An Introduction to the Max-plus Projection Autoassociative Morphological Memory and Some of Its Variations

Marcos Eduardo Valle

Department of Applied Mathematics
Institute of Mathematics, Statistics, and Scientific Computing
University of Campinas - Brazil
July 7, 2014

Introduction

Autossociative Memories

- are systems designed for the storage and recall of $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\} \subseteq \mathbb{R}^{n}$, called fundamental memory set.

Autassociative Morphological Memories:

- Use lattice-based operations from minimax algebra.
- Applications of AMMs include:
- Restoration of corrupted images.
- Vision-based self-localization in mobile robots.
- Times-series prediction.

Organization of this Talk

(1) Introduction
(2) Some Mathematical Background
(3) A Brief Review on Autoassociative Morphological Memories
(4) Max-plus Projection Autoassociative Morphological Memory
(5) Concluding Remarks

Lattice-based Operations from Minimax Algebra

Definition (Max-Product and the min-product)

Let $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$. The max-product of A by B is given by

$$
C=A \boxtimes B \quad \Longleftrightarrow \quad c_{i j}=\bigvee_{\xi=1}\left(a_{i \xi}+b_{\xi j}\right)
$$

The min-product of A by B is given by

$$
C=A \boxtimes B \quad \Longleftrightarrow \quad c_{i j}=\bigwedge_{\xi=1}\left(a_{i \xi}+b_{\xi j}\right)
$$

Conjugation and Adjunction

Definition (Conjugate)

The conjugate of $A \in \mathbb{R}^{n \times k}$ is the matrix $A^{*} \in \mathbb{R}^{k \times n}$ given by

$$
a_{i j}^{*}=-a_{j i} .
$$

Proposition (Conjugation Relationship)

$$
(A \boxtimes B)^{*}=B^{*} \boxtimes A^{*} \quad \text { and } \quad(A \boxtimes B)^{*}=B^{*} \boxtimes A^{*} \text {. }
$$

Proposition (Adjunction Relationship)

$$
A \boxtimes B \leq C \quad \Longleftrightarrow \quad B \leq A^{*} \boxtimes C \quad \Longleftrightarrow \quad A \leq C \boxtimes B^{*} .
$$

Max-plus combination

Definition (Max-plus combination)

A vector

$$
\mathbf{y}=\bigvee_{\xi=1}^{k}\left(\alpha_{\xi}+\mathbf{x}^{\xi}\right), \quad \alpha_{\xi} \in \mathbb{R}
$$

is a max-plus combination of vectors from $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\} \subseteq \mathbb{R}^{n}$. The set of all max-plus combinations from \mathcal{X} is

$$
\mathfrak{V}(\mathcal{X})=\left\{\mathbf{y} \in \mathbb{R}^{n}: \mathbf{y}=\bigvee_{\xi=1}^{k}\left(\alpha_{\xi}+\mathbf{x}^{\xi}\right), \alpha_{j}^{\xi} \in \mathbb{R}\right\}
$$

Maxinimax combination

Definition (Minimax combination)

A vector

$$
\mathbf{z}=\bigwedge_{j=1}^{n} \bigvee_{\xi=1}^{k}\left(a_{j}^{\xi}+\mathbf{x}^{\xi}\right), \quad a_{j}^{\xi} \in \mathbb{R}
$$

is a minimax combination of vectors from $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\} \subseteq \mathbb{R}^{n}$. The set of all minimax combinations from \mathcal{X} is

$$
\mathfrak{S}(\mathcal{X})=\left\{\mathbf{z} \in \mathbb{R}^{n}: \mathbf{z}=\bigwedge_{j=1}^{n} \bigvee_{\xi=1}^{k}\left(a_{j}^{\xi}+\mathbf{x}^{\xi}\right), a_{j}^{\xi} \in \mathbb{R}\right\}
$$

Original AMM models

Definition (AMM $\mathcal{M}_{X x}$)

The AMM $\mathcal{M}_{X X}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by

$$
\mathcal{M}_{X X}(\mathbf{x})=M_{X X} \boxtimes \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

where $M_{X X} \in \mathbb{R}^{n \times n}$ is the synaptic weight matrix.

Definition (Recording Recipe)

Given a fundamental memory set $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\}, M_{X X}$ is given by

$$
M_{X X}=X \boxtimes X^{*},
$$

where $X=\left[\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right] \in \mathbb{R}^{n \times k}$.

From the conjugation relationship, we obtain the dual model:

Definition (AMM $\mathcal{W}_{X X}$)

The $\mathrm{AMM} \mathcal{W}_{X X}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by

$$
\mathcal{W}_{X X}(\mathbf{x})=W_{X X} \boxtimes \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

Given $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\}, W_{X X}$ is determined by

$$
W_{X X}=X \boxtimes X^{*}
$$

where $X=\left[\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right] \in \mathbb{R}^{n \times k}$.
However, we shall focus on the AMM $\mathcal{M}_{X X}$.

Proposition (Characterization of the AMM $\mathcal{M}_{x x}$)

The mapping $\mathcal{M}_{X X}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies

$$
\mathcal{M}_{X X}(\mathbf{x})=\bigvee\{\mathbf{z} \in \mathfrak{S}(\mathcal{X}): \mathbf{z} \leq \mathbf{x}\}
$$

where $\mathfrak{S}(\mathcal{X})$ is the set of all minimax combinations of $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\}$.

Conclusion:

(1) $\mathcal{M}_{X X}$ is idempotent.
(2) Any minimax combination of $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}$ is a fixed point of $\mathcal{M}_{X X}$.
(3) $\mathcal{M}_{X X}$ projects \mathbf{x} downward into $\mathfrak{S}(\mathcal{X})$.
(4) $\mathcal{M}_{X X}$ exhibits perfect recall of any undistorted vector $\mathbf{x}^{\xi} \in \mathcal{X}$.
(5) $\mathcal{M}_{X X}$ has many spurious memories, i.e., any vector in $\mathfrak{S}(\mathcal{X}) \backslash \mathcal{X}$.
(6) $\mathcal{M}_{X X}(\mathbf{x}) \leq \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Thus, $\mathcal{M}_{X X}$ is suited for the reconstruction of patterns corrupted by dilative noise, i.e., $\mathbf{x} \geq \mathbf{x}^{\xi}$.

Generalized Kernel Method for AMMs

Idea:

- The AMM $\mathcal{M}_{X X}$ satisfies $\mathcal{M}_{X X}(\mathbf{x}) \leq \mathbf{x}$ (suited for dilative noise).
- Dually, $\mathcal{W}_{X X}(\mathbf{x}) \geq \mathbf{x}$ (suited for erosive noise).
- The idea is to combine the max-product and the min-product.
- Hopefully, we will be able to deal with dilative and erosive noise!

Definition (Generalized Kernel (Sussner, 2003))

A matrix $Z \in \mathbb{R}^{p \times k}, p \geq k$, is a generalized kernel for X if

$$
W_{Z X} \boxtimes\left(M_{Z}^{X} \boxtimes X\right)=X
$$

where

$$
W_{Z X}=X \boxtimes Z^{*} \quad \text { and } \quad M_{Z}^{X}=\left(Z \boxtimes X^{*}\right) \boxtimes\left(X \boxtimes X^{*}\right)
$$

Definition (Generalized Kernel AMM (GK-AMM))

Given $X=\left[\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right] \in \mathbb{R}^{n \times k}$ and a generalized kernel Z for X, the GK-AMM $\mathcal{Z}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\mathcal{Z}(\mathbf{x})=W_{Z X} \boxtimes\left(M_{Z}^{X} \boxtimes \mathbf{x}\right), \quad \forall \mathbf{x} \in \mathbb{R}^{n} .
$$

GK-AMM exhibited excellent noise tolerance for binary patterns!

Remark

The paper contains two other variations of the original AMM $\mathcal{M}_{X x}$. Namely,
(1) The best-chebyshev approximation AMM (CBA-AMM).
(2) The noise masking strategy.

Max-plus Projection AMM (max-plus PAMM)

Recall that:

Given $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{p}\right\}$, the AMM $\mathcal{M}_{X X}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies

$$
\mathcal{M}_{X X}(\mathbf{x})=\bigvee\{\mathbf{z} \in \mathfrak{S}(\mathcal{X}): \mathbf{z} \leq \mathbf{x}\},
$$

where $\mathfrak{S}(\mathcal{X})$ is the set of all minimax combinations of $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{\kappa}\right\}$.

Definition (Max-plus PAMM)

Given $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{p}\right\}$, the max-plus PAMM $\mathcal{V}_{X X}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies

$$
\mathcal{V}_{X X}(\mathbf{x})=\bigvee\{\mathbf{z} \in \mathfrak{N}(\mathcal{X}): \mathbf{z} \leq \mathbf{x}\},
$$

where $\mathfrak{V}(\mathcal{X})$ is the set of all max-plus combinations of \mathcal{X}.

Conclusion:

(1) $\mathcal{V}_{X X}$ is idempotent.
(2) Any max-plus combination of $\mathbf{x}^{1}, \ldots, \mathbf{x}^{p}$ is a fixed point of $\mathcal{V}_{X X}$.
(3) $\mathcal{V}_{X X}$ projects \mathbf{x} downward into $\mathfrak{V}(\mathcal{X})$.
(4) $\mathcal{V}_{X X}$ exhibits perfect recall of any undistorted vector $\mathbf{x}^{\xi} \in \mathcal{X}$.
(5) Since $\mathfrak{V}(\mathcal{X}) \subset \mathfrak{S}(\mathcal{X}), \mathcal{V}_{X X}$ has less spurious memories than $\mathcal{M}_{X X}$.
(6) $\mathcal{V}_{X X}(\mathbf{x}) \leq \mathcal{M}_{X X}(\mathbf{x}) \leq \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$

In words, $\mathcal{V}_{X X}$ has a better dilative noise tolerance than $\mathcal{M}_{X X}$.

Theorem (Formula to compute $\mathcal{V}_{x x}(\mathbf{x})$)

Let $X=\left[\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right] \in \mathbb{R}^{n \times k}$. For any input pattern $\mathbf{x} \in \mathbb{R}^{n}$, we have

$$
\mathcal{V}_{X X}(\mathbf{x})=X \boxtimes \boldsymbol{\alpha}, \quad \text { where } \quad \alpha=X^{*} \boxtimes \mathbf{x} .
$$

Alternatively, the output of $\mathcal{V}_{X x}$ can be expressed as

$$
\mathcal{V}_{x x}(\mathbf{x})=\bigvee_{\xi=1}^{k} \bigwedge_{j=1}^{n}\left(\left(x_{j}-x_{j}^{\xi}\right)+\mathbf{x}^{\xi}\right), \quad \forall \mathbf{x} \in \mathbb{R}^{n} .
$$

Remark

The output of $\mathcal{M}_{X X}$ satisfies

$$
\mathcal{M}_{x x}(\mathbf{x})=\bigwedge_{j=1}^{n} \bigvee_{\xi=1}^{k}\left(\left(x_{j}-x_{j}^{\xi}\right)+\mathbf{x}^{\xi}\right), \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

From

$$
\mathcal{V}_{X X}(\mathbf{x})=X \boxtimes \boldsymbol{\alpha}, \quad \text { where } \quad \boldsymbol{\alpha}=X^{*} \boxtimes \mathbf{x}
$$

we conclude that

$$
\mathcal{V}_{X X}(\mathbf{x})=X \boxtimes\left(X^{*} \boxtimes \mathbf{x}\right)
$$

In other words, we have

Theorem

The max-plus PAMM $\mathcal{V}_{X x}$ equals the GK-AMM \mathcal{Z} with the generalized kernel $Z=X=\left[\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right]$ in an hyperbox.

Proposition

The max-plus PAMM satisfies

$$
\mathcal{V}_{X X}(\mathbf{x})=\bigvee_{\xi=1}^{k}(\underbrace{\mathcal{A}\left(\mathbf{x}^{\xi}, \mathbf{x}\right)}_{\alpha_{\xi}}+\mathbf{x}^{\xi}), \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

where $\mathcal{A}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
\mathcal{A}(\mathbf{y}, \mathbf{x})=\bigwedge_{j=1}^{n}\left(x_{j}-y_{j}\right)=\mathbf{y}^{*} \boxtimes \mathbf{x}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

Remark

We have $\mathcal{A}(\mathbf{y}, \mathbf{x}) \geq 0$ if and only if $\mathbf{x} \geq \mathbf{y}$.
In some sense, $\mathcal{A}(\mathbf{y}, \mathbf{x})$ measures the truth of the inequality $\mathbf{y} \leq \mathbf{x}$.

Theorem (Dual Representation of $\mathcal{V}_{x x}$)

Given $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{p}\right\}$, the max-plus PAMM $\mathcal{V}_{X X}$ satisfies

$$
\mathcal{V}_{X X}(\mathbf{x})=\bigwedge\left\{\mathbf{y} \in \mathbb{R}^{n}: \mathcal{A}\left(\mathbf{x}^{\xi}, \mathbf{x}\right) \leq \mathcal{A}\left(\mathbf{x}^{\xi}, \mathbf{y}\right), \forall \xi \in 1, \ldots, k\right\}
$$

for all input $\mathbf{x} \in \mathbb{R}^{n}$.
The dual representation of $\mathcal{V}_{X X}$ require further investigation!

Remark

The paper contains two other variations of the max-plus PAMM $\mathcal{V}_{X X}$:
(1) The best-chebyshev approximation PAMM (CBA-PAMM).
(2) The noise masking strategy.

Concluding Remarks

(1) We briefly revised the original AMM models.
(2) We also reviewed the generalized kernel AMMs (GK-AMMs).
(3) We introduced the max-plus projection AMM $\mathcal{V}_{X X}$ by replacing the set of all minimax combination $\mathfrak{S}(\mathcal{X})$ by $\mathfrak{V}(\mathcal{X})$, the set of all max-plus combination of $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right\}$.
(4) Moreover, $\mathcal{V}_{X X}$ as less spurious memories than $\mathcal{M}_{X X}$.
(5) In addition, $\mathcal{V}_{X X}$ corresponds to a certain GK-AMM.

Thank you!

