Métodos de Bissecção e da Falsa Posição

MS211 - Cálculo Numérico - Turma C

Giuseppe Romanazzi

Agosto 2023

Contéudo

- Critérios de precisão na aproximação dos zeros
- Método de Bissecção
- Método da Falsa posição
- 3 Convergência dos métodos numéricos

Procedimento para achar os zeros

- O Procedimento divide-se em duas fases:
 - Passo 1: Localização ou isolamento das regiões que contêm os zeros
 - Aplicação do Teorema 1
 - **Passo 2**: Aplicação de métodos numéricos para refinar tais regiões e achar assim com mais precisão os zeros

Critérios de precisão na aproximação do zero z

Quando podemos dizer de estar perto do zero procurado?

Seja \bar{x} uma aproximação da raiz z obtida de um método, e $\varepsilon>0$ a precisão requerida do problema, podemos dizer de achar (ou aproximar) o zero a menos de uma tolerância ε se

i)
$$|\bar{x} - z| < \varepsilon$$

ou

ii)
$$|f(\bar{x})| < \varepsilon$$
.

Em qualquer método iterativo podemos escolher o critério do precisão baseando-se numa destas condições ou em ambas.

Algoritmos Iterativos

- Os critérios de precisão vistos antes são suficientes para ter uma boa aproximação, portanto são também chamados critérios de paragem dos algoritmos.
- Sendo que z é desconhecido (por isso é procurado!) não é possível aplicar diretamente o critério |x̄ z| < ε.
 Este critério é substituído do critério |b_k a_k| < ε onde [a_k, b_k] é um intervalo, que contem o zero, obtido na iteração k do método: x_k ∈ (a_k, b_k).

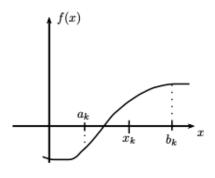
Portanto se verificamos $|b_k - a_k| < \varepsilon$ então vale com certeza $|x_k - z| < \varepsilon$.

• Note que a seguir os algoritmos usados podem usar k=0 ou k=1 para indicar a primeira iteração.

Método de Bissecção

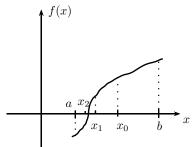
Descrição do método

Dado um intervalo [a, b] tal que a função tem sinais opostos nos seus extremos. Divide-se o intervalo a meio, escolhe-se o subintervalo onde a função tem sinais opostos nos extremos e assim sucessivamente. Em cada iteração o aproximante do zero, é o ponto médio do intervalo analisado $x_k := \frac{a_k + b_k}{2}$.



Método da Bissecção: Algoritmo

Inicialização		$[a_0,b_0]=[a,b]$
	1.	$x_k = \frac{a_k + b_k}{2};$
	2.	Se $f(x_k)f(a_k) < 0$
Repetir		Então $a_{k+1} = a_k, b_{k+1} = x_k$
		Senão $a_{k+1} = x_k, b_{k+1} = b_k$
	3.	k=k+1
Até	Verificar o critério de paragem escolhido	
		1 0



Exemplo de aplicação do método da bissecção

$$f(x) = x \log x - 1$$
 onde $\log \equiv \log_{10}$.

Achar o zero a menos de um erro (tolerância) $\varepsilon=10^{-4}$.

Observamos que:

- $f(2) \approx -0.3979 < 0$ e $f(3) \approx 0.4314 > 0$ portanto existe um zero em [2, 3].
- O zero é único em [2,3]? Sim, porque $f'(x) = \log x + x(\log x)' = \log x + x(\frac{\ln x}{\ln 10})' = \log x + \frac{1}{\ln 10} = \frac{\ln(x)+1}{\ln 10} > 0$, se x > 1.
- Usamos o critério de paragem $|b_k a_k| < \varepsilon$, com $\varepsilon = 10^{-4}$.

Exemplo de aplicação do método da bissecção

$$[a_0,b_0] = [2,3] \ \text{com} \ f(a_0)f(b_0) < 0, \ |b_0-a_0| = 1 > \varepsilon$$

$$x_0 = \frac{a_0+b_0}{2} = 2.5 \ \begin{cases} f(x_0) = -5.15 \cdot 10^{-3} < 0 & z \in (x_0,b_0) \\ f(a_0) = -0.3979 < 0 & \rightarrow a_1 = x_0 = 2.5 \\ f(b_0) = 0.4314 > 0 & |b_1-a_1| > \varepsilon...alg.continua \end{cases}$$

$$x_{1} = \frac{a_{1} + b_{1}}{2} = 2.75 \begin{cases} f(x_{1}) = 0.2082 > 0 \\ f(a_{1}) = -5.15 \cdot 10^{-3} < 0 \\ f(b_{1}) = 0.4314 > 0 \end{cases} \xrightarrow{z \in (a_{1}, x_{1})} a_{2} = a_{1} = 2.5 \\ b_{2} = x_{1} = 2.75 \\ |b_{2} - a_{2}| > \varepsilon ...alg.continua$$

 $x_2 = \frac{a_2 + b_2}{2} = 2.625 \dots$

Se for $\varepsilon = 0.3$ o método obtém o aproximante $x_2 = 2.625$.

Se for $\varepsilon=10^{-4}$ o método obtém a aproximação ótima $x_{14}\approx 2.506195$ depois 14 iterações. Note que o zero real é $z\approx 2.506184$.

Observações

- No fim de cada iteração k toma-se como aproximante do zero o valor x_k.
- O método consegue localizar bem o zero na precisão requerida. Isso era esperado porque refinemos sempre mais o intervalo inicial determinando em cada iteração um intervalo de comprimento menor que contem o zero.
- Quando o método converge, ao necessitar uma precisão maior (usando um tolerância do erro ε menor) o método numérico requererá mais iterações.

Convergência

Teorema de Convergência do método da bissecção

Seja f contínua em [a,b] tal que f(a)f(b)<0 e seja z o único zero de f nesse intervalo. O método da bissecção gera uma sucessão $\{x_k\}$ que converge para z. Ou seja vale que $\lim_{k\to\infty}x_k=z$

Demonstração no livro "M.A. Gomes Ruggiero, V. L. da Rocha Lopes. Cálculo Numérico - aspectos teóricos e computacionais" páginas 44-46

Estimativas do número de iterações

Dada a tolerância ε , é possível saber a priori em quantas iterações obtemos com o método da bissecção uma aproximação x_k do zero z tal que satisfaz o critério

$$|x_k - z| < \varepsilon? \tag{1}$$

Sim, ... sendo que $x_k:=\frac{a_k+b_k}{2}$ é o aproximante do método após k iterações, e que $|x_k-z|<|b_k-a_k|$, então é suficiente encontrar k tal que

$$|b_k-a_k|<\varepsilon.$$

Observamos que

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{2 \cdot 2} = \frac{b_{k-3} - a_{k-3}}{2^3} = \dots = \frac{b_0 - a_0}{2^k}$$

Sendo que por hipótese $a_0=a$, $b_0=b$, o número de iterações k necessárias para que a condição (1) seja verdadeira é tal que $\frac{b-a}{2^k}<\varepsilon$. Este equivale a determinar o menor k (inteiro positivo) tal que

$$k > \frac{\log(b-a) - \log(\varepsilon)}{\log(2)}.$$

Exemplo, Estimativas do número de iterações para ter $|x_k - z| < \varepsilon$

$$f(x) = x \log(x) - 1$$
, $[a, b] = [2, 3]$.

• Se $\varepsilon = 10^{-2}$, observamos que

$$k > \frac{\log(3-2) - \log(10^{-2})}{\log(2)} = \frac{0 - (-2)}{0.30103} \approx 6.64$$

Portanto o número mínimo de iterações para ter

$$|x_k - z| < 10^{-2}$$

 \acute{e} 7, e temos $x_7 = 2.50390625$.

• Se $\varepsilon=10^{-4}$, temos $\frac{\log(b-a)-\log(\varepsilon)}{\log(2)}=\frac{4}{0.30103}\approx 13.288$. O número mínimo de iterações para que $|x_k-z|<10^{-4}$ é 14, e temos como aproximante $x_{14}\approx 2.5062$.

Implemente o código do método e verifique estes resultados

Propriedades do método da bissecção

Propriedades Positivas:

- É um método global e geral, no sentido que converge sempre a única raiz $z \in [a, b]$. O método necessita somente de conhecer o intervalo [a, b] de partida onde a função f é tal que $f(a) \cdot f(b) < 0$.
 - Outros métodos dependem também de um aproximante inicial x_0 dado para poder convergir à raiz.
- Envolve poucas operações em cada iteração → tem custo computacional baixo.
- Sabe se a priori até quantas iterações k são necessárias para ter $|x_k z| < \varepsilon$. Outros métodos não têm esta propriedade.

Propriedades Negativas:

• É um método geralmente lento.

Se for $b-a>>\varepsilon$ o método requer bastantes iterações para ter $|x_k-z|<\varepsilon$.

Se por exemplo b=a+3 e $\varepsilon=10^{-7}$, então precisaremos de $k>\frac{\log(3)+7}{\log(2)}=24.8$ iterações. Ou seja somente depois 25 iterações acharemos o zero a menos de uma tolerância de 10^{-7} .

Outros métodos são bem mais rápidos.

Melhorar o método da bissecção

Não sempre a média $x_k = \frac{a_k + b_k}{2}$ é a melhor opção para achar o zero em $[a_k, b_k]$.

Por exemplo se $|f(a_k)|$ for mais próximo a zero de $|f(b_k)|$ (ou seja se $|f(a_k)| < |f(b_k)|$) é mais provável que o zero z seja mais próximo a a_k que a b_k .

Usando os valores $f(a_k)$, $f(b_k)$, podemos localizar o aproximante mais próximo do extremo onde a f é mais próxima de zero, esta é a ideia do método da Falsa Posição.

Método da Falsa Posição (regula falsi)

É um método geral e pode-se aplicar quando f for continua em [a,b] tal que f(a)f(b)<0.

É similar ao método da bisseção no calculo de a_k , b_k , mas calcula x_k como segue

$$x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}.$$

Este valor corresponde a uma media "pesada" de a_k e b_k com peso respetivamente $|f(b_k)|$ e $|f(a_k)|$, sendo que

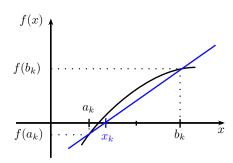
$$\frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)} = \frac{|f(b_k)| a_k + |f(a_k)| b_k}{|f(b_k)| + |f(a_k)|}.$$

Por isso, quanto mais $|f(b_k)|$ for menor de $|f(a_k)|$, a iteração x_k será mais proxima a b_k que a a_k .

Método da Falsa Posição

Notamos que o valor obtido na iteração k: $x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}$ corresponde à interseção com o eixo das x da recta que junta os pontos $(a_k, f(a_k))$ e $(b_k, f(b_k))$

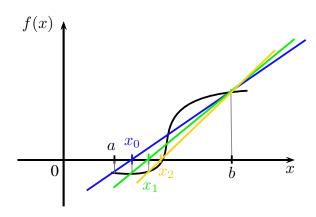
$$\begin{cases} \frac{y - f(a_k)}{x - a_k} = \frac{f(b_k) - f(a_k)}{b_k - a_k} & \text{(equação da reta)} \\ y = 0 & \text{(equação do eixo das x)} \end{cases} \rightarrow x = x_k$$



Método da Falsa Posição: Algoritmo

Inicialização	$[a_0,b_0]=[a,b]$	
Repetir	1. $x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)};$	
	2. Se $f(x_k)f(a_k) < 0$	
	então $a_{k+1}=a_k$, $b_{k+1}=x_k$	
	senão $a_{k+1} = x_k$, $b_{k+1} = b_k$	
	3. k=k+1	
Até	Verificar o critério de paragem	

Algoritmo similar à Bissecção, muda só o valor de x_k em cada iteração.



Convergência

Teorema de Convergência do método da falsa posição

Seja f contínua em [a, b] tal que f(a)f(b) < 0 e seja z o único zero de f nesse intervalo. Então o método da falsa posição gera uma sucessão $\{x_k\}$ que converge para z. Temos $\lim_{k\to\infty} x_k = z$

Exemplo de aplicação do método da falsa posição

 $f(x) = x \log x - 1$ onde $\log \equiv \log_{10}$. Achar o zero a menos de uma tolerância de $\varepsilon = 10^{-4}$. Observamos que

- $f(2) \approx -0.3979 < 0$ e $f(3) \approx 0.4314 > 0$ portanto existe um zero em [2, 3].
- O zero é único em [2, 3], porque f'(x) > 0, se x > 1.
- Usamos o critério de paragem $|b_k a_k| < \varepsilon$, com $\varepsilon = 10^{-4}$.
- O método da falsa posição resulta ser mais rápido em geral da bissecção.

Exemplo de aplicação do método da falsa posição

$$x_{1} = \frac{a_{1}f(b_{1}) - b_{1}f(a_{1})}{f(b_{1}) - f(a_{1})} \approx 2.505 \begin{cases} f(x_{1}) = -0.001 < 0 & z \in (x_{1}, b_{1}) \\ f(a_{1}) = -0.0219 < 0 \rightarrow a_{2} = x_{1} = 2.50496 \\ f(b_{1}) = 0.4314 > 0 & b_{2} = b_{1} = 3 \\ |b_{2} - a_{2}| > \varepsilon...alg.continual \\ x_{2} = \frac{a_{2}f(b_{2}) - b_{2}f(a_{2})}{f(b_{2}) - f(a_{2})} = 2.5061 \dots \end{cases}$$

No fim de cada iteração k toma se x_k como aproximante corrente

Resultados

- Com $\varepsilon=10^{-4}$, o algoritmo para na iteração $x_{11}=2.506184$. Note que chegamos ao zero real pois: $z\approx 2.506184$. Usamos menos iterações da bissecção (precisava de 14 iterações).
- Se for $\varepsilon=10^{-8}$, o método para sempre apos 11 iterações, em vez a bisseção precisa de 27 iterações.
- Menor é a tolerância requerida no aproximar o zero, melhor será o método da falsa posição.
- Note porem que uma iteração da falsa posição requer mais operações da bisseção (custo computacional maior).

Considere a função $x^3 - 9x + 3$, procure os dois zeros em [0,3] com Bisseção e Falsa Posição, qual método resulta ser melhor?

Convergência e erro ao passo k

Como já vimos dada uma sucessão $\{x_k\}$ de um método numérico usado para procurar o zero z de uma função f

Definition (Convergência do método)

O método que gera a sucessão $\{x_k\}$ diz se convergente à raiz z se vale $\lim_{k\to\infty} x_k = z$.

Como já vimos o método da bisseção e da falsa posição são convergentes quando f é continua e admite um único zero em [a, b].

A seguir usamos a notação $e_k := |x_k - z|$, e definimos e_k como o **erro do método no passo (iteração)** k. Observamos que se o método for convergente então a sucessão dos erros

Observamos que se o método for convergente então a sucessão dos erros converge a zero

$$\lim_{k\to\infty}e_k=0.$$

Convergência linear

Determinar a ordem de convergência dos métodos, é útil para comparar a rapidez dos métodos convergentes

Definition (Convergência linear)

Se existir 0 < C < 1 tal que $\lim_{k \to \infty} \frac{e_{k+1}}{e_k} = C$ onde $e_k = |x_k - z|$, então o método convergente, que gera os $\{x_k\}$, é dito linear. Os métodos lineares tem ordem de convergência 1.

Notamos que se $\{x_k\}$ for gerada de um método linear vale que: por k suficientemente grande $(\exists \nu > 0 \text{ tal que } \forall k > \nu)$: $e_{k+1} \approx Ce_k$, e então, sendo 0 < C < 1, obtemos $e_{k+1} < e_k$ para k suficientemente grande.

Convergência de ordem superior

Definition (Convergência de ordem p)

Um método é dito ser convergente de ordem p, com p > 1, se existir um C > 0 tal que

$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k{}^p}=C$$

A constante C é chamada constante assintótica de convergência. Vale que por k suficientemente grande $e_{k+1} \approx Ce_k^p$.

Definition (Convergência superlinear)

Se $\lim_{k\to\infty}\frac{e_{k+1}}{e_k}=0$ o método diz-se que converge mais que linearmente (ou que é superlinear).

Neste ultimo caso a ordem de convergência é maior de 1.

Convergência dos métodos de Bisseção e Falsa Posição

• Sabemos que o método da bisseção é convergente, porem não se conhece a sua ordem de convergência, porque esta dependerá da função f e do intervalo [a,b] utilizado. Sabemos porém que para a bisseção vale sempre que $e_k < \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}$, que é útil para estimar o erro cometido no passo k.

 Para o método da falsa posição sabe se que pode ser linear nalgum caso,

Por exemplo quando a função f for convexa ou concava. Ver teorema seguinte.

Convergência do método da falsa posição

Teorema (Convergência linear do método da falsa posição)

Seja f tal que $f(a) \cdot f(b) < 0$ com um único zero z em [a,b], se f for convexa ou concava em [a,b] (ou seja f''>0 ou f''<0 em [a,b] respetivamente) então o método da falsa posição converge e é linear:

$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k}=M,$$
 com $0< M<1.$ Sabe se também que $M=1-\frac{f'(z)}{f'(w)}$ onde
$$\left\{\begin{array}{l} w\in (z,b), \text{se } f \text{ for convexa} \\ w\in (a,z), \text{se } f \text{ for concava} \end{array}\right.$$

Estimativa do erro do método da falsa posição

Proposição (Estimativa do erro)

Se a derivada f' for continua em [a,b], $f(a) \cdot f(b) < 0$. Sejam $m_1 = \min_{x \in [a,b]} |f'(x)|$ e $M_1 = \max_{x \in [a,b]} |f'(x)|$ então vale a seguinte estimativa do erro ao passo k+1:

$$e_{k+1} \leq \frac{M_1 - m_1}{m_1} |x_{k+1} - x_k|$$