An Introduction to the Max-plus Projection Autoassociative Morphological Memory and Some of Its Variations

Marcos Eduardo Valle

Department of Applied Mathematics Institute of Mathematics, Statistics, and Scientific Computing University of Campinas - Brazil

July 7, 2014

Marcos Eduardo Valle (Brazil)

Max-plus Projection AMMs

July 7, 2014 1 / 19

Autossociative Memories

are systems designed for the storage and recall of
 X = {**x**¹,..., **x**^k} ⊆ ℝⁿ, called *fundamental memory set*.

Autassociative Morphological Memories:

- Use lattice-based operations from minimax algebra.
- Applications of AMMs include:
 - Restoration of corrupted images.
 - Vision-based self-localization in mobile robots.
 - Times-series prediction.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction

- 2 Some Mathematical Background
- 3 A Brief Review on Autoassociative Morphological Memories
- Max-plus Projection Autoassociative Morphological Memory

5 Concluding Remarks

Definition (Max-Product and the min-product)

Let $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$. The max-product of A by B is given by

$$C = A \boxtimes B \qquad \Longleftrightarrow \qquad c_{ij} = \bigvee_{\xi=1}^{\kappa} (a_{i\xi} + b_{\xi j}).$$

The min-product of A by B is given by

$$C = A \boxtimes B \qquad \Longleftrightarrow \qquad c_{ij} = \bigwedge_{\xi=1}^k (a_{i\xi} + b_{\xi j}).$$

Definition (Conjugate)

The conjugate of $A \in \mathbb{R}^{n \times k}$ is the matrix $A^* \in \mathbb{R}^{k \times n}$ given by

$$a_{ij}^* = -a_{ji}.$$

Proposition (Conjugation Relationship)

 $(A \boxtimes B)^* = B^* \boxtimes A^*$ and $(A \boxtimes B)^* = B^* \boxtimes A^*$.

Proposition (Adjunction Relationship)

$$A \boxtimes B \leq C \iff B \leq A^* \boxtimes C \iff A \leq C \boxtimes B^*.$$

Marcos Eduardo Valle (Brazil)

Definition (Max-plus combination)

A vector

$$\mathbf{y} = \bigvee_{\xi=1}^{k} (\alpha_{\xi} + \mathbf{x}^{\xi}), \quad \alpha_{\xi} \in \mathbb{R},$$

is a max-plus combination of vectors from $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^k\} \subseteq \mathbb{R}^n$. The set of all max-plus combinations from \mathcal{X} is

$$\mathfrak{V}(\mathcal{X}) = \left\{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \bigvee_{\xi=1}^k (\alpha_{\xi} + \mathbf{x}^{\xi}), \alpha_j^{\xi} \in \mathbb{R} \right\}$$

Marcos Eduardo Valle (Brazil)

< 同 > < ∃ >

Definition (Minimax combination)

A vector

$$\mathbf{z} = \bigwedge_{j=1}^n \bigvee_{\xi=1}^k (a_j^{\xi} + \mathbf{x}^{\xi}), \quad a_j^{\xi} \in \mathbb{R},$$

is a minimax combination of vectors from $\mathcal{X} = {\mathbf{x}^1, ..., \mathbf{x}^k} \subseteq \mathbb{R}^n$. The set of all minimax combinations from \mathcal{X} is

$$\mathfrak{S}(\mathcal{X}) = \left\{ \mathbf{z} \in \mathbb{R}^n : \mathbf{z} = \bigwedge_{j=1}^n \bigvee_{\xi=1}^k (a_j^{\xi} + \mathbf{x}^{\xi}), a_j^{\xi} \in \mathbb{R} \right\}.$$

Marcos Eduardo Valle (Brazil)

Max-plus Projection AMMs

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition (AMM \mathcal{M}_{XX})

The AMM $\mathcal{M}_{XX} : \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\mathcal{M}_{XX}(\mathbf{x}) = M_{XX} \boxtimes \mathbf{x}, \quad \forall \, \mathbf{x} \in \mathbb{R}^n,$$

where $M_{XX} \in \mathbb{R}^{n \times n}$ is the synaptic weight matrix.

Definition (Recording Recipe)

Given a fundamental memory set $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^k\}$, M_{XX} is given by

$$M_{XX} = X \boxtimes X^*,$$

where $X = [\mathbf{x}^1, \dots, \mathbf{x}^k] \in \mathbb{R}^{n \times k}$.

From the conjugation relationship, we obtain the dual model:

Definition (AMM W_{XX})

The AMM $W_{XX} : \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\mathcal{W}_{XX}(\mathbf{x}) = W_{XX} \boxtimes \mathbf{x}, \quad \forall \, \mathbf{x} \in \mathbb{R}^n.$$

Given $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^k\}$, W_{XX} is determined by

$$W_{XX} = X \boxtimes X^*,$$

where $X = [\mathbf{x}^1, \dots, \mathbf{x}^k] \in \mathbb{R}^{n \times k}$.

However, we shall focus on the AMM \mathcal{M}_{XX} .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposition (Characterization of the AMM M_{XX})

The mapping $\mathcal{M}_{XX} : \mathbb{R}^n \to \mathbb{R}^n$ satisfies

 $\mathcal{M}_{XX}(\mathbf{X}) = \bigvee \{ \mathbf{z} \in \mathfrak{S}(\mathcal{X}) : \mathbf{z} \leq \mathbf{X} \},$

where $\mathfrak{S}(\mathcal{X})$ is the set of all minimax combinations of $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^k\}$.

Conclusion:

- \mathcal{M}_{XX} is idempotent.
- 2 Any minimax combination of $\mathbf{x}^1, \ldots, \mathbf{x}^k$ is a fixed point of \mathcal{M}_{XX} .
- **3** \mathcal{M}_{XX} projects **x** downward into $\mathfrak{S}(\mathcal{X})$.
- \mathcal{M}_{XX} exhibits perfect recall of any undistorted vector $\mathbf{x}^{\xi} \in \mathcal{X}$.
- **5** \mathcal{M}_{XX} has many spurious memories, i.e., any vector in $\mathfrak{S}(\mathcal{X}) \setminus \mathcal{X}$.
- M_{XX}(x) ≤ x for all x ∈ ℝⁿ. Thus, M_{XX} is suited for the reconstruction of patterns corrupted by dilative noise, i.e., x ≥ x^ξ.

Generalized Kernel Method for AMMs

Idea:

- The AMM \mathcal{M}_{XX} satisfies $\mathcal{M}_{XX}(\mathbf{x}) \leq \mathbf{x}$ (suited for dilative noise).
- Dually, $\mathcal{W}_{XX}(\mathbf{x}) \geq \mathbf{x}$ (suited for erosive noise).
- The idea is to combine the max-product and the min-product.
- Hopefully, we will be able to deal with dilative and erosive noise!

Definition (Generalized Kernel (Sussner, 2003))

A matrix $Z \in \mathbb{R}^{p \times k}$, $p \ge k$, is a *generalized kernel* for X if

 $W_{ZX} \boxtimes (M_Z^X \boxtimes X) = X$

where

$$W_{ZX} = X \boxtimes Z^*$$
 and $M_Z^X = (Z \boxtimes X^*) \boxtimes (X \boxtimes X^*).$

Definition (Generalized Kernel AMM (GK-AMM))

Given $X = [\mathbf{x}^1, \dots, \mathbf{x}^k] \in \mathbb{R}^{n \times k}$ and a generalized kernel Z for X, the GK-AMM $\mathcal{Z} : \mathbb{R}^n \to \mathbb{R}^n$ is defined by

$$\mathcal{Z}(\mathbf{x}) = W_{ZX} \boxtimes (M_Z^X \boxtimes \mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

GK-AMM exhibited excellent noise tolerance for binary patterns!

Remark

The paper contains two other variations of the original AMM \mathcal{M}_{XX} . Namely,

- The best-chebyshev approximation AMM (CBA-AMM).
- 2 The noise masking strategy.

Max-plus Projection AMM (max-plus PAMM)

Recall that:

Given $\mathcal{X} = {\mathbf{x}^1, \dots, \mathbf{x}^p}$, the AMM $\mathcal{M}_{XX} : \mathbb{R}^n \to \mathbb{R}^n$ satisfies

$$\mathcal{M}_{XX}(\mathbf{x}) = \bigvee \{ \mathbf{z} \in \mathfrak{S}(\mathcal{X}) : \mathbf{z} \leq \mathbf{x} \},$$

where $\mathfrak{S}(\mathcal{X})$ is the set of all minimax combinations of $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^k\}$.

Definition (Max-plus PAMM)

Given $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^p\}$, the max-plus PAMM $\mathcal{V}_{XX} : \mathbb{R}^n \to \mathbb{R}^n$ satisfies

$$\mathcal{V}_{XX}(\mathbf{x}) = \bigvee \{ \mathbf{z} \in \mathfrak{V}(\mathcal{X}) : \mathbf{z} \leq \mathbf{x} \},$$

where $\mathfrak{V}(\mathcal{X})$ is the set of all max-plus combinations of \mathcal{X} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

Conclusion:

- \mathcal{V}_{XX} is idempotent.
- 2 Any max-plus combination of $\mathbf{x}^1, \ldots, \mathbf{x}^p$ is a fixed point of \mathcal{V}_{XX} .
- **3** \mathcal{V}_{XX} projects **x** downward into $\mathfrak{V}(\mathcal{X})$.
- **③** \mathcal{V}_{XX} exhibits perfect recall of any undistorted vector $\mathbf{x}^{\xi} \in \mathcal{X}$.
- Since $\mathfrak{V}(\mathcal{X}) \subset \mathfrak{S}(\mathcal{X}), \mathcal{V}_{XX}$ has less spurious memories than \mathcal{M}_{XX} .
- 𝔅 𝔅_{XX}(𝔅) ≤ 𝔅_{XX}(𝔅) ≤ 𝔅 for all 𝔅 ∈ ℝⁿ
 In words, 𝔅_{XX} has a better dilative noise tolerance than 𝔅_{XX}.

Theorem (Formula to compute $\mathcal{V}_{XX}(\mathbf{x})$)

Let $X = [\mathbf{x}^1, \dots, \mathbf{x}^k] \in \mathbb{R}^{n \times k}$. For any input pattern $\mathbf{x} \in \mathbb{R}^n$, we have $\mathcal{V}_{XX}(\mathbf{x}) = X \boxtimes \alpha$, where $\alpha = X^* \boxtimes \mathbf{x}$.

Alternatively, the output of V_{XX} can be expressed as

$$\mathcal{V}_{XX}(\mathbf{x}) = \bigvee_{\xi=1}^{k} \bigwedge_{j=1}^{n} \left((x_j - x_j^{\xi}) + \mathbf{x}^{\xi} \right), \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Remark

The output of \mathcal{M}_{XX} satisfies

$$\mathcal{M}_{XX}(\mathbf{x}) = \bigwedge_{j=1}^{n} \bigvee_{\xi=1}^{k} \left((x_j - x_j^{\xi}) + \mathbf{x}^{\xi} \right), \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Marcos Eduardo Valle (Brazil)

イロト 不得 トイヨト イヨト ニヨー

From

$$\mathcal{V}_{XX}(\mathbf{x}) = X \boxtimes \alpha$$
, where $\alpha = X^* \boxtimes \mathbf{x}$,

we conclude that

$$\mathcal{V}_{XX}(\mathbf{x}) = X \boxtimes (X^* \boxtimes \mathbf{x}).$$

In other words, we have

Theorem

The max-plus PAMM \mathcal{V}_{XX} equals the GK-AMM \mathcal{Z} with the generalized kernel $Z = X = [\mathbf{x}^1, \dots, \mathbf{x}^k]$ in an hyperbox.

Proposition

The max-plus PAMM satisfies

$$\mathcal{V}_{XX}(\mathbf{x}) = \bigvee_{\xi=1}^{k} \big(\underbrace{\mathcal{A}(\mathbf{x}^{\xi}, \mathbf{x})}_{\alpha_{\xi}} + \mathbf{x}^{\xi} \big), \quad \forall \mathbf{x} \in \mathbb{R}^{n},$$

where $\mathcal{A} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is given by

$$\mathcal{A}(\mathbf{y},\mathbf{x}) = \bigwedge_{j=1}^{n} (x_j - y_j) = \mathbf{y}^* \boxtimes \mathbf{x}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

Remark

We have $\mathcal{A}(\mathbf{y}, \mathbf{x}) \ge 0$ if and only if $\mathbf{x} \ge \mathbf{y}$. In some sense, $\mathcal{A}(\mathbf{y}, \mathbf{x})$ measures the truth of the inequality $\mathbf{y} \le \mathbf{x}$.

イロト イ団ト イヨト イヨ

Theorem (Dual Representation of V_{XX})

Given $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^p\}$, the max-plus PAMM \mathcal{V}_{XX} satisfies

$$\mathcal{V}_{XX}(\mathbf{x}) = \bigwedge \{ \mathbf{y} \in \mathbb{R}^n : \mathcal{A}(\mathbf{x}^{\xi}, \mathbf{x}) \leq \mathcal{A}(\mathbf{x}^{\xi}, \mathbf{y}), \forall \xi \in 1, \dots, k \},$$

for all input $\mathbf{x} \in \mathbb{R}^n$.

The dual representation of V_{XX} require further investigation!

Remark

The paper contains two other variations of the max-plus PAMM V_{XX} :

- The best-chebyshev approximation PAMM (CBA-PAMM).
- 2 The noise masking strategy.

- We briefly revised the original AMM models.
- We also reviewed the generalized kernel AMMs (GK-AMMs).
- We introduced the max-plus projection AMM V_{XX} by replacing the set of all minimax combination G(X) by 𝔅(X), the set of all max-plus combination of X = {x¹,..., x^k}.
- **9** Moreover, V_{XX} as less spurious memories than \mathcal{M}_{XX} .
- In addition, V_{XX} corresponds to a certain GK-AMM.

Thank you!

