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Introduction

Autossociative Memories
are systems designed for the storage and recall of
X = {x1, . . . ,xk} ⊆ Rn, called fundamental memory set.

Autassociative Morphological Memories:
Use lattice-based operations from minimax algebra.
Applications of AMMs include:

Restoration of corrupted images.
Vision-based self-localization in mobile robots.
Times-series prediction.
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Lattice-based Operations from Minimax Algebra

Definition (Max-Product and the min-product)

Let A ∈ Rn×k and B ∈ Rk×n. The max-product of A by B is given by

C = A ∨� B ⇐⇒ cij =
k∨

ξ=1

(
aiξ + bξj

)
.

The min-product of A by B is given by

C = A ∧� B ⇐⇒ cij =
k∧

ξ=1

(
aiξ + bξj

)
.

Marcos Eduardo Valle (Brazil) Max-plus Projection AMMs July 7, 2014 4 / 19



Conjugation and Adjunction

Definition (Conjugate)

The conjugate of A ∈ Rn×k is the matrix A∗ ∈ Rk×n given by

a∗
ij = −aji .

Proposition (Conjugation Relationship)

(A ∧� B)∗ = B∗ ∨� A∗ and (A ∨� B)∗ = B∗ ∧� A∗.

Proposition (Adjunction Relationship)

A ∨� B ≤ C ⇐⇒ B ≤ A∗ ∧� C ⇐⇒ A ≤ C ∧� B∗.
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Max-plus combination

Definition (Max-plus combination)
A vector

y =
k∨

ξ=1

(αξ + xξ), αξ ∈ R,

is a max-plus combination of vectors from X = {x1, . . . ,xk} ⊆ Rn.
The set of all max-plus combinations from X is

V(X ) =

y ∈ Rn : y =
k∨

ξ=1

(αξ + xξ), αξ
j ∈ R

 .
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Maxinimax combination

Definition (Minimax combination)
A vector

z =
n∧

j=1

k∨
ξ=1

(aξ
j + xξ), aξ

j ∈ R,

is a minimax combination of vectors from X = {x1, . . . ,xk} ⊆ Rn.
The set of all minimax combinations from X is

S(X ) =

z ∈ Rn : z =
n∧

j=1

k∨
ξ=1

(aξ
j + xξ),aξ

j ∈ R

 .

Marcos Eduardo Valle (Brazil) Max-plus Projection AMMs July 7, 2014 7 / 19



Original AMM models

Definition (AMMMXX )
The AMMMXX : Rn → Rn is given by

MXX (x) = MXX ∧� x, ∀x ∈ Rn,

where MXX ∈ Rn×n is the synaptic weight matrix.

Definition (Recording Recipe)

Given a fundamental memory set X = {x1, . . . ,xk}, MXX is given by

MXX = X ∨� X ∗,

where X = [x1, . . . ,xk ] ∈ Rn×k .
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From the conjugation relationship, we obtain the dual model:

Definition (AMMWXX )
The AMMWXX : Rn → Rn is given by

WXX (x) = WXX ∨� x, ∀x ∈ Rn.

Given X = {x1, . . . ,xk}, WXX is determined by

WXX = X ∧� X ∗,

where X = [x1, . . . ,xk ] ∈ Rn×k .

However, we shall focus on the AMMMXX .
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Proposition (Characterization of the AMMMXX )
The mappingMXX : Rn → Rn satisfies

MXX (x) =
∨
{z ∈ S(X ) : z ≤ x},

where S(X ) is the set of all minimax combinations of X = {x1, . . . ,xk}.

Conclusion:
1 MXX is idempotent.
2 Any minimax combination of x1, . . . ,xk is a fixed point ofMXX .
3 MXX projects x downward into S(X ).
4 MXX exhibits perfect recall of any undistorted vector xξ ∈ X .
5 MXX has many spurious memories, i.e., any vector in S(X ) \ X .
6 MXX (x) ≤ x for all x ∈ Rn.

Thus,MXX is suited for the reconstruction of patterns corrupted
by dilative noise, i.e., x ≥ xξ.
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Generalized Kernel Method for AMMs

Idea:
The AMMMXX satisfiesMXX (x) ≤ x (suited for dilative noise).
Dually,WXX (x) ≥ x (suited for erosive noise).
The idea is to combine the max-product and the min-product.
Hopefully, we will be able to deal with dilative and erosive noise!

Definition (Generalized Kernel (Sussner, 2003))

A matrix Z ∈ Rp×k , p ≥ k , is a generalized kernel for X if

WZX ∨� (MX
Z ∧� X ) = X

where

WZX = X ∧� Z ∗ and MX
Z = (Z ∨� X ∗) ∧� (X ∨� X ∗).
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Definition (Generalized Kernel AMM (GK-AMM))

Given X = [x1, . . . ,xk ] ∈ Rn×k and a generalized kernel Z for X , the
GK-AMM Z : Rn → Rn is defined by

Z(x) = WZX ∨� (MX
Z ∧� x), ∀x ∈ Rn.

GK-AMM exhibited excellent noise tolerance for binary patterns!

Remark
The paper contains two other variations of the original AMMMXX .
Namely,

1 The best-chebyshev approximation AMM (CBA-AMM).
2 The noise masking strategy.
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Max-plus Projection AMM (max-plus PAMM)

Recall that:
Given X = {x1, . . . ,xp}, the AMMMXX : Rn → Rn satisfies

MXX (x) =
∨
{z ∈ S(X ) : z ≤ x},

where S(X ) is the set of all minimax combinations of X = {x1, . . . ,xk}.

Definition (Max-plus PAMM)

Given X = {x1, . . . ,xp}, the max-plus PAMM VXX : Rn → Rn satisfies

VXX (x) =
∨
{z ∈ V(X ) : z ≤ x},

where V(X ) is the set of all max-plus combinations of X .
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Conclusion:
1 VXX is idempotent.
2 Any max-plus combination of x1, . . . ,xp is a fixed point of VXX .
3 VXX projects x downward into V(X ).
4 VXX exhibits perfect recall of any undistorted vector xξ ∈ X .
5 Since V(X ) ⊂ S(X ), VXX has less spurious memories thanMXX .
6 VXX (x) ≤MXX (x) ≤ x for all x ∈ Rn

In words, VXX has a better dilative noise tolerance thanMXX .
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Theorem (Formula to compute VXX (x))

Let X = [x1, . . . ,xk ] ∈ Rn×k . For any input pattern x ∈ Rn, we have

VXX (x) = X ∨� α, where α = X ∗ ∧� x.

Alternatively, the output of VXX can be expressed as

VXX (x) =
k∨

ξ=1

n∧
j=1

(
(xj − xξ

j ) + xξ
)
, ∀x ∈ Rn.

Remark
The output ofMXX satisfies

MXX (x) =
n∧

j=1

k∨
ξ=1

(
(xj − xξ

j ) + xξ
)
, ∀x ∈ Rn.
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From
VXX (x) = X ∨� α, where α = X ∗ ∧� x,

we conclude that
VXX (x) = X ∨�

(
X ∗ ∧� x

)
.

In other words, we have

Theorem
The max-plus PAMM VXX equals the GK-AMM Z with the generalized
kernel Z = X = [x1, . . . ,xk ] in an hyperbox.
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Proposition
The max-plus PAMM satisfies

VXX (x) =
k∨

ξ=1

(
A(xξ,x)︸ ︷︷ ︸

αξ

+xξ
)
, ∀x ∈ Rn,

where A : Rn × Rn → R is given by

A(y,x) =
n∧

j=1

(xj − yj) = y∗ ∧� x, ∀x,y ∈ Rn.

Remark
We have A(y,x) ≥ 0 if and only if x ≥ y.
In some sense, A(y,x) measures the truth of the inequality y ≤ x.
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Theorem (Dual Representation of VXX )

Given X = {x1, . . . ,xp}, the max-plus PAMM VXX satisfies

VXX (x) =
∧
{y ∈ Rn : A(xξ,x) ≤ A(xξ,y), ∀ξ ∈ 1, . . . , k},

for all input x ∈ Rn.

The dual representation of VXX require further investigation!

Remark
The paper contains two other variations of the max-plus PAMM VXX :

1 The best-chebyshev approximation PAMM (CBA-PAMM).
2 The noise masking strategy.
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Concluding Remarks

1 We briefly revised the original AMM models.
2 We also reviewed the generalized kernel AMMs (GK-AMMs).
3 We introduced the max-plus projection AMM VXX by replacing the

set of all minimax combination S(X ) by V(X ), the set of all
max-plus combination of X = {x1, . . . ,xk}.

4 Moreover, VXX as less spurious memories thanMXX .
5 In addition, VXX corresponds to a certain GK-AMM.

Thank you!
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