs and the class of min-« FMAMs, which subsumes several FAM models from
the literature, including the FAMs of Kosko, the IFAMs, several GFAMs, and the FMAMSs
based on uninorm introduced by Valle and Sussner [24, 27, 29, 28].

Let ([0, 1], V, A, *,+") be a clodum. A max-* FMAM is a single-layer FLNN equipped with
neurons that compute the maximum of the operation . Dually, a min-+" FMAM corresponds
to a single-layer FLNN with neurons that compute the minimum of . In mathematical terms,
consider synaptic weight matrices W, M € [0, 1]™*". Given an input pattern x € [0, 1], the
output y € [0,1]™ of a max-x FMAM W and the output z € [0, 1] of a min-* FMAM M
are given by the following equations where the symbol “o0” denote a max-x product and “e”
represents a min-+' product:

y=W(x)=Wox and z=M(x)=Mex. (3)

The max-+ and min-+' products of two matrices A € [0,1]"**¥ and B € [0, 1]¥*", denoted by
C=AoBel0,1]"™ and D = Ae B € [0,1]™*™, are defined as follows:

k k

Cij = \/ (aig *bgj) and dij = /\ (aig * b{j) . (4)
£=1 £=1

Since the operation x constitutes a dilation on [0,1] and ' is an erosion in the same
lattice, the mappings VW and M given by (3) represent a dilation and an erosion, respectively
[24, 29]. Thus, both max-* FMAMs and min-*" FMAMs indeed belong to the class of fuzzy
morphological neural networks.

The following proposition, due to Maragos [13], reveals that the mapping W given by (3)
is also invariant under regraduations. Similarly, M is invariant under dual regraduations.
As a consequence, most FLNN-FAMs yield a between-cube mapping that is either a dilation
invariant under regraduations or an erosion invariant under dual regraduations. Furthermore,
Proposition 1 tell us that the converse also holds true.



Proposition 1 Let ([0,1],V, A, x,*') be a clodum. A mapping W : [0,1]" — [0,1]™ is a dila-
tion invariant under regraduations if, and only if, it is given by (3) for some W € [0, 1]™*™.
Dually, a mapping M : [0,1]" — [0,1]™ is an erosion invariant under dual regraduations if,
and only if, it is given by (3) for some M € [0, 1]™*™.

In the context of FAMs, we can drawn the following conclusion from Proposition 1.
Suppose we intent to synthesize a FAM model that is able to store a set of associations
{(x5,y%) : € =1,...,k} € [0,1]" x [0,1]™. In other words, we would like to determine a
mapping A : [0,1]" — [0, 1]™ such that A(x%) = y* for all £ = 1,...,k. This hard problem
can be simplified by imposing that the mapping A is a dilation invariant under regraduations
in a clodum ([0,1],V,A,*x,%'). Hence, we only have to determine an appropriate synaptic
weight matrix W. Alternatively, we could impose that the FAM model yields an erosion
invariant under dual regraduations. In this case, the problem of determining a between-cube
mapping A also reduces to the easier problem of computing a matrix M € [0, 1]™*™.

4 A Brief Review on Fuzzy Learning by Adjunction

The synaptic weight matrix of a max-x FMAM given by (3) can be determined by means of
fuzzy learning by adjunction (FLA), also called implicative fuzzy learning [22, 29]. Given a set
of associations {(x¢,y%) : € =1,..., k}, where each x¢ € [0,1]" and y¢ € [0,1]™, FLA defines
the synaptic weight matrix W € [0,1]"*" of a max-x FMAM by means of the following
equation:

W=\/{Aec01]™": Adox* <y, VE=1,... k}. (5)

Note that FLA makes optimal use of the synaptic weights of the max-x FMAM model
given by (3). Indeed, if there exist A € [0,1]™*" such that A o x* = y¢ for all £, then W
given by FLA also satisfies W ox¢ = y¢ for all € = 1,...,k and the inequality A < W holds
true.

Besides the optimality that we have just mentioned, the synaptic weight matrix W =
(wij) € [0,1]™*™ given by FLA can be easily computed by means of the following equation:

k
wij:/\(xgiyf), forallj=1,...,n and i=1,...,m. (6)
=1
Here, the symbol “=" denotes the residual implication associated with the operation x of
the clodum ([0, 1], V, A, %, '), which is given by the following equation:

@=y)=\{ze0,1]:zx2<y}, Va,yel01]. (7)

Similarly, given a set of associations {(x%,y%) : ¢ = 1,...,k} C [0,1]" x [0,1]™, the
synaptic weight matrix M € [0, 1]™*" of a min-* FMAM given by (3) is defined as

M=A\{Ac[01]™": Aext>y* VE=1,... k}. (8)

Again, FLA makes optimal use of the synaptic weights of a min-x" FMAM given by (3).
Precisely, if there exist A € [0,1]™*" such that A e x¢ = y¢ for all £, then M given by (8)
satisfy M < A and M e x¢ = y¢ for every ¢ = 1,..., k. Furthermore, the synaptic weights
m;; can be easily determined by means of the following equations:

k
mi; = \/(x§ & yf), where (x £ y) = /\{z €0,1]:zx 2>y} 9)
e=1

We would like to recall that the symbol “4=” denotes the residual co-implication associated
to the operation ' in the clodum ([0, 1], V, A, x,*") [3].
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5 The Continuity of max-x FMAMs with FLA

Let us now focus on the continuity of a max-x FMAM when the synaptic weight matrix are
given by FLA. We believe that a similar result can be derived for min-*x FMAMs with FLA
using the duality principle of complete lattices [1, 9].

Consider a clodum ([0, 1], V, A, x,*"). The residual bi-implication associated with the op-
eration « is given by the following equation where “=” denotes the operator given by (7):

(xey) ==y A(y=y), forallzyel0,1]. (10)

We would like to recall that a residual bi-implication is reflexive, symmetric, and transitive
with respect to the operation x, i.e., (r & y)*x (y & z) < (z < 2) for all z,y,z € [0,1].
Furthermore, if e denotes the identity of %, then (x < y) > e if and only if z = y. In view of
these remarks, the residual bi-implication given by (10) can be used to define the following
similarity measure between fuzzy sets x = [r1,...,7,]T € [0,1]" and y = [y1,...,ys]7 €
[0, 1]™:

n
S(x,y) = /\(:L‘2 < yi). (11)
i=1
The similarity measure given by (11) can be used to establish the following notion of
continuity: A mapping A : [0,1]" — [0,1]™ is said to be continuous at xo € [0, 1]™ if the
following inequality holds true for every x € [0, 1]™:

S(A(x0), A(x)) > S(x0,x). (12)

In other words, A is continuous at xg if any point x is mapped by A into a point A(x)
whose degree of similarity with A(xg) is greather than or equal to the degree of similarity
between xo and x. We would like to point out that this notion of continuity corresponds to a
reformulation of the continuity introduced by Perfilieva and Lehmke for fuzzy systems of IF-
THEN rules [17]. Thus, we will refer to it as the continuity in the sense of Perfilieva-Lehmke.

Let us now return to the associative memory problem. Given a set of associations
{(x5,y%) : € =1,...,k} € [0,1]" x [0,1]™, a FAM W : [0,1]® — [0,1]™ should, in prin-
ciple, satisfy the equation W(x¢) = y¢ for all € = 1,..., k. The following proposition shows
that if a max-+ FMAM with FLA satisfies W(x¢) = y¢ for all £ = 1,...,k, then W is also
continuous at every fundamental memory x¢. Furthermore, Proposition 2 shows that the
converse also holds true: If W is continuous at every x¢, then the association pairs (xg, y¢ )
have been memorized correctly.

Proposition 2 Consider a clodum ([0,1],V, A, x,«"). Given a set of associations {(x¢,y*) :
E=1,....k} C[0,1]" x [0,1]™, let W : [0,1]" — [0,1]™ denote the max-+ FMAM whose
synaptic weight matriz is given by FLA. We have that W(x%) = y¢ for all € = 1,...,k if,
and only if, W is continuous at every x¢ in the sense of Perfilieva-Lehmke.

We would like to point out that the previous proposition is analogous to Theorem 2 in
[17] for fuzzy systems of IF-THEN rules when x corresponds to a left-continuous t-norm. A
proof of Proposition (2) in general clodums can be found in [15].

Example 1 Consider the unit interval [0, 1] equipped with the conjunctive and disjunctive 311
uninorm as operations x and *' [5, 30]. In this case, the mathematical structure ([0, 1],V, A, %, ')
constitutes a clodum. Moreover, recall that the operation % satisfies

0 ifx=0andy=1,
Ty = 0 ifr=1andy=0, (13)
Y elsewhere ,

zy+(1-z)(1-y)



and its residual implication is given by the following equation for every x,y € [0,1] [4]:

1 ifer=0andy=0,
(x = y) = 1 ifr=1andy=1, (14)
% elsewhere .
y(1—z)+z(1-y)
Suppose that we intent to store the set of associations {(x',y1),...,(x%,y3)} C [0,1]° x
[0, 1]* in which
0.5 0.1 0.1 0.94 0.63 0.63
0.6 0.5 0.6 0.86 0.39 0.73
x! =108, x*=103|,x*=102], and y'=|, Lyi= | CyS =
1.00 1.00 1.00
0.6 0.0 0.8 0.94 0.63 0.50
0.7 0.3 0.2 ' ' '
(15)

In this case, FLA yields the following synaptic weight matriz:

0.94 0.53 0.80 0.30 0.80
0.85 0.39 0.60 0.40 0.60
W= 1.00 1.00 1.00 1.00 1.00{° (16)

0.90 0.40 0.80 0.20 0.80

We first confirmed that the association pairs (x5, y%) have been correctly stored in the memory,
i.e., W(x8) =y¢, for € =1,...,3. Therefore, in view of Proposition 2, the maz-x FMAM W
is continuous at x',x2, and x3. Indeed, if we introduce the pattern x = [0.6,0.5,0.8,0.7,0.6]7
as input, then the output of the maz-« FMAM W is the fuzzy sety = [0.96,0.90,1.00,0.94]7.
Note that the fuzzy set x is obtained by interchanging the entries x1 and xo as well as x4
and x5 of x'. The degree of similarity between x' and x is S(X,Xl) = 0.39. In contrast, the
output y agrees with y' in the entries y3 and ys. The degree of similarity of these two fuzzy
sets is S(y,yl) = 0.41, which is greater than S(x,x').

6 Concluding Remarks

In this paper, we first pointed out that clodums, or complete lattice ordered double monoids,
constitute an appropriate framework for the characterization of fuzzy morphological associa-
tive memories (FMAMSs) as fuzzy logic neural networks (FLNNs). Precisely, we noted that
many FLNN-FAMs in the literature belong to either the class of max-x FMAMSs or the class
of min-* FMAMs. Then, we observed that a certain FAM model W performs a dilation
invariant under regraduations of fuzzy patterns if, and only if, it corresponds to a max-x
FMAM. Dually, a FAM model M is an erosion invariant under dual regraduations if, and
only if, it belong to the class of min-* FMAMs. Therefore, in a clodum, the problem of
finding an appropriate FAM for a given association task corresponds to the much more easy
problem of determining an appropriate synaptic weight matrix. In view of this fact, we briefly
revised fuzzy learning by adjunction (FLA), also called implicative fuzzy learning, which can
be effectively applied for storage of a set of associations in max-+ and min-+ FMAMs. Recall
that this recording recipe yields, in some sense, an optimal synaptic weight matrix and, con-
sequently, the best max-+ or min-+ FMAM in a clodum. Finally, we translated the notions
of continuity of systems of fuzzy IF-THEN rules introduced by Perfilieva and Lehmke to the
context of FAMs. As a consequence, we have that a max-x FMAM with FLA is continuous
- in the sense of Perfilieva-Lehmke - if, and only if, it is able to store the association pairs
correctly.
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