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Abstract— In this paper a scheme to obtain an 

adaptive method in space for the resolution of 
Maxwell’s equations is presented. Using interpolating 
wavelets it is possible to obtain an adaptive grid 
allowing an economy of the computational resources. 
Using the non staggered grid model the stability factor 
is improved when compared with the classic FDTD and 
its value is greater that one. This factor is more limited 
with the increase of the interpolating polynomial. On 
the other hand the dispersion proprieties are more 
restricted, when compared with a staggered grid model. 
 

Index Terms — Multiresolution, FDTD, interpolating 
wavelets, numerical dispersion, numerical stability. 
 

1. INTRODUCTION 
urrently, the numerical methods for the resolution 
of electromagnetic problems have a great 
acceptance and the obtained results are very good 

when compared with the measured results. There are a 
variety of methods, but the Yee´s FDTD (Finite 
Difference Time Domain) scheme is one of the most 
popular methods in computational electromagnetics [1]. 
The basis of the FDTD method is the two Maxwell curl 
equations in differential form in the time domain 
expressed by means of central finite differences. FDTD 
models a region of space by dividing it into cells. In 
each of these cells the value of the three components of 
the electric and magnetic fields are calculated in 
different points of the cell (staggered grid) and stored, 
for a given time. From these values, we can obtain a 
new set of values in a later instant by solving the 
equation in a recursive way, thus advancing in time until 
the steady state is reached.  

Despite its simplicity and modeling versatility, the 
technique suffers however from serious limitations due 
to the use of uniformly dense grids leading to long 
computation times to simulate such grid. The vectors 
are dense and substantial computer resources are 
required to model electromagnetic problems with 
medium or large computational volumes. Finally the 
method is limited for the Courant stability factor. 

To improve the performance of FDTD method, we 
can use the wavelet’s theory for the resolution of 

Maxwell’s equations. In this context the first method to 
appear was the MRTD (Multiresolution Time Domain 
Technique). This method use a Galerkin scheme, and 
there are two versions: S-MRTD and W-MRTD [2]. 
The first uses scaling functions only, the second uses 
scaling functions and wavelets. These methods tends to 
reduce the number of cells per wavelength allowing 
discretizations close the Nyquist limit, and tend to 
improve the numerical dispersion effect, when 
compared with the FDTD in a certain range of the CFL 
parameter [2]. With the W-MRTD it is possible to 
obtain adaptability by thresholding small wavelets 
contributions. However, for their multilevel wavelet 
version, the implementation complexity increases with 
the number of scale levels, seriously compromising the 
computational performance. 

In this paper we present another type of adaptive 
strategy named SPR (Sparse Point Representation) that 
uses wavelet analysis using the second generation 
wavelets (biorthogonal interpolating wavelets) [3]. With 
this strategy is possible to obtain an adaptive mesh as a 
function of time that allows to an economy of resources 
and a relatively short or acceptable time of simulation. 
This grid is refined only in certain regions of the space, 
and less refined in other regions where the variation of 
the fields is smoother. The principle of the method is to 
represent the solution only through those points’ values 
indicated by the significant wavelet coefficients, which 
are defined as interpolating errors. Using this method it 
is possible to use a number NS of points, less than the N 
points of the original representation. One of the 
motivations for the use of wavelets for solving PDEs is 
its compression capability. For many types of signals, a 
small fraction of the coefficients is enough to achieve a 
good approximation to the function f(x). It is acceptable 
to assume that this sparse representation could lead to 
efficient algorithms in terms of computer memory and 
the number of arithmetic operations. 

When we apply this technique, there are two options, 
for the solution of Maxwell’s equations: in the first each 
component of the field has one independent grid, as in 
the FDTD case (staggered grids). In the second the grid 
is common for both the electric and magnetic field. In 
[4] the author presents the first case. In the present 
paper we demonstrate some of the potential of 
interpolating wavelets for the resolution of Maxwell 
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equations, in a non staggered grid model, in terms of the 
dispersion and stability proprieties, trough the results of 
a numerical simulation in one dimension. 

2. NUMERICAL SCHEMES FOR MAXWELL 
EQUATIONS IN NON STAGGERED GRID. 

Here we describe a 1-D example in order to 
demonstrate the method described above. Let us 
consider a TEM wave propagating along the x axis, the 
electric field is directed along the z axis and the 
magnetic field is directed along the y axis, being equal 
to zero at the initial instant. Maxwell’s equations are 
given in Cartesian coordinates by the formulae: 
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where, ε is the electrical permittivity and µ the magnetic 
permeability. In a non staggered grid we use only a grid 
for the electric and magnetic field in the same point. 
This corresponds to take the following samples of the 
components of H and E: 
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Based on these discrete values, approximations for 
the components of E and H at any point are defined by 
the following interpolation operators, 

( )
( ) ( )kxxHtn,xH

kxxE)tn,x(E

1

k

n
k

1

k

n
k

−∆φ∑≈∆

−∆φ∑≈∆

−

−

 (3) 

The basic function )x(φ  is chosen in the family of 
Dubuc-Delauriers scaling functions [5], which are the 
basis for the construction of interpolating 
multiresolution analysis. These scaling functions are 
identified by a parameter p  associated to the 
interpolating subdivision schemes, based on central 
Lagrange polynomial interpolation of degree 2p-1, 

1p ≥ . They are symmetric, )x()x( φ=−φ , and satisfy 
the interpolation property k0)k( δ=φ . 

Based on the interpolation of E and H, we consider 
the following approximations: 
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where )u()u( φ′=β  
Combining the last expressions and, considering the 

backward difference formula for the E field component 
and the forward difference formula for the H field 

component, to perform the temporal derivative, we 
obtain the following discrete equation system: 
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The Tab. 1 shows the coefficients )u(β  for 1p =  to 
4p = . 

Table 1 – Nonzero coefficients 0u),u( >β  
u p=1 p=2 p=3 p=4 

0 0 0 0 0 
1 1/2 2/3 272/365 1747/2203 
2  -1/12 -53/365 -1483/7724 
3   16/1095 399/11882 
4   1/2920 -73/32823 
5    128/743295 
6    1/1189272 

 

2.1 Dispersion and Stability 
To avoid dispersion, the phase constant must be a 

linear function of the angular frequency ω. However, 
the numerical methods lead to dispersion (non-linear 
dependency in ω) the level of which depends on the 
adopted model. Let us consider plane wave solutions in 
the form )wtkx(iEe)t,x(E −=  and )wtkx(iHe)t,x(H −= , 
where ω  is the frequency and k  is the wave number in 
space. Replacing these expressions in the Maxwell’s 
equations the conclusion is that plane waves solutions 
are admitted if the analytical relations holds, 

1cvv p == , where kwvp =  and µε=1c . If we 

define the grid density πω∆=δ 2cx , the wavelength 
Τ=λ c  where ωπ=Τ 2  is the period, then for 
N1=δ , xN ∆λ=  is the number of cells per 

wavelength. For the numerical scheme, plane waves 
solutions exist provided the numerical dispersion 
relation )v2(~s)ssin( πδβ=πδ  holds, where xtcs ∆∆=  

is the CFL parameter and ∑ ηβ=ηβ ≥0k )ksin()k()(~ . 
Consequently the stability condition reads β≤ k1s , for 

|)(~|maxk ηβ=β . For the cases under study, we find 

that )p(kk ββ =  increases with p . This means that, for 
stability, the CFL numbers should be smaller for higher 
orders of the interpolation scheme. The next table shows 
the values of the CFL for different orders. Since the 
maximum value of CFL, for the staggered grid model, is 
1 (for p=1) [6], then from the Tab. 2 it is possible to 
conclude that the stability factor is less limiting if we 



use the staggered grid model. In particular for 1p =  the 
CFL is two times greater than the CFL for the standard 
FDTD. The plot of v  as a function of the number of 
cells per wavelength is show in the Fig. 1, for p=2 and 
CFL numbers varying within the stability range of each 
scheme. 

 
Table 2 – CFL values for different orders 

Model CFL 
p=1 2 
p=2 1.4575 
p=3 1.2712 
p=4 1.16972 

 

 
Figure 1- Dispersion analysis in the plane vN×  for 

the non-staggered grid scheme: CFL effect. 

3. SIMULATED RESULTS 
In order to demonstrate the advantages of interpolating 
wavelets for the solution of Maxwell's equations, using 
a non staggered grid we considered an example 
involving the homogeneous medium illustrated in the 
Fig. 2. 
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Figure 2- Homogeneous medium. 

 
We consider an example where the fields at 0t = , are 

assumed to be 
2)5.0x(150e)0,x(E −−=  and 0)0,x(H =  for 

1x0 ≤≤ . As boundary conditions we consider the 
PML and the usual PEC. The simulation parameters are 
CFL=1.4575 and p=2, the SPR grid has 20 points in the 
coarsest level and 5 levels of resolution are used. The 

algorithm starts by converting the fields at t=0 to sparse 
representations on non staggered grid, using recursive 
cubic polynomial interpolation and thresholding, 
leading to sN  no uniformly sampled points. When the 
time evolves the number of samples sN  varies with the 
time as it is possible to see in the Fig. 4. For the 
discretization of the spatial derivatives, at each point of 
the sparse grids, a fourth order finite difference scheme 
is applied with uniform step size corresponding to the 
finest level. If some required stencil point is not present, 
it is obtained by using the recursive interpolation 
scheme. The results obtained are shown in Fig. 3. The 
plots refer to the electric field at three different time 
instants. 
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Figure 3 Time evolution of SPR representation 

 



In Fig. 4 it is possible to see the evolution with time of 
the percentage of points used in the simulation with 
respect to the total number of points in the finest grid. It 
demonstrates that with this method there is an economy 
in terms of the number of points and consequently a 
faster algorithm is achieved. 
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Figure 4 Evolution of the number of grid points in the 

SPR grids for the E and H fields. 
 
Finally, for comparison purposes, Fig. 5 shows the E 
field distributions obtained after the same computational 
time, using two different schemes: staggered and non-
staggered. From this figure it is possible to conclude 
that after the same simulation time, with the non-
staggered scheme we are closer of the final distribution. 
That means that the non-staggered scheme is faster than 
the staggered one. This is due to the fact that the CFL 
parameter is less restrictive for the non-staggered 
scheme. 
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Figure 5 Comparison, between the E field distributions, 

after the same simulation time, using staggered and 
non-staggered grids schemes. 

4. CONCLUSIONS 
This paper describes an application of interpolating 
wavelets and recursive interpolation schemes with 
thresholding, aiming the representation of the electric 
and magnetic fields in nonuniform, adaptive grids. 
Applied to Maxwell's equations, the method leads to 
sparse grids that adapt in space to the local smoothness 
of the fields, and at the same time track the evolution of 
the fields over time. In general, the number of points in 
the grid, Ns, is well below the maximum number of 
points, N. It is possible to control Ns, by trading off 
representation accuracy and data compression, and 
therefore speed. When NN s <<  there are substantial 
gains in memory and speed, two important advantages 
over FDTD scheme, which deals with dense grids that, 
as a rule, over sample the fields in space. 
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