Regras de L'Hospital, notas de aula

Teorema 1 (1a. Regra de L'Hospital: indeterminações do tipo " $\frac{0}{0}$ "). Sejam f e g duas funções reais deriváveis definidas no domínio $D=(p-\delta,p)\cup(p,p+\delta)$, com $\delta>0$ tais que

$$\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0.$$

Se $\frac{f'}{g'}$ estiver definida em D e existir (mesmo que estendido) o limite $\lim_{x\to p} \frac{f'(x)}{g'(x)}$ em \mathbf{R} (ou o estendido em $\{+\infty, -\infty\}$) então

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)}.$$

▶ Antes de demonstrarmos a regra, apresentamos uma demonstração fácil para uma situação que é particular, mas que cobre alguns casos de interesse, além disso, e o que é mais importante, dá uma intuição do fenômeno que está em jogo: suponha que o domínio D onde f e g são deriváveis inclua o ponto p, isto é $D = (p - \delta, p + \delta)$ e que $g'(p) \neq 0$. A hipótese significa que f(p) = g(p) = 0 portanto

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f(x) - f(p)}{g(x) - g(p)} = \lim_{x \to p} \frac{\frac{f(x) - f(p)}{x - p}}{\frac{g(x) - g(p)}{x - p}} = \frac{\lim_{x \to p} \frac{f(x) - f(p)}{x - p}}{\lim_{x \to p} \frac{g(x) - g(p)}{x - p}} = \frac{f'(p)}{g'(p)}.$$

Esse caso particular também pode ser provado facilmente usando o teorema de Cauchy.

▶ Note que a igualdade garantida pela Regra de L'Hospital está condicionada à existência (mesmo que estendida para $\pm \infty$) do limite de $\frac{f'}{g'}$. Não quer dizer que a igualdade seja verdadeira sempre (mesmo com $\lim_{x\to p} f(x) = \lim_{x\to p} g(x) = 0$), isto é, o limite de $\frac{f}{g}$ pode existir, sem que exista o limite de $\frac{f'}{g'}$. Considere por exemplo $D = \mathbf{R} \setminus \{0\}$ com $f(x) = x^2 \sin(1/x)$ e g(x) = x.

A demonstração para o caso geral como enunciado acima será um corolário imediato da Regra de L'Hospital para limites laterais, que faremos abaixo. Essa demonstração utilizará três vezes a seguinte

▶ Observação 1: Se uma função $h:(p,p+\delta)\to \mathbf{R}$ é tal que $\lim_{x\to p^+}h(x)=0$ e h é derivável com h'>0, então h(x)>0 para todo $x\in(p,p+\delta)$. De fato, para verificar isso, defina uma nova função $\bar{h}:[p,p+\delta)$ dada por $\bar{h}(p)=0$ e $\bar{h}(x)=h(x)$ para $x\in(p,p+\delta)$. Naturalmente, pela maneira que foi definida, \bar{h} é contínua em $[p,p+\delta)$, e derivável em $(p,p+\delta)$ tal que neste intervalo $\bar{h}'(x)=h'(x)>0$. Segue pelo teorema do valor médio que \bar{h} é estritamente crescente, portanto $\bar{h}(x)>0$ para $x\in(p,p+\delta)$. Analogamente, h<0 se h'<0. Também é análogo quando consideramos o intervalo $(p-\delta,p)$, com os respectivos acertos do sinal.

▶ Observação 2: (Um Teorema do Valor Intermediário para derivadas) Se uma função h é derivável em um intervalo I e para a < b ∈ I temos que h'(a) < 0 e h'(b) > 0 então existe c ∈ (a,b) tal que h'(c) = 0. Esse resultado, chamado de Teorema de Darboux (no Guidorizzi está na página 282) tem uma maneira fácil de demonstrar: o ponto a, extremo esquerdo do intervalo [a,b] não é ponto de mínimo de h em [a,b] porque h'(a) < 0, da mesma maneira b, o extremo direito do intervalo, tampouco é ponto de mínimo de h em [a,b]. Segue pelo Teorema de Weierstrass que existe um ponto c ∈ (a,b) que é ponto de mínimo de h, portanto h'(c) = 0.

Assim, se $\frac{f'}{g'}$ está definida em D, então $g'(x) \neq 0$ para todo $x \in D$. Portanto esse teorema do valor intermediário para derivadas garante que g' não troca de sinal em $(p, p+\delta)$ nem em $(p-\delta, p)$.

Proposição 2 (1a. Regra de L'Hospital: com limites laterais). Sejam f e g duas funções reais deriváveis definidas no intervalo $I = (p, p + \delta)$, com $\delta > 0$ tais que

$$\lim_{x \to p^+} f(x) = \lim_{x \to p^+} g(x) = 0.$$

Se $\frac{f'}{g'}$ estiver definida em I e existir (mesmo que estendido) o limite $\lim_{x\to p} \frac{f'(x)}{g'(x)}$ em \mathbf{R} (ou o estendido em $\{+\infty, -\infty\}$) então

$$\lim_{x \to p^+} \frac{f(x)}{g(x)} = \lim_{x \to p^+} \frac{f'(x)}{g'(x)}.$$

Demonstração: Pela Observação 2 acima, g' não muda de sinal em $(p, p + \delta)$. Sem perda de generalidade, considere que g'(x) > 0 para todo $x \in I$. Assim, pela Observação 1 também teremos g(x) > 0 para $x \in I$. Suponha que sejam dados dois números reais α e β tais que para todo $x \in (p, \delta')$, com $\delta' \leq \delta$ tenhamos

$$\alpha < \frac{f'(x)}{g'(x)} < \beta. \tag{1}$$

Então

$$\alpha q'(x) < f'(x) < \beta q'(x).$$

Da desigualdade do lado esquerdo tiramos que $\alpha g'(x) - f'(x) < 0$; junto com o fato de $\lim_{x\to p^+}(\alpha g(x) - f(x)) = 0$ então, pela observação antes da Proposição 2:

$$\alpha g(x) - f(x) < 0 \tag{2}$$

E da desigualdade do lado direito tiramos que $\beta g'(x) - f'(x) > 0$, junto com o fato de $\lim_{x\to p^+} (\beta g(x) - f(x)) = 0$ então, mais uma vez pela observação antes da Proposição 2

$$\beta g(x) - f(x) > 0 \tag{3}$$

Assim, as desigualdades (2) e (3) implicam que também temos

$$\alpha < \frac{f(x)}{g(x)} < \beta \tag{4}$$

para $x \in (p, p + \delta')$.

Se $\lim_{x\to p^+} \frac{f'(x)}{g'(x)} = L \in \mathbf{R}$, dado um $\varepsilon > 0$ arbitrário, tome $\alpha = L - \varepsilon$ e $\beta = L + \varepsilon$. Então existe um δ' que satisfaz as propriedades acima, portanto, das desigualdades (4) acima teremos também $\lim_{x\to p^+} \frac{f(x)}{g(x)} = L$.

No caso de $\lim_{x\to p^+} \frac{f'(x)}{g'(x)} = +\infty$, usamos somente o lado esquerdo da desigualdade (4). Para um dado α arbitrariamente grande, existe um δ' que vai satisfazer as propriedades acima (no que se refere ao lado esquerdo das desigualdades (1) e (4)).

Finalmente, se $\lim_{x\to p^+} \frac{f'(x)}{g'(x)} = -\infty$, usamos somente o lado direito da desigualdade (4). Para um dado um β negativo de módulo arbitrariamente grande, existe um δ' que vai satisfazer as propriedades acima (no que se refere ao lado direito das desigualdades (1) e (4)).

- \blacktriangleright Observação 3: Verifique que assumindo no começo da demonstração que g'<0 em I, a demonstração continua válida. As inversões de sinal necessárias em (2) e em (3) são desinvertidas e se chega na mesma desigualdade (4).
- ▶ Observação 4: Verifique que podemos enunciar uma proposição análoga para limites laterais a esquerda. Conclui-se assim que a demonstração do Teorema 1 está completa.

Teorema 3 (2a. Regra de L'Hospital: indeterminações do tipo " $\frac{\infty}{\infty}$ "). Sejam f e g duas funções reais deriváveis definidas no domínio $D=(p-\delta,p)\cup(p,p+\delta)$, com $\delta>0$ tais que

$$\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = +\infty.$$

Se $\frac{f'}{g'}$ estiver definida em D e existir (mesmo que estendido) o limite $\lim_{x\to p} \frac{f'(x)}{g'(x)}$ em \mathbf{R} (ou o estendido em $\{+\infty, -\infty\}$) então

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)}.$$

Da mesma maneira que fizemos com a 1a. Regra de L'Hospital, a 2a. Regra será demonstrada usando a proposição abaixo, que a demonstra o caso de limites laterais.

Proposição 4 (2a. Regra de L'Hospital: com limites laterais). Sejam f e g duas funções reais deriváveis definidas no intervalo $I = (p, p + \delta)$, com $\delta > 0$ tais que

$$\lim_{x \to p^+} f(x) = \lim_{x \to p^+} g(x) = +\infty.$$

Se $\frac{f'}{g'}$ estiver definida em I e existir (mesmo que estendido) o limite $\lim_{x\to p^+} \frac{f'(x)}{g'(x)}$ em \mathbf{R} (ou o estendido em $\{+\infty, -\infty\}$) então

$$\lim_{x \to p^+} \frac{f(x)}{g(x)} = \lim_{x \to p^+} \frac{f'(x)}{g'(x)}.$$

Demonstração: Pela Observação 2, g' não muda de sinal em $(p, p + \delta)$. Pela hipótese de $\lim_{x\to p^+} g(x) = +\infty$, teremos necessariamente que g' < 0 neste intervalo. Suponha que sejam dados dois números reais α e β tais que para todo $x \in (p, \delta')$, com $\delta' \leq \delta$ tenhamos g(x) > 0 e

$$\alpha < \frac{f'(x)}{g'(x)} < \beta. \tag{5}$$

Então da desigualdade do lado esquerdo tiramos que $\alpha g'(x) - f'(x) > 0$. Portanto, comparando os valores da função $\alpha g - f$ em $x \in (p, p + \delta')$ e em $p + \delta'$ temos:

$$\alpha g(x) - f(x) < \alpha g(p + \delta') - f(p + \delta') \tag{6}$$

E da desigualdade do lado direito tiramos que $\beta g'(x) - f'(x) < 0$. Portanto, comparando os valores da função $\beta g - f$ em $x \in (p, p + \delta')$ e em $p + \delta'$ temos:

$$\beta g(x) - f(x) > \beta g(p + \delta') - f(p + \delta') \tag{7}$$

Assim, das desigualdades (6) e (7) e lembrando que neste intervalo g > 0, temos

$$\alpha - \frac{\alpha g(p+\delta') - f(p+\delta')}{g(x)} < \frac{f(x)}{g(x)} < \beta - \frac{\beta g(p+\delta') - f(p+\delta')}{g(x)} \tag{8}$$

para todo $x \in (p, p + \delta')$.

Se $\lim_{x\to p^+} \frac{f'(x)}{g'(x)} = L \in \mathbf{R}$, dado um $\varepsilon > 0$ arbitrário, tome $\alpha = L - \frac{\varepsilon}{2}$ e $\beta = L + \frac{\varepsilon}{2}$. Então existe um δ' que satisfaz simultaneamente: as propriedades acima e torna as duas frações das desigualdades (8) com constantes no numerador e g(x) no denominador menores que $\frac{\varepsilon}{2}$. Portanto, das desigualdades (8) acima teremos também $\lim_{x\to p^+} \frac{f(x)}{g(x)} = L$.

No caso de $\lim_{x\to p^+} \frac{f'(x)}{g'(x)} = +\infty$, usamos somente o lado esquerdo da desigualdade (8). Para um dado um α arbitrariamente grande, existe um δ' que vai satisfazer as propriedades acima (no que se refere ao lado esquerdo das desigualdades (5) e (8)).

Finalmente, se $\lim_{x\to p^+} \frac{f'(x)}{g'(x)} = -\infty$, usamos somente o lado direito da desigualdade (8). Para um dado β negativo de módulo arbitrariamente grande, existe um δ' que vai satisfazer as propriedades acima (no que se refere ao lado direito das desigualdades (5) e (8)).

▶ Observação 5: Verifique que podemos enunciar uma proposição análoga para limites laterais a esquerda. Conclui-se assim que a demonstração do Teorema 4 está completa.