Lista de Exercícios 3

Entrega por Google Classroom dos três exercícios marcados com (*) até Terça Feira 19/05/2020.

Os exercícios (*) podem ser desenvolvidos em grupos de até dois membros.

- (1) Escrever a expressão de um polinômio de grau 4 por cada um dos seguintes casos, os relativos zeros, e desenhar o gráfico do polinômio.
 - tem nenhum zero real
 - tem um só zero real
 - tem dois zeros reais
 - tem três zeros reais
 - tem quatro zeros reais

Por exemplo, um polinômio de grau 2 que tem um só zero real é $p(x) = x^2 - 2x + 1$ e tem como zero x = 1.

- (2) Seja f contínua e tal que f(a)f(b) < 0 Quantos zeros podem existir em [a,b]? Pode dizer que há sempre um número impar de zeros? Porque se a função é crescente ou decrescente em [a,b] pode ter somente um zero? Prova-lo graficamente.
- (3) Provar teoricamente (ver livro [1]) e graficamente (desenhando os pontos x_k do método por uma dada f) que o método de bisseção é convergente
- (4) Provar graficamente que o método da falsa posição é convergente
- (5) (*) Escreva o algoritmo e um código que dada uma função f e o intervalo [a, b] determina em output uma aproximação x_k obtida pelo método da bisseção tal que verifica por dadas $\varepsilon_1 > 0$ e $\varepsilon_2 > 0$ ambas as condições
 - (i) $|x_k \xi| < \varepsilon_1$
 - (ii) $|f(x_k)| < \varepsilon_2$
- (6) Repetir o mesmo exercício em cima mas com o método da falsa posição
- (7) Repetir os dois exercícios em cima mas que tem como condição de saída do algoritmo que x_K é aceite se satisfaz $|x_k \xi| < \varepsilon_1$ ou $|f(x_k)| < \varepsilon_2$
- (8) (*) Encontrar com uma aproximação de $\varepsilon_1 = 10^{-2}$ e $\varepsilon_2 = 10^{-4}$ os dois zeros de $f(x) = e^x x 2$.

- Use os métodos da bisseção e da falsa posição.
- É possível saber em quantas iterações será satisfeita a condição (i), com $\varepsilon_1 = 10^{-2}$ no método da bisseção? Se sim diga em quantas iterações e prova-lo com os seus resultados.
- Compare os resultados dos dois métodos, e diga qual método consegue chegar a aproximação x_k em menos iterações.
- (9) Analise as derivadas da função $f(x) = 3x^3 8x + 4$ e diga quantos zeros tem esta função. Determine os intervalos que contem somente um zero. Aplique o método da falsa posição para determinar com a tolerância $\varepsilon = 10^{-4}$ todos os zeros.
- (10) (Exemplo de modelagem) Seja r a taxa de juro mensal (se for por exemplo r = 0.5 está corresponde a percentagem 50%) de uma conta num fundo monetário. Se uma pessoa investe P inicialmente, depois m meses tem na conta $f(m) = p \cdot (1+r)^m$.
 - Porquê o valor da conta depois m meses é f(m)?
 - Imagina que um cliente quer retirar o dinheiro quando tem na conta $4\sqrt{m} + 10000$ reais depois m meses investidos. Quantos meses m^* tem de esperar para retirar o seu dinheiro da conta?
 - Determine m^* se usar taxa r=3% e tem investido inicialmente 1000 reais. Usar o método da bisseção e a falsa posição para resolver este problema.
- (11) (*) O método da falsa posição no intervalo [a, b] pode ser mais lento no caso que o zero fica mais próximo do extremo onde o valor da |f| toma o valor máximo nos extremos. Neste caso acontece que este extremo do intervalo inicial [a, b] permanece como extremo também nos sucessivos intervalos obtidos do método.
 - Implemente graficamente o método da falsa posição para a função representada na figura abaixo (ver pagina 3).
 - Verifica que o método é mais lento do método da bisseção. Traça no gráfico as iterações x_k de ambos os métodos.
 - Era esperável que isso (falsa posição mais lenta da bisseção) pudesse acontecer? Motive a sua resposta.

