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Motivation
= Solutions to many interesting flow problems may exhibit loca-
lized singular features:
e sharp transition layers
e propagating steep fronts
e pronounced spikes

= Approximations of these problems present a challenging com-
putational task

= Uniform grid is not a practical option: high resolution is only
needed where irregularities occur.

= Improvements in accuracy and computational efficiency may
be obtained by economically adapting the grid points to the
numerical solution.
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Some Basic Principles in Wavelet Analysis

e The information is organized in different scale levels

e The information at a certain level is obtained from the infor-
mation at the previous coarser level and the addition of details
( wavelet coefficients).

e Wavelet coefficientes may be interpreted as local approxima-
tion errors: they are significant in the presence of strong gra-

diends

e Wavelet coefficientes can be used as local regularity indicators.



Main Objectives: Application to Evolution Problems

ou
ot
L(U) — differential operator acting on spatial variables.

LU

Suppose that at time ¢, = n/t an sparse representation
(M"™ U™) for the approximate solution is given, in which /" is
formed by the numerical solution discrete values associated to an
adaptive mesh M".

Next time step: (M"™ 1/"+)

= Extension (refinement): (M™,U") < (M"*, U

= Time evolution: (M"™* U"t) — (MH,L?TLH)-

= Truncation (coarsening): (M"J’,?)”H) I (ML U™,
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Part One: Wayvelets and Finite Differences
In colaboration with

Margarete O. Domingues and Lilliam A. Diaz



Sparse point representation — SPR (Holmstrom - 1997)

= Motivation: Create an adaptive finite difference strategy that
combines:
e simplicity, stability and accuracy of FD methods
e ability of wavelet coefficients in the characterization of lo-
cal regularity of functions

= |deas: Represent functions by the point values associated to
their significant wavelet coefficients

e coarse grid in smooth regions,
fine grid close to irregularities.

e at each point, spatial derivatives are discretized by uniform
FD — step size proportional to the point local scale

e if a stencil is not present in the grid, it is approximated from
coarser scales by an interpolating subdivision scheme.



Hierarchical Uniform Grids
e The grids: X* = {(z,y.,) = (khi,mhl) € I x I}
o X1 C XM (o) € X => (ot o)) € At

e Points in Xt
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Interpolatory Wavelet Coefficients
fim = F(@h Ym) = foriom

wavelet coefficients: Interpolation errors
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differences between the values of f in X1\ X* and the ones
obtained by interpolation, using the values of f in X*
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Tree structure

Quad-tree

Grid structure
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Construction Ideas of M, C AX?




Example: ABR for the spike function
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—2500.0 ((2—0.3)2+(y—0.3)2)

f(z,y) =3 exp +sen(2mz) + sen(2my)

Mig-s Mg Mig-s

e | tblocks | #(Me) | #(X4) | §(Me)/8(X)
1075 100 | 102400 | 2097152 0.05
1074 64 65536 | 262144 0.25
103 28 28672 65536 0.43




ABR for oblique-front function

flz,y) =1 —tanh(25z + 5(y — 1)),

with abrupt changes close to the line 25z + 5(y — 1) =0

Myg-2 M-+ Myy-5

LT aiS

ol

\
€ # blocks | #(Me) | #(X7) | (M) /#(X5)
10~° 44 45056 | 262144 0.17
10~4 19 19456 | 65536 0.30
1073 10 10240 | 16384 0.60
1072 4 4096 4096 1.00
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Operations on Block-Structured Grids
e Tree Extension (Grid Refinement) :

ASA

Grid M Grid M

e Tree Reduction (Grid Coarsening):

AL A



e Functional Operations

Operations between two functions represented in block— Homepage
structured grids are straightforward point-wise evaluations if Pagina de Rosto
their grids coincide. e
Otherwise, extend both grids in order to get representations «| » |
in a common grid.
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The idea is to use finite difference operators with uniform —

spacing in each block.

Fechar
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and columns around the block boundaries (ghost points).



Examples: Advection Equation

8_U_|_ a_u_|_a_u =0
ot ox Oy)

fort >0, (z,y) € (0,1)x(0,1), with periodic boundary condition
and initial condition:

U(z,y,0) = exp @0 +E=05% L 0 9 sin(27z) + sin(2my)
Exact solution: spike moving along the diagonal = = y, without
changing its format.

Parameters

ec=10"° N,=N,=32and A\ =hZ, /A" =5 x 107*

min

e interpolation, finite differences and Runge-Kutta — 4-th order



Advecting spike
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Oblique Front: Advection-diffusion equation
8L{+(9L{+8Z/{_ 321/{_ 0°U
ot Or Oy 0z  0y?

t >0, (z,y) € (0,1) x (0,1) with appropriate boundary conditi-
ons and the forcing term.

=F

Exact solution U = 1—tanh (25(1' —t)+5(y — 1)) describing
a propagating steep front moving to the right.

Parameters

e=10"* N,=N,=16and A =10"*




Propagation of Oblique front

t=0.35 t=0.45 t=0.70
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Sharp Transition Layers: Burgers’ equation:

a_u+ua_u+ua_u_ 62_2/{_ 62_2/{_

ot Loz oy Mo Hop T
t >0, (z,y) €[0,1] x [0,1] , with periodic boundary conditions
and initial data

0,

U(z,y,0) = sen(2rz) sen(2my).

negative and positive features move on opposite directions, pro-
ducing sharp transition layers, as time evolves.

Parameters

=102 ¢=10"° N,=N,=32and A\=5 x 102




Formation of Sharp Transition Layers

t=0 t=0.05 t=0.09
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Conclusion

= An adaptive finite—difference scheme for PDEs based on
block—structured grids, which are dinamically generated by
wavelet representation techniques.

= Algorithms and data structure are formulated by using abs-
tract concepts borrowed from quad trees.

= Given any desired accuracy, the method is intended to pro-
duce simulations with automatic grid refinement, as re-
quired by the numerical solution, without penalizating the
computational complexity.

= The method, as stated, faces the typical dilema of adaptive
solvers with explicit time discretization. Since, for stability,
At is adjusted to the current finest scale level, the effect of
any grid refinement is the increment of the total number of
time steps.
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Part Two
Discontinuous Galerkin Method with Implicit
Diffusivity and h-Adaptivity Based on Wavelets

In colaboration with

Jorge Diaz Calle and Philippe R. B. Devloo



Conservation Laws

g—l:(t,a:)—l—v.f(u(t,x))zo Xx€QC R, >0

u(t,x) = (uy(t,x), -+, uy(t,x)), conserved quantities

f(u) = (fi(u),-- -, fa(u)), flux function

Initial condition: u(0, z) = uy(z),z € Q + apropriate boundary
conditions



Discontinuous Galerkin Method

e Approximating space
M;, — partion of Q; C' € M;, — computational cells
Vi, — space of piecewise polynomials of fixed degree p > 0
w eV, =w|cell,
By, = {pi(x), i=1,2,...,N} basis spanning V},

e Approximate solution



e Galerkin Formulation: Find u € V}, such that Vi, and C

0 . -
—/%‘U—/V%-f(u)+/ @;f(u).n =0
at C C oC

f(w) — numerical flux

e Time discretization + stabilization

Runge-Kutta + slope limiters (Cockburn and Shu)
very small time-steps (CFL < 1/(p+ 1))
slope limiters depend on the geometry and p
Runge-Kutta + SUPG diffusive term
does not work
Implicit Euler scheme + SUPG difusive term
satability does not depend on p



e Implicit time discretization + SUPG diffusive term

N

Zu?-i-l/ [‘PNJ] 5Atn VSOJ Zfs n+1 1] =

=1
/ u"p; + Aty {/ V;.f(u") —/ gojf'(u").nc} )
C C oC

Diffusive coefficient: §; § = (51, 82) (Bonhaus)

Jacobian matrices are estimated from the values of the
solution in the previous time step. They have block-
diagonal structure

Stability analysis: Does not depend on p =1, 2,3
o> —CFL2 — —CFL + E linear advection eq.
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Haar Wavelets: Local Measure of Gradient Variation

| d, | < inf [[u—q=@



Adaptive Strategy

e Transient problem
Given the numerical solution u(t", z) based on the adapted
grid M™
1. Compute one level of wavelet coefficients d

2. If | dy |> €, the corresponding element and neighbors are
refined

3. If | dy |< 6 within an element, then it is coarsened.
4. The coarsest grid and highest level of refinement are sta-
blished a priori
e Stationary problem

1. Consider the corresponding transient problem

2. lterate on a given gid until iteration error is less than a
prescribed parameter

3. Apply the wavelet-based refinement strategy to update the
grid and repeat the process
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Rotating Cone
fi(u) = —yu, fo(u) =zu, Q=[-55]%x[-5,5], 0<t<2rm

Parameters : p=1, CFL =0.6 and 6 = 0.1
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cone uniform mesh | adaptive mesh
CPU time 7.5 units 2 units
fi elements 5000 872
(AZ)nin 0.2 0.179
l|error||z, 0.128 0.0656




Euler Equations of Gas Dynamics

p 2pu pv
| pu _ pv°+p _ puv
LR I GRS B FEICTE

E u(E + p) v(E +p)

E= %+%(u2+v2)
Backward Facing Step
da

—= — SQ

da,

= U, 4

d90 i

Estado inicial do fluido
e Initial condition ug: po = 1.4,u0 = 3,00 = 0, po = 1
e Boundary conditions:

At 0029 and 0Q3: wall
At 0001: u=uy
At 0Q4: free flow

® parameters ;p=1, CFL =04 and § = 0.75
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Reflecting Shock
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e |nitial condition uy: py = 1.0,up = 2.9, = 0, py = 0.71

e Boundary conditions:

At 09Q9: p1=1.7,u1 =2.61,v1 =0.50,p1 = 1.52

At 0Q21: u =g
At 0Q3: wall
At 0Q4: free flow

® parameters ;p=1, CFL=0.5and § = 0.5



Reflecting Shock: Steady State

Slide 20 {of 20) :

Reflecting shock || uniform | adaptive (NE) | adaptive (E)
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f elements 2080 493 591
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Conclusions

e Stabilization of a scheme that uses Fuler in time and dis-
continuous Galerkin in space is obtained by the introduc-
tion of an implicit diffusive term

e Definition of an h-adaptive strategy that uses wavelet co-
efficients as regularity indicators

e Savings in memory and CPU time are ilustated for typical
CFD test problems

e Implementation in a computational framework based on
object oriented philosophy



